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Abstract:

This paper generalizes the method of principal components to so
called "cbmmoh principal- components" in the following way: Assume
the covariance matrices Ei(i =1,...,k) are simultaneously diagonal-
izable, that is, there is an orthogonal matrix g such that g Ei Q

is diagonal for i = 1,...,k. Given sémp]es from norma] populations
sétisfying this condition on thé covariance matrices, we derive the
maximum Tikelihood estimates of Ei’ i= 1,.;.,k, and the log-Tikeli-
hood-ratio statistic for testing the hypdthesis of common principal
axes. The solution is shown to have some favorable properties

which do not depend on the normal assumptions. The method is illu-

strated by'numerica1 examples. Applications to data reduction,

multiple regression and nonlinear discriminant analysis are sketched.

Keywords: Maximum Tikelihood; Covariance matrices; Discriminant

analysis



_'1. Introduction

Principal Component Analysis (PCA) is a well known and established
technique of multivariate statistical analysis. It enjoys a solid
theoretical foundation and possesses many optimal properties (Okamoto
1969, McCabe 1982). One important property of principal components
(PC's) is that they Can be considered as uncorrelated variables,
obtained by anvorthogona1 rotation of the coordinate system. PCA
is a one-sample method, and to the author's knowledge only two efforts
have been made to generalize it to a two-sample method: Krzanowski
(1979) compéres fhe PC's of two different samb]es by computing the
angles between the subspaces spanned by the first q PC's of each
group. F]ury (1983) gives a method of obtaining uncorrelated var-
iables in two groups simultaneously,.sacrificing the condition of
orthogona]ity; o

In practice we often deal with the situation of variables being
measured on grouped objects, and . the covariance structure may vary
from group to group. Examples for this range from three species of
Iris (Fishér 1936) over male and female turtles (Jo]icoéur and
Mosimann'1960) and human bones (Jolicoeur 1963) to real and forged
bank notes (Flury and Riedwyl 1983). In all these cases, tests of
Signifigance suggest that the underlying popu]afion covariance
matrices afé not identical in all groups. Yet there may be a certain
similarity between thevcovariance matrices of different groups, which
could be used to improve estimation. One such similarity might be

that the PC - transformation is the same in all populations. The



mathematical formulation of this is the simu]taheous diagonalize-

L : . . : k.
ability of k px p - covariance métr1ces E]""’Em'

'5..8 = Ai(diagona1); i=1,...,k (1.1)
n, ' .

%
L

B
Y]
where E is an orthogonal p x p - matrix. .

As will be shown in section 4 of this paper, assumption (1.1)
may be quite reasonable in certain applications. As the columns of

g can be viewed as the rotated coordinate axes, we will refer to

oA

condition (1.1) as "common principal axes", and the projections of
the>var1ab1e§ on the common principal axes will be called "“common
principal componénts (CPC'S)“. Note that, in contrast to the one-
: samp]e‘case,vno obvious fixed ofder of the'co]ﬁmns of E is giveh,
since the rank order of the diagonal elements of the Qi is not

necessarily the same for aill Qi'

2. Maximum Likelihood Estimation of Common Principal

Axes in k Normal Populations -

Let the p-variate random vectors ‘5i(i=1,...,k) be independently
. . ) p . ey .
d1str1buteq as Np(ki’ Ei)’ where ki € R" and the I, are positive
definite and symmetric (p.d.s.). For samples of size N, =n; + 1,
~ denote by §1(1 = 1,...k) the usual unbiased sample covariance matrices.

Assume min n. > p. Then the matrices n;3; are independently distri-
T<i<k : '

buted as wp<ni’5i) (Muirhead 1982, p. 85), and the common 1ikelihood

function of El""’%k’ given §1""’§k is



n. _ - =n./2

k .
- il i
L(E1""’Ek) =C x E etr(- 5 I 51) Iﬁil , (2.1)

where C is a constant which does not depend on the gi’ and etr denotes
therexpohential'function of the trace. (Note that we could have
started with the common 1ikelihood function of the k normal samples,

which would yield the same results as those obtained below, with n;

-fep]aced by Ni‘) Instead of maximizing (2.1) we can minimize the

- function
k
. _ _ -1
g(gl,...,gk) = -2 log L<§1""’§k) = iZ] ni(log|51| + trii éi)' (2.2)
Let us now assume that (1.1) holds for an orthogonal matrix 8-
Let A= Q1ag (Ai],...,xip), then
. p » _
log |£1| = .Z] log ¥ (i =1,...,k) (2.3)
and
_] -]‘l "-I ]
A = . . = A. o = . .
tr f%'l r%] 'tY‘(ff\B' Q1 N r%l) tr(f\,'l ,% ,§1 g) (1 1 k) (2 4)
let now w(i) = R'S.g and B; = the j-th column of B, then
"\ Nl "\J Y .
amed b (4) . | ‘
A, = . . =1,... .
tr(m1 W ) jZ] WJJ / A1J (1 1, sk)s (2 5)»
where
i) L, . . ' _
v, = BLS.B; =T,...,k 3 j=1,..., 2.6
W‘JJ 83318 (i J p) (2.6)
is the (j,j) - element of %(1). It follows that
-1 - P
trzg 8= L B3SiB5 / ayy  (F = k) (2.7)

VI BV | J=] 1]

and therefore



g(’z\:l],-o.,'bk) = g_(,%-l,..."%p, A]],ouo, A]p’.xz],..-, )\kp)
k .
Lo [ Z (1og A

i=1

i + 635183 / A J)] (2.8)

-The function g is to be minimized under the restrictions

| 0 ifh#j | _
={ X (2.9)
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Thus we wish to minimize the function

.
Gl = 9B = L vty - 1) - 2 2 Ynifnfs:

where yh(l < h < p) and th(1 <h<Jj<p)are p(p +1)/2 Lagrange-
multipliers., Tak1ng the partial derivative with respect to Y45 and
setting this equal to zero yields immediately

Y43 =_§j§i§j (i=71,...,ks 3=1,...,p) , | (2.11)
and from (2.7) it follows that

tr 230s. = p (i =1,..0,k) . (2.12)

iR

The vector of partial derivatives of G with respect to Qj’ set edua]

to zero, is

k p ,
"1§i§j / Aij'- hzl Ain8p - Yjﬁj = Q (3 =1,...,p) {(2.13)
h#J

where we put Yih = Yp; if 3 <h. Multiplying (2.13) from the left by

i=1

g5 gives



k .
;= 1 ong o (G=T15.p) (2.14)
i=1 _
and thus
k k P .
121 NSy / Ay - (121 n;) 8 hgl Yingnh =9 (3= Ta..up). (2.15)
' ' h#3
Multiplying (2.15) from the left by g, (£ # j) implies
' k .
1,;"1-_%3-%/%1-3- =vjp (= Tnps £ £ ). (2.76)

By deriving (2.15) for Bp and noting that Ejéi%ﬂ = Qééi%j
it follows that
k _
1;"1%5153' /Mg =gy W=Tsps §#2) (27)
and therefore, comparing (2.16) and (2.17),
-k 7 K .
iz1niﬁﬂgiﬁi /45 1Z]?iﬁz§i%j [ rg (£F3). (2.18)
‘This can be written as

K
Eé(1§1nj A

. . =0 i =1,...,p3 i). 2.1
e §1)QJ. H{e,d =1 p; £ # J) (2.19)

As the (£,j)-th equation of (2.19) is the same as the (j,2)-th, we
- have actually only p(p-1)/2 equations, say for 1 < £ < j < p. These

- have to be sblved-under the orthogonality conditions E'Q = % (2.9)

p
and using (2,11).' A numerical algorithm to accomplish this has been
deve]oped,bvaiury and Gautschi (1983); a short description of their
so-called FG-algorithm is given in the appendix of this paper. Note

that, in generé], the solution of (2.19) is not unique, but the FG-



algorithm converges rather fést to the solution which maximizes

the Tikelihood.

A

Let us denote the maximizing solution by g = (él,...,s ) and
N aup
Aij(1 =1,...,k; J =1,...,p), and put Ay = diag (Ai],...,xip) and

I
—
-

5. =.§1&.A' (i ..,k). Then (using 2.12) the maximum of (2.1) is
~1 Y|
“obtained as
“ v N ‘ k N -n,i/z
L(Zyseen8) = C x 1£i exp(-pn1/2)lgil , (2.20)

while the unrestircted maximum can easily be seen to be equal to

L(Sys-.055,) = C x ig] exp(~pn,/2) |S.| (2.21)
The log-likelihood-ratio statistic is therefore
, L(Zqsee.s2,) k 5
X2 = - 2 log L(g] gk) ) n log - , (2.22)
f\;‘l"""\;k 1'='l Igil

and by the general theory of likelihood ratio tests (see Rao 1973,

chapter 6) it follows that X2 has asymptotically ( min n; > ©) a chi
' : T<i<k

square distribution with (k-1)p(p-1)/2 degrees of freedom, if the null

hypothesis of identical principal axes in all k populations is true.

3. PROPERTIES OF COMMON PRINCIPAL COMPONENTS

Before we apply the method derived in section 2 to numerical
examples, it may be useful to state some simple properties of the
common principal components, which will illustrate their meaning

and facilitate their correct application. Note that, from now on,
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- we will refer to the "sample common principal components"
Up=g'%s  (=1,..k) - (3.0)
as CPC's, suppressing the prefix "sample".
Let us recall that the soiution of the ML estimation problem

consists of a orthogonal matrix é = (é],...,é ) and kp quadratic
- n A up

~

3 - AI '_ - -
forms Aij Ejéigj' For the i-th sample, the xij are the diagonal
elements of the matrix
Fi = 8348 (1= 1.k). (3.2)

Note that, in the one samp]e casé, 51 would be exactly diagonal, while
this is in general not true in the k sample case. From (2.11) and
(3.2) we have

A, = diag (F,) (i=1,....k) . (3.3)

a1 A )

Qi is the estimated covariance of the CPC's in population i and is,
of course, diagonal, while Ei is the sample covariance matrix of gi'

The importance of the Ei-matrices can now be seen from the fact that

= IF_

"

IS,

5|

| = n Lo (i-10k) (3.4)

where the Zij are the eigenvalues. of 51 (and simultaneously those of

F.). Moreover, as

a1
5. = BAB' = B(di g i -
L %m1§ E(d1ag 51)5 (i -1,...,k) , (3.5)
we have
5.0 = |dia Fol = e (i =1,...,k) (3.6)
~i 9 L =1 JJ vrree ’ :

J

where fgg) is the {j,j)-element of Fi' The statistic (2.22) can
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therefore be written as a function of the Ei alone, namely

k |[diag F.|
X% = Y n. log —
iz 1 T
hoeli)
k j=1
= n, log
1’21 ! p
n £,.
=1
='lz< n ; (Tog £{1) _ 10g 2. .) (3.7)
EIFE IR Ty '

This can‘bé used to Took at CPC's in the following distribution-free
Way: C]ear1y, the determinant of a p.d.s. matrix with given diagonal
elements takes its maximum when the off-diagonal elements are all
zero. Therefore, if we measure the "degree of diagonality" of a
p.d.s. matrix F; by d; = log (|diag Ei' / |Es[) > 0, take k such
matrices and sum their "degrees of diagdna]ity", using weights Ny
‘the result is (3.7). It is also obvious from‘(3.7) that'X2 is zero

2 is therefore a measure of

if all the Ei are exactly diagoné]. X
"simultaneous diagonalizeability" of k p.d.s. matrices Ei‘ The CPC's
can therefore be viewed as obtained by a simultaneous transformation
yfe]ding variables which are "as uncorrelated as possible".

To stress the importance of the Ei—matrices, we will compute

them in the examples of section 4. Sometimes it may even be more

convenient to interpret the correlation matrices
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R. = A_V/2 g A71/2 (G=Thk) . (3.8)

'\J' 1 Aioad

These can easily provide information about violations of the assump-
tion of common principal axes.
From the equation system (2.19) we can still gain a better under-

standing of CPC's. First, let us write it as

Eﬁmhj+'“'+WhJ)% 0 (1< <Jj<p), (3.9)
.where -
; Xep = A
Y SRS SR § R SRS N TS (3.10)
td Asp Ais vl v _
il "iJ

Equation (3.9) remains unchanged if we replace one of the éi (say él)
by a proportional matrix c§1 (c>0). This can be seen by denoting

S*

3 = ¢S

A1

* = - ok - '
then A]j cA]j (J 1,...,p),.and (AfZ A]j) / ATE Afj

leaving Q(]> unchanged. This means that the

(A]E-A]j) / c Ao M ;

J’
CPC's are invariant under proportionality, where different constants
of proportionality are admitted for the k groups.

Furthermore, we note that the weight of matrix éi in (2.19) is

ni(xiz - Aij) / }1ﬂ My Now, by (2.11), 7 is. the var1ance.of the

Tinear combination %3 %i,iand it becomes clear that the weight of
matrix gi in the‘(E,j)—th equation is smaller, the closer the two

variances x.. and Ajp are. If = Ajpsthen §. disappears from the

J
(€£,3)-th equation. Of course this makes perfect sense, for it cor-
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responds to sphericity of 51 in the plane spanned by Ej and ﬁt' In
the extreme case Ei = Cip’ the i-th matrix will disappear comp]ete]y
from (2.19). We can therefore say that the overall influence of
matrix 51 is proportional to its degrees 6f freedom n;s but also to
its "deviation from spheficity".

As these considerations show, CPC's enjoy quite a few desire-
able properties and can easily be understood as a generalization of
PCA to k groups. In the next section we will show that application
of common principal component analysis (CPCA) to real data is not
ﬁuch more éomp1icated than PCA, but cén give very useful information
about similarities and differences in the covariance structures of

k populations.

4. APPLICATIONS

The practical use of CPCA can be demonstrated best if we apply

it to some well-known examples in the multivariate literature.

Example 1:  Fisher's Iris-data
These famous and.most—abuséd data were first pub1isheﬁ by R. A. Fisher
(]936) as an example of discriminant analysis. - The four variables
were S

(1) sepal length

(2) sepal width

(3) petal length

(4) petal width,
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measured on 3 species of Iris:versico}or; virginica and setosa. The
sample covariance matrices, based on 49 degrees of freedom each, are
shown in Table 1a. Part b of the same table displays the ML-estimates
%i under the festrictjon of comﬁon principal axes. Table 1c shows

the estimates of the common principal axes, each column of é
representing the coeffiﬁients for one component. The CPC's do not
seem to have an obVious interpretation. Part d of Table 1 shows the
variances iij in all three groups, ordered according to the columns

of é. (Of course, this order is irrelevant and depends only on the
initial approximation used in the FG-algorithm). In order to compare
PC's and CPC's we give also the eigenvalues of the %1 (or Ei)’ again
ordered in the same sense. If the hypothesés of common principal
_axes in all three populations is true, we wop]d expect all fhe iij
to be close to the eigenva]ues'pf Ei' This is the case for sample 1
(versicolor), while tge differences are larger in sample 2 (virginica)
and even worse in\samp]e 3 (sétosa). This jmpression is confirmed by

the value X2

= 63.91 of the statistic (2.22), which can be compared
with quantiles of the chi square diétribution with 12 degrees of
freedom. At any reasonable level of significance we would. conclude
that the assumptioh of common principal -axes does not hold, tHough
the chi square approximation might still be rather poor for sample
“sizes of 50; and aTso non-normality might affect the exact signifi-
cance Tevel.

In order to learn more about the deviation of the data from the

~model of common principal axes, we.can look at the Ei - and Bi -
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matrices, given in table le. Note that the diagona]; of the Eﬁ -~
matrices Contain the variances of the CPC's. There is dbvious]y a
rather high correlation between the first and third CPC's in group
3 (setosa), which miéht'exb]ain-the inadequacy of the assumptioh of
common principal axes.

The results of the sahe ané]yéis, this time performed with groups
1 (versicolor) and 2 (virginica) only, are displayed in table 2. The

value of the statistic (2.22) 1's.X2

- 13.46, which lies between the
95-th and the 99-th percentile of the chi square distribution with 6
degrees of‘freedom. Though 1f seems doubtful whether the hypothesis
of common prfncipa] axes should be accepted, we can note that the
variéﬁces.d¥ the CPC's (diagonal of the 51 - matrices) are now mgch
closer tp the eigenvalues of the %1’ Since the two 51 - matrices
are based on the same Iﬁnear transformation, we can also look at
the ratios of vakianceé of'the four CPC's, and we note that the

largest ratio is 6.2186/5.1354 ='1.21 (for the third CPC), while the
smallest ratio is obtained from the fourth CPC as 1.0119/4.5813 = .221.
These two ratios are close to the extreme characteristic roots of

S-]

3o Sy» as can be expected from corq]]ary 1 of Flury (1983).

Example 2:  Size and shape variation in the painted turtle.
In this famous-examp1e, due to Jolicoeur and Mosimann (1960), we use
the logorithms of the original data, as proposed by Morrison (1976,

p. 286). Tab]e 3 displays the results of a CPCA, applied to N] =-24

male and N2‘= 24 female individuals of Chrysemys picta marginata,

where the variables are
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(1) Tog (carapace Tength)

(2) log (carapace width)

(3) Tlog (carapace heighth)
(Note that the covariance matrix of the logorithmically transformed
data as given by'Morrison (1976, p. 286) appears incorrect). As in
the usual one-group PCA, the three CPC's can easily be interpreted
as "size" (first) and I"shape" (second, third) - variables. The eigen-
- values and the varianceé of the CPC's are remarkably close (table 3d).

2 _ 7.93 with 3 degrees

The 10g-Tikelihood ratio statistic (2.22) is X
of freedom; but since the two samples are rather small, this statistic
should be interpreted with caution. Note that in the "size"-component

the females vary considerably more. than the males.

Example 3: Bone dimensions of the North American Marten.
~ Jolicoeur (1963) measufed'the variables
1) log (Tength of the humerus)

log (length of the femﬁr)

(1)
(2) 1log (width of the humerus)
(3)
(4)

4) log (width of the femur)

oﬁ N, = 92 male and N, = 47 female individuals of the species Martes
americana. Principal component analyses performed separately on each
group showed a similar pattern of the two arthogonal matrices. The
CPCA of these datalis summarized in table 4. The value of the log-

2

likelihood ratio statistic is X = 8.34, with 6 degrees of freedom.

The hypothesis of common principal axes seems therefore quite plausible.
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Comparing the coefficients of the CPC's with those given by Jolicoeur
for each sex separately, we can see that his interpretation applies

as well to our analysis, but it becomes simpler, since transformations
are the same in both groups. Table 4d shows that the diagonal ele-
ments and eigenvalues of the 51 are very close. The correlations
between the CPC's, displayed in table 4e, confirm the impression that
CPC's are justified in this example. Note that correlations in group
2 (females) tend to bé larger in absolue value than in group 1 -- an

effect of the unequality of sample sizes.

Example 4: Human bone measurements.
In the éametpaper as quotéd in example 3, Jolicoeur gives sample co-
variance matrices of the two variables

(1). Tength of the femur

(2). width of the femur,
measured on N] = 48 male and N2 = 40 female -humans. This time, data
~were not tran§formed,uahd the original data were not available to thé
author of this paper. The results of a CPCA are summarized in table 5.
The statistic.(2.22) is X2 = .95 with 1 degree of freedom. The cor-
relation between the two CPC's is - .1055 for males and .1037 for
females. Note that, comparing the variances of the two CPC's within
each group, the ratio of the larger to the‘sma11er variance is 27.01

for males and 39.66 for females. This shows that (using the termin-

ology of Jolicoeur) the femur is more robust in males than in females.
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Example 5: Real and forged bank notes
From Flury and Riedwyl (1983) we take the .following variables,
measured on real and forged Swiss bank notes:

(1) width of the bank note, measured on the left side

(3

)
(2) width of the bank note, measured on the right side
) width of the lower margin

)

(4 w{dth of the upper margin.
A1l measurements were in mm. The two samples consisted of N] = 100
‘real and Né = 85 forged notes which had probably all been produced
by the same forgerer. The results of a CPCA on these data are dis-
- played in table 6. The Coeffjcients of the four CPC's, given in part
c of table 6; show a rather interesting pattern, which can be com-
pared with the one-group PCA performed by Flury and Riedwyl (1983,
p; 120 f) on the real notes, using two additional variables. The
CPC's can roughly be-intérpreted,as

1) slant of the cut

3

(1)

(2) 'width of the print

(3) vertical position of the print
)

‘ (4 size ‘

These interpretations can bé'brought into relation with twovindepen-
dent phases of the production process (printing,,cuttiné), which makes
the assUmptibn of common'principal axes seem reasdnab]e. The value

of (2.22) is X°

= 12.04, which is close to the 95-th percentile of
the chi square distribution with 6 degrees of freedom. Again, it

must be borne in mind that the chi square approximation might not be
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very accurate. Note thaf the diagonal elements and eigenvalues of
the Fi - matrices agree'very closely, so that the assumption of common
principal axes seems at least a good approximation to reality.

This example shows also a.desireable aspect of.the method:r since
two eigenvalues 0f_§2 aré rathef close (.1024 and .1305'respect1ve1y),
the associated principaf componénts might be unstab]e in the sense of
a near]ylspherical distribution in the plane spanned by the two eigen-
vectors. However; this prob]ém is taken care of by sample 1, where
the corresponding variances differ much more. This illustrates a

property of CPCA which was already mentioned at the end of-section 3.

5. CONCLUSIONS

As the preceding examples -show, CPCA may have quite useful applications.

Some reasons for performing CPCA can be summarized as follows:

reduction of parameter space: If the assumption of identi-
ca]_principa] axes hold (and it might make sense to assume

it in many exdmp]es, especially of a biological naturé), it

is obviously better to reduce the parameter space (ignoring
mean vectors) from kp + kp(p-1)/2 to-kp + p(p-1)/2 e]eménts,
and the estjmateé can be expected to have smallier variance'than

those of the unrestricted parameter space.

data reduction: If the main purpose of a PCA consists of

data reduction, and if in all k groups the smallest variances
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appear in the same CPC's, it might be useful to transform
the data of all groups simultaneousty to CPC's, and to dis-
‘card the CPC's which have small variances in all k groups

simultaneously.

regression on PC's: . A frequent application of PCA is to

use the PC's instead of the measured variéb]és as regressors
in multiple regression. The obvious extension of this is to
use CPC's if dummy-variables are to be included into the regres-
sion, the k groups being defined by‘the dummy-variables. How-
ever, in contrést to the one-group.situation, the regressors

will .not be exactly uncorrelated jn this case.

non-linear discriminant analysis: Under the assumption of

common principal axés the computation of Mahalanobis-distances
for classification of observations could be much simplified:
Let 3 = (u],..;,up)' denote an observation and

E(i) = (G#i),...,ﬁéi))' the mean vector of the i-th sample in
the space of commoniprincipa] axes, then the formu]é for com-
puting the Mahalanobis-distance between E and E(i) becomes

simply

. p -
02w, 0y = grAla = 1 a2 i (s 1,..00), (5.1)

- (e L) =)y N .
where d; = (u - W', U - 15 7)'s and A; = diag F, is

~ defined in section 3. We hope to be able to show that this
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procedure improves the rate of correct classification, pro-

vided that the assumptions hold at least approximately.

APPENDIX: THE FG - ALGORITHM

‘This algorithm, developed by Flury and Gautschi (1983), solves

the equation system

Me My

by(n;——— S. + ... +n S, ) =0
LM )\H’_')‘]j 21 k Nep )\kJ Ak’ N
(1 <&<J<p) (A.1)

where n,,...,n, are fixed positive numbers, and S,,...,S_ are fixed
1 k ) ~l ~K

p.d.s. matrices of dimension p x p. (A.1) is to be solved under the

restrictions
. A-|J - .’l?zj’h'l’\:\] (1 ) ], ,k, J ) ]’ ’p) (A 2)
and
{0 L# ]
bib. = (A.3)
v 1T 2=
that is, the solution B = (b],.;.,b ) is a orthogonal matrix.
. n n ap

The FG-algorithm solves (A.1) by iteration on two levels:

On the F-]eve], every pair (Rﬂ’Rj) of column vectors of E is
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~ rotated such that the (£,j)-th equation of (A.1) is satisfied.
One iteration on the F-]evel consists of rotations of all
p(p-1)/2 pairs of vectors.
On the G-]eve1, (A.1) is solved itefative]y for the two dimen-

sional case, in which (A.1) consists of only one equation.

The F—a]gofithm

The key to fhis algorithm lies in the idea of paifwise adjustment of
the columns of thé orthogonal matrix E, simi]ar to varimax (and other)-
rotations in factor analysis (see, e.g., Weber 1974). The problem of
pairwise adestment is reduced to a 2-dimensional version of (A.1).

The iterations of the algorithm yield a sequence of orthogonal matrices
p(0) (1)
,'\, 3o v

a"]
step Fy: define-g(pxp) =>(Q1,...,Rp) as an initial approximation to
the solution of (A.1), e.g. E =1_. Put f<0.

. wp
step F]: put f « f+1 and B(f) <~ B
. N "

step F2: repeat steps F21 to F24 for all pairs (£,j), 1 <& < < p:

F21: put E(pr) < (EK’EJ) and

' ©/biS.b, b'S.b.
T.(2x2 +< £eite “'““J> (i=1,...,k)

"\;'i- 1
S i

bl
~J
(T, is p.d.s.)
"l

5o: perform the G-algorithm on (I],]..,Jk) to get an orthogonal
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' . cos ¢ -sin g
2x2 - matrix Q = < . )
v sin ¢ cos ¢

: put G*(px2) = (bz,b*) « GQ (This corresponds to an orthog-
N ot Tag iy

Fo3 ,
onal rotation of the two columns of 5 by an angle ¢).
. ,' ki , : * *
F24. Replace (in the matf1x E) Rﬂ by b*, Bj by Rj

'. (f) , alF) gl
step F3f If B and B are close enough (e.g. IIE El. <€)

stop. Otherwise start next iteration at F].

A better initia] approximation in step F0 might be to take the eigen-
vectors of one of the gi (e;g.uthe one with largest ni)'as columns of
E. ‘In the ekamp]es of section 4, three to five iterations were re-
quired for p = 4 and e = .0001. A six—dimenéiona] example required

9 iterations for the same =, using £6 as an initial approximation forlg.

The G-algorithm

This algorithm solves the equatioh

§:4-6 §,1-6
11 712 k1 k2 -
S, Wt TS, ) f2 T 0 (A

qq (n
w1 k1 Sk v

where T s...51, are:fixed p.d.s. 222-matr1ces, n. > 0 are fixed con-
1 _ ~k ) 1

stants, _
613 = ﬁjliﬂj (i =1,...,k 3§ =1,2) (A.5)
and
] - 1 — - 1 -
U T RLT 5 % =0 (A.6)
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algorithm yield a sequence of orthogonal matrices Q(O),g(]),...

step GO:

step G1:

step GZ:

step G3:

of A.
N

step G4:

define g(ZXZ) as an initial approximation to the solution

of (A.4). (In later iterations on the F-]evei, g = %p
is the best choice). put g« 0 '

(g9) _
put g « g+, Q Q

compute the Gij (A.5) using the current Q.

§..-68 S§, ,=8

117°12 k1 k2
Put A(2x2) « ny =12 o4, KL k2 g
v T899 895 ol K-8y 8yp  nk

(Q is symmetric)
compute the (normalized) eigenvectors of ﬁ.

Put g, « first eigenvector of A, q, <« second eigenvector
’b] N ’\/2 _

If Q(g) and Q are close enough' (e.q. IIQ(g)- Q] < es

v aY v v .
possibly after permutation of the columns of g and/or multi-
plication of one or both columns with -1), stop. Otherwise

start next iteration at G].

~In our examples, up to 10 iterations on the G-Tevel were required when

the current matrix.B on the F-level was still far from the solution,
n,

but this number reduces drastically (to 1 or 2) as soon as B is close

to the solution.
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Estimation of CPC's in Fisher's 1936 Iris data. The sample
covariance matrices reported here were multiplied with 102,

The same data as in table 1, but without group 3.

Common Principal Component Analysis of Turtle Carapace
Dimensions (transformed logarithmically). Sample Covariance
Matrices Multiplied with 102.

Bone Measurements on Martes Americana (data transformed
logorithmically).

Measurements on human femur.

CPCA of real and forged bank notes.



| Table 1

a) sample covariance matrices

27

Versicolor (N, = 50)

26.6433 8.5184 18.2898 5.5780
5. = 8.5184 9.8469 8.2653 4.1204
| 18.2898 8.2653 22.0816 7.3102
5.5780 4.1204 7.3102 3.9106

Virginica (N, = 50)
40.4343 9.3763 30.3290 4.9094
s =| 9.3763 10.4004 7.1380 4.7629
X2 30.3290 7.1380 30.4588 4.8824
4.9094 4.7629 4.8824 7.5433

Setosa ' (N, = 50)
12.4249 9.9216 1.6355 1.0331
s =| 9.9216 - 14.3690 1.1698 .9298
3 1.6355 1.1698 3.0159 .6069
1.0331 .9298 .6069 1.1106

b) MLE's of population covariance matrices .

 /29.5860 7.3004 18.6600 4.6667
-~ _[ 7.3004 7.4546 6.6121 2.8309
%1 =1 18.6600 6.6121 21.2145 6.2692
4.6667 2.8309 6.2692 . 3.2273
40.6417 11.5005 27.8263 7.9275
5 _[11.5005 11.0588 8.8976 2.8603
v 27.8263 8.8976 29.6478 7.0677
7.9275 2.8603 7.0677 7.4885
9.4477 3.5268 4.5255 1.2613
5 _+ 3.5268 10.2264 -2.5687 .2601
3 4.5255 -2.5687 9.5669 2.1149
1.2613 .2601 2.1149 1.6793



c) coefficients of common- principal components

2.3514

.7367 -.6471 -.1640 .1084
i = .2468 .4655 -.8346 -.1607
n .6047 .5003 .5221 ~-.3338
1753 .3382 .0628 .9225
d) variances Xij of CPC's and eigenvalues of §i
Versicolor:
X]J. = 48.4602 7.4689 5.5394 1.0139
‘eigenvalues = 48.7874 7.2384 5.4776 .9790
Virginica:
iéj = 69.2235 6.7124 7.5367 5.3642
eigenvalues = 69.5255 5.2295 10.6552 3.4266
Setosa:
i3j = 14.6444 2.7526 12.5065 1.0169
~ eigenvalues = 23,6496 2.6796 3.6919 .9033
e) covariance and correlation matrices of CPC's
48.4602 3.4072 -1.1931 L7172
Fo- 3.4072 7.4689 -.3776 .2049
Al -1.1931 -.3776 .5394 -.3278
7172 .2049 -.3278 1.0139
1.0000 1797 -.0728 .1023
‘R = L1791 1.0000 -.0587 .0745
ol -.0728 -.0587 1.0000 -.1383
.1023 .0745 -.1383 1.0000
69.2235 -1.6211 "~ 2.6003 -2.9062
Foe -1.6211 6.7124 -1.9278 2.3514
a2 2.6003 -1.9278 7.5367 -2.2054
-2.9062 -2.2054 5.3642



i;"l

1.0000
-.0752

.1138
-.1508

14.6444
-.5682
-9.9950
-.2106

1.0000
-.0895
-.7385
-.0546

.0752
1.0000
L2710
.3919

.5682
.7526
.0487
.4236

.0895
.0000
.0083
.2532

- .1138

-.2710
.0000
. 3468

—

-9.9950
.0487
12.5065
.4235

-.7385
.0083
1.0000
.1188

. 1508
.3919
. 3468
.0000

.2106
.4236
.4235
.0169

.0546
.2532
.1188
.0000

29
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Table 2
a) MLE's of population covariance matrices
28.1693 7.8487 19.1036 4.9047
. 7.8487 8.8832 6.1772 3.4523
01 19.1036 6.1772 21.9980 - 6.1257
4,9047 _ 3.4523 6.1257 3.4319
38.7745 10.4893 28.7304 7.8987
§ o= 10.4893 13.1731 9.5169 4.3989
X2 28.7304 9.5169 29.6661" 7.1734
7.8987 4.3989 7.1734 7.2231
b) coefficients of CPC's
.7206 -.2914 - -.6159 .1286
g o= .2545 .9019 -.1900 -.2927
e .6188 -.1186 .7188 -.2939
» .1817 .2960 .2607 .9008
c) .covarianéé;matricés of CPC's
' /48.5836 2.7247 .9370 LA711
F. o= 2.7247 6.6683 .9278 -.3659
al .9370 - .9287 6.2186 -.0118
' 471 -.3659 -.0118 1.0119
69.1434 -4.1101 -.7288 -2.2362 :
Fo= -4.1101 9.9766 -.1066 2.5981
a2 -.7288 -.1066 5.1354 .4135
-2.2362 2.5981 .4135 4.5813



Table 3

a) sample covariance matrices

males

S

females

52=<

(N,

- (11072
, = | .8019
£ .8160

(N, =

2.6391
2.0124
2.5443

= 24)

.8019
.6417
.6005

2.0124
1.6190
1.9782

31

.8160
.6005
.6773

2.5443
1.9782
2.5899

b) MLE's of population covariance matrices

X .9778 7214 .8509
I, = | -7214 .5935 .6469
% .8509 .6469 .8548
- 2.7911 2.0976 2.5120.
- Ey= (2.0976 1.6619 1.9198
" 2.5120 1.9198 '2.3950
c) coefficients of CPC's
. .6406 -.6647 -.3844
8 = | .4905 .7394 -.4611
v .5907 . 1069 .7998

d)- variances of CPC'Q and eigenvalues of Si

males:

-

13
eigenvalues

females:

~

ij =

eigenvalues

2.3148
2.3303

6.7135

~6.7200

.0385
.0360

.0538
.0530

.0729
.0598

.0807-.
.0750




e) covariance matrices of CPC's

<;2.3]48
F, = | -.0483
]

-.1811

| 6.7135

F, = .0670
.1966

-.0483
.0385
-.0019

.0670
.0538
.0037

-.1811
-.0019
.0729

.1966
.0037
.0807

)
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Table 4

a) sample covariance matrices

males (N1 = 92)

1.1544 .9109 1.0330  .7993
5. = [ .-9109 2.0381 .7056 1.4083
R1 1.0330 .7056 1.2100 .7958

.7993 1.4083 .7958 2.0277

females (N, = 47)

.9617 .2806 .9841 .6775
.2806 1.8475 .3129 1.2960
A2 . 9841 .3129 1.2804 .7923

.6775 1.2960 .7923 1.7819

N—— |

b) MLE's of population covariance matrices

1.0709 .8014 . 9883 .8461

§ = .8014 2.0413 .6642 1.3798
~l .9883 .6642 1.1938 .9137
.8461 1.3798 .9137 2,124

1.0566 .4326 1.0137 .6820

$ = .4326 1.8615 .2895 1.3034
"2 ' 1.0137 .2895 1.2826 .6850
.6820 . 1.3034 .6850 . 1.6708

c) coefficients of CPC's

.7288 .3914 .4864 -.2811

3 = -.1408 .5662 -.5757 -.5729
N | -.6637 .3941 .6306 -.0810
~.0920 .6090 ~.1855 .7656
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d) variances of the CPC's and eigenvalues of Si |
ma1es:

i']j = .1228 4.5419 1.0811 .6844
eigenvalues = .1209 4.5482 1.1163 .6447
females:

Y1 = .1359 3.7641 1.5987 3727
eigenvalues = .1240 3.7749 1.6047 .3679

e) correlation matrices of CPC's
1.0000 . .0762 .0792 .0394
‘R, = .0762 1.0000 .0010 .0831
Rl -.0792 .0010 . 0000 .1432
-.0394 -.0831 .1432 ..0000
1.0000 -.1758 L1314 .1437
R = -.1758 1.0000 .0034 . 1257
LW .1314 -.0034 .0000 .0823
L1437 - 1257 .0823 .0000




Table 5

.a) sample covariance matrices

males (N, = 48)

S <408.1280

bA I

<356.4590
44,9850

35.7910

35.7910)
18.3100

449850 >'
14.8560

b) MLE's of population covariance matrices

5 (406.2748 43.9343>

| 43.9343 20.1632

5 - (357.7821 39.1709 )

2 39.1709 13.5329
c) coefficients of CPC's

; (.9937 —.1116)

A .1]]6 .9937




variances of the CP's and eigenvalues of Si

males
A]j

eigenvalues

females
AZj

eigenvalues

411.2108

411.3869

362.1830

362.2837

15.2272

15.0511

9.1320

9.0313
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Table 6

a) sample covariance matrices

real notes (N] = 100)

.1326 . .0859 .0567 .0491
5. = ~.0859 .1263 .0582 .0306
Al .0567 .0582 .4132 -.2635
.0491 .0306 -.2635 L4212

forged notes (N, = 85)

2
.0641 . 0489 .0289 -.0130
5 = . 0489 .0940 -.0109 .0071
2 . 0289 -.0109 .7242 -.4330
-.0130 .0071 -.4330 .4039

b) MLE's of population covariance matrices

.1253 - .0849 . 0640 . 0425

& _ | .0849 .1329 .0507 .0435
21 = | .0640 .0507 .4674 -.2512
.0425 .0435 - -.2512 .3677

.0677 .0461 .0404 -.0189

- .0461 .0836 .0170 -.0202
"2 . 0404 .0170 .6641 -.4399
-.0189 -.0202 -.4399 .4708

c) coefficients of CPC's

.7664 .3140 .0469 .5585
8 -.6297 .5390 .0299 .5586
2 -.0921 -.5133 .7783 . 3497

-.0874 -.5895 -.6254 .5037



d) variances of CPC's and eigenvalues of Si
real notes:

X]j = .0431 . 0865 .6750 .2887
eigenvalues = .0426 .0827 .6815 .2865
forged notes:

Aoy = 0272 1163 1.0207 1220
eigenvalues = .0265 .1024 1.0269 .1305

e) correlation matrices of CPC's

1.0000 .0165 .0524 .0820

R. = .0165 1.0000 L1971 .0032

Al -.0524 L1971 .0000 0711

.0820 -.0032 L0711 .0000

. 0000 -.0087 .0384 .1292

R = -.0087 1.0000 .2155 .0999

V4 .0384 -.2155 .0000 .0288
-.1292 .0288 .0000

.0999




