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1. INTRODUCTION

Consider the model
Y I
T2 (Oyqo r
Y <Y2> (a)4 N + (B JU+ E (1.1)
where Y1: rxN and Y2: sxN are observed matrices of random variables,
= . - . N
N (1,7,...,1)": Nx1, I, = the axa Identity matrix,

and the columns &> 1 <1<N, of E: (r+s)xN are i.i.d. random vectors

with mean vector g and covariance matrix ze. This model is known as a multi-

variate errors-in-variables redression model.

Two types of errors-in-variables model are identified.in the literature:

a. The Structural Type. Here, the columns Us s 1 <1 <N, of Uare

i.i.d. rx1 vectors with common mean vector p and common covariance
matrix z, The random matrices U and E are assumed to be independent.

b. The Functional Type. Here, the matrix U = E(Y1) is an unknown

matrix of constants. For purposes of comparison with the structural

errors-in-variables model, define



The errors-in-variables models (structural and functional) as defined
above are overparameterized (non-identifiable). One way of attacking this
problem is to put restrictions on the parameters -- e.g., set some of the
paraemters equal to known values. Such an approach implicitly defines the
parameters a, B, u (or u(N)), Z, (or ZﬁN)), and Ly as functions of a vector-
valued parameter 6 taking values in an open subset @& of, say, t-dimensional
Euclidean space Rt. Another method is to obtain an independent estimator
S of Zas usually from replications. A third method (of which the method of
replications is a special case) is to find instrumental variables Vs related
~ to the columns us of U, but independent of E. After some algebra, this method

reduces to expressing U in the form
U= sV + U* (1.2)

where the matrix V has columns v, and is assumed known, 2 is an unknown
matrix of slopes, and U* is either a matrix whose columns are i.i.d. with mean
vector 0 and covariance matrix 23 (structural case), or U* = 9 (functional
case). The model defined by (1.1) and (1.2) in the functional case is dis-
cussed by Healy (1980), who does not, however, mention the connection between
his model and the method of instrumental variables. When the columns of Y are
normally distributed, Healy shows that the model defined by (1.1) and (1.2)
can be reduced to a canonical form of the type (1.1) in which an independent
estimator S of Ze is available. Although Healy only proved this result in

the functional case, his arguments also apply to the structural case.



There is an extensive literature on errors-in-variables models of both
functional and structural type. T. W. Anderson's 1982 Wald Lectures (Anderson,
1982) provide a clear and thorough review of this literature, with special
emphasis on the connection between errors-in-variables models, the models of
factor analysis; and econometric simultaneous equations models. Other useful
surveys of this literature are given by Madansky (1959), Moran (1971) and
Kendall and Stuart (1979). Most past research has dealt tota]]y'with one
or the other of the two types (structural and functional) of errors-in-variables

models. However, there have been basic papers, such aé Anderson and Rubin

(1956) and Nussbaum (1977)?.which have made use of results knéwn'for one type
of errors-in-variables model to infer results for the other type of errors-
1n-variab1es model. In Section 2, we attempt to formalize some of the rela-
tionships between structural and functional errors-in-variables models that
are useful in such efforts. In particular, we show that identifiability
results for structural models can be used to determine whether or not consistent
estimators exist for the parameters of corresponding functional errors-in-
variables models, while on the other hand large-sample consistency and distri-
butional results for a functional model imply similar large-sample consistency
and distributional results for the corresponding structural .model. Because
structural errors-in-variables models,with Y having normally distributed
columns, permit efficiency calculations of the Fisher—Crahér type, this last
relationship enables us to define efficiencies for estimators and tests for
functional errors-in-variables models, despite the presence of incidental
parameters in such models.

Another attempt to connect structural and functional models is Dolby's

(1976) ‘ultyastructural model. Both Dolby and Cox (1976), who independently



treated the model of Dolby's paper, point out that this model can be viewed
as a replicated structural model. 1In Dolby's version of the model (which is

s = 1), we observe

n

defined for r

_ 40 1 ] . v )
i = () (pluyy tegyr 21, T<i<m 1 <g<n, (1.3)

where

2
. .. el 0
the e;5's are i.i.d. N(Q, s )
2

2y,

the ui-'s are independent, us U

j j i N(]J.I »C

1 2 2 2 ]
the u;'Ss a, b, Tg1® T2 and o, are unknown paraemters, and the eij s and

uij's are mutually independent. This model is called ultrastructural because
it reduces to a structural model (1.1) with Y = (y]],...,y]n,..., m]""’ymn)

when R T and to a functional model (replicated) when 03 = 0.
(A]]owing_cﬁ = 0 is actually an extension of the usual parametric assumptions
for structural models, which require cﬁ.> 0.)

Although Dolby and Cox are correct in describing (1.3) as a replicated
(when n > 1) structural model, it can also be described as a replicated
functional modé]. Indeed, this model is a special casé of Anderson's (1951)
replicated functional model (specialized in that there are inequality constraints
imposed on the parameters). This fact is demonstrated in Section 3. It is shown

that viewing the ultrastructural model as a replicated functional model

(n > 1) leads immediately to formulas for the maximum likelihood estimators



of the parameters, and to consistency and asymptotic normality results for

such estimators.



2. RELATIONSHIPS BETWEEN FUNCTIONAL AND STRUCTURAL MODELS
We will confine discussion in this section to errors-in-variables models
(1.1) in which the parameters o, B, 1 (or u(N)), Ty (or zﬁN)) and L, are
expressed as functions of a vector-valued parameter 6.
The key to the results which we prove in this section is the following

fact.

Theorem 2.1. If Y obeys the errors-in-variables model (1.1) of structural

type, then Y conditional upon the value of U obeys an errors-in-variables model

of functional type with the same parameters a, B, ze as in the structural model.

Proof. Immediate, once we note that in the structural model, U and E are

assumed to be independent. [

Consequently, we can define a sample space and set of probability
measures on which we can define correspondingly parameterized structural and
functional models for arbitrary sample size N. Let

¥ = space of all sequences g ='{ei} of (r+s)x1 vectors e:s

% = space of all sequences '] ='{ui} of rx1 vectors us-

For each parameter value 6, define the probability measure Pee on ¥ following

the assumption (see (1.1)) that the e;s are i.i.d. with a common distribution



(which may or may not be specified) having mean vector 0 and covariance

matrix Ze(e). On %, define the probability measure Peu following the struc-
tural assumption that the u;s are i.i.d. with a common distribution having mean
vector u(6) and covariance matrix zu(e). 0f course, on ¥ and % define sigma
fields compatible with the above measures. Finally, define the product space

$x% and the product probability measure PeexP on the appropriate product

ou
sigma field.

On the probability space so constructed, columns Y; of Y under either a
structural or a functional model are defined by Y; = Uy + e In the struc-
tural model, the probability measure is defined by Pee*Peu' In the functional

model, the probability measure is defined by Pee on ¥, and a fixed element
u of %; that is, by Poe Y-

Let {N = 1,2,...} be a sequence of nonnegative integers. Define

YN = (.Y'-l,...,;yN) = (U-l+e-l,...,uN+eN) = UN + EN

Thus, Y,, is a measurable cylinder function on our product space.

N

Theorem 2.2. Suppose that for every y in a measurabie set B with Peu(B) =1,

{éN(YN), : N > 1} is a strongly (weakly) consistent sequence of estimators of the
matrix-va1ued.function‘g(é):of o.under the functional model,.and that Péu(B) = 1.

Then {aN(Y : N > 1} is also strongly (weakly) consistent for g(e) under the

N
structural model.



Proof. To prove strong consistency, let € > 0 be an arbitrary positive

constant and
A= b {11g,(Y,) - ge)]] > €},

where ||+|| is the Euclidean norm. Since {éN} is strongly consistent for

all PRS B in the functional case,

Tim [Peex%](AN) =0, all y&B.

Nooo

Consequently, by the Lebesgue dominated convergence theorem,

Tim [P

N>

<Py J(AY) = Tin [ [P, ~ul(A)dP_ (4) = O,

ge Noewo 9 ou "

proving strong consistency in the structural case. A similar proof establishes

the weak consistency result with AN replaced by

Ke= (llgy(Yy) - g(e)]] > e}, O

Theorem 2.3, Suppose that there exist a sequence of constants {c(N)} and

a random matrix Z with c.d.f.

F(z) = P{Z < z, elementwise}



such that in the functional case

(M) (8 (Yy) - a(e)) T (2.1)
for all y€B, PB(g) = 1. Then (2.1) also holds in the structural case.
Proof. Let

QN(z) = {c(N)(éN(YN) - g(8)) < z, elementwisel.
By the given, for all y€B, all continuity points z of F(z),

Tim [P, xul(Qy(z)) = F(z).

tore

Now apply the Lebesgue dominated convergence theorem to show that

lim [P, <P 1(Qy(2))

N-co

lin ] D2, 0y(2))ePy, )

[ F(z)dp, (1) = F(2)
%

at all points of continuity z of F(z). O

Remark 1. In most applications of Theorems 2.2 and 2.3, the set B will be



10

(N) _ (N) -

B ={u: 1im yu = u(e), 1im = =5 (0)}.
The assertion that Peu(B) = 1 is a direct consequence of the SLLN.
As an example of the applicability of these theorems, consider the

functional errors-in-variables model

I
- 0 r . +
y = (a)lN + (U +E, Y (r+s)=N,
with Lo = G§Ir+s' Gleser (1981) shows that the maximum likelihood estimators
(MLEs) of a, u = lim u(N) and B are strongly consistent, and that
N->co

32 = r'](r+s);2, where ;2 = MLE of 02,

is strongly consistent for cg. He also finds a strongly consistent estimator
¥ of z, = tim 1tV

u U e U

and that Zu > 0. Applying Theorem2.2. (see also Remark 1 above), it follows

To do so, he assumes that the limits u and Zu exist,

that these same estimators are strongly consistent in the corresponding struc-

tural model. It is worth mentioning that the MLEs of o, u, B, and cg

are the same in both the structural and functional models (Anderson, 1982).

Gleser (1981) also finds the Timiting joint distribution of the MLES.

a, B of a, B, and of 32, in the functional case. Because these limiting distri-

butions depend upon the sequence u o= {ui: i > 1} only through the limits
wand 2 of u(N) and zﬁN), Theorem 2.3 and Remark 1 show that (&,@,32) have
the identical Timiting joint distribution in the structural case.

As another example, consider replicated functional and structural models,
where 6 is equivalent to the parameters a, B, etc. in (1.1). Anderson (1982)

shows that the MLEs of corresponding parameters in the functional and struc-

tural models are the same. Consequently, consistency and asymptotic joint
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normality of the MLEs in the functional case imply consistency and asymp-
totic joint normality in the structural case (Theorems 2.2 and 2.3). Amemiya
and Fuller (1982) give separate proofs for the functional- and structural-
case MLEs. Our approach, using Theorems 2.2 and 2.3, shows that only the
results for the functional case require proof.’

We now demonstrate some additional theoretical consequences of Theorems

2.2 and 2.3.

2.1 Consistency and Identifiability

Consider a (possibly) matrix-valued function g(e) of 6€ @ . We might
wish to know whether in the functional errors-in-variables model, there exists
a consistent (strong or weak) sequence of estimators for g(e). Because the
probability measures in the functional model depend upon the sequence u of
columns uss 1=1,2,..., of U, this question is often difficult to answer. How-
ever, the corresponding structural model has a finite-dimensional parameter
space, and is consequently easier to handle.

Indeed, Nussbaum (1977) has pointed out that (in the case r = s = 1)
there is a relationship between the existence of a consistent sequence of
estimators for g(6) in the functional model, and the identifiability of g(e)
in the corresponding structural model. We generalize his approach in Theorem

2.4, below,

Definition 2.1. The function g(e) is identifiable in the structural model

if g(e]) # g(ez) only for identifiable 81, 8, €0 .
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Theorem 2.4. In order for there to exist a consistent sequence of estimators

for g(e) in a functional errors-in-variables model it is necessary that g(e)

be identifiable in the corresponding structural model.

Proof. If {éN} is consistent (weakly or strongly) for g(6) in the functional
model, then since this consistency holds for all y€ % , this sequence is consis-
tent for H's satisfying

Tim u(N) = u(e), 1im zéN) = zu(e), €O .
Noroo Nooo

Suppose that g(e) is not identifiable in the corresponding structural model.
Then there exist 615 ezpe @ which are not 1dentif1ab1e, but for which
g(e]) # g(ez). Thus, by Theorem 2.2 and Remark 1, under the structural model

A

gy g(ei) under 055 i=1,2,

where the convergence "+" is either in probability (weak convergence) or
almost surely (strong convergence) as N+~. However, 04 and 6, are not identi-
fiable, and thus describe the same distribution PexPu on¥%% . Consequently,
the probability (or almost sure) limits of {§N} must be the same under o,

and 6,; that is, g(e]) = g(ez). Since g(e]) # g(ez), this is a contradiction,

and the result is established. O

Nussbaum (1977) applies the argument of Theorem 2.4 in the model (1.1)
where r = s = 1, the columns of Y are normally distributed, and Za = diag(c]],ozz).
He shows that when 01]/022 is unknown, no consistent estimator of B exists

in the functional model. Gleser (1981, Section 5) remarks that this argument
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also applies to the general model (1.1) with r > 1, s > 1, where the form of
Zo is unspecified. To see this, note that when the columns of Y are normally
distributed, the distribution of Y5 i=1,2,..., is determined (identified)

in the structural case by a, u and
Ir Ir
ny =T+ (g)z ()" (2.2)
Let

_ [By11 Eyi2 _{Ze11 Zet2
IV X T > Lo Ty b
Y y12  *y22 el2 %22

where Zy]] and Za11 are rxr. There exists € > 0 such that

- _ 3
a1 = Ey11 " olp > 0 Zgpp = Zpop - LT > 0
and
2,
. _ <Zy]]_€IY‘ Zy-lz"e L > N 0
e 4 2 1y 1 3 1 ?
(zy12-e L') zyzz-s LL
where L = lslr’ Thus, Zy can be obtained by letting
2
T ,11-€l T q4o-e L'
T BLALI y12 ,B=¢cl,x =c¢l.
e (3 4om 2L')' 5 el u r
yl127¢ y227¢

On the other hand, there exists § > 0 such that
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' -1
zy]] - GIr > 0, zy22 - zy]z(zy]]-slr) Zylz > 0.

Thus, zy can also be obtained by letting

g = ZyH"SIr y12
e Zy]Z GIS

, B = (Zy11'61r)_12§12’ R T 8.
Since el cannot equal (zy1]-61r)']z§]2 for all zy, this proves that B is not
identifiable in the structural model, and hence no consistent sequence of
estimators for B can exist in the corresponding functional model.

Theorem 2.4 provides a way to determine if inference for g(8) in the
functional model is possible, but only in the negative sense. That is, we
can sometimes show that g(e) cannot be consistently estimated in a functional
model by an appeal to the corresponding structural model. However, if g(so)
is identifiable in a structural model, Theorem 2.4 gives no guarantee that
g(e) can be consistently estimated in the corresponding functional model.
(That is, identifiability may not be necessary and sufficient for consistency.)

If g(e) is identifiable in a structural model, then in this structural

model we can usually find a consistent sequence of estimators {§N} for g(e).
Looking at the proof of Theorem 2.2, with B = % , we see that for each

8€ ® , consistency of {gN} in the structural model implies consistency of
{9y} in the functional model, except possibly for a set H(e) of sequences

u = {ui: i=1,2,...} having Peu-probability equal to 0. Unfortunately, each

such H(e) need not be empty, and it is even possible that the union (over @ )

of such sets is equal to %. Consequently, our methods do not allow us to
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show that {éN} is consistent for g(o) in the functional model.

Nevertheless, if we can find a reasonably regular, consistent sequence
of estimators {éN} for g(e) in the structural model, the above discussion
suggests that we try to directly prove that {aN} is also consistent for g(e)
in the functional case. Frequently, there is additional analytic structure
in the structural errors-in-variables model, such as rotational invariance
of the columns of Y in the normal case, that could enable us to show that
H(e) = ¢, all 0. Even so, once we see that {QN} may be consistent for g(e)

in the functional model, it is usually easier to prove this fact directly.

2.2 Asymptotic Efficiency in Functional Models

Consider a structural model (1.1) for Y. Suppose that the parameterization
through 6€ @ of this model is identifiable. It is now possible to calculate
the information matrix I(e) of the model, and to find (or establish) best
asymptotic normal (BAN) estimators {éN} of g(e).

For the corresponding functional model, no such theory exists because
of the incidental or nuisance parameter U, whose dimension increases with
the sample size N. Indeed, no definition of an information matrix I(e,g)
of infinite dimension seems to have been given in the literature.

However, note that

(N)

U=y (Z(N))%F(N) , (2.3)

u

(N)

nd
y @

. 1
where (>:SN))/2 is the symmetric square root of I
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A PR TTE L (2.4)

1
%

is a row-orthogonal rxN matrix satisfying P(N)l = 0. (Although (zﬁN))

N
ﬁN) > 0, r(N) satisfying (2.3) and T(N)lN = 0 always exists.)

exists only when 1
Let y = {P(N): N=1,2,...}. Note that (S’X) parameterizes the functional
model. We restrict the parameterization and the parameter space by the fol-

lowing assumptions.

Assumption 1. 1im u(N)(e)'= w(6), Tim z:l("'\:l)’(sé)'”= zu(e) >0, all g€ @ .

N->eo N->co

Assumption 2. X is functionally independent of &.

In this case, we can "borrow" the BAN theory for estimators in structural

models and construct a BAN theory for the functional model.

Theorem 2.5. Suppose that {aN} is any asymptotically normal sequence of

estimators for g(e) in the functional model; that is,
. L
M(Gy-a(e)) > N(Q.M(0)), (2.5)
for all (e,x). Then
M(e) - I'](e) > 0 in the sense of positive definiteness.

Proof. By Theorem 2.3, Assumption 1, and Remark 2, (2.5) also holds for the
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corresponding functional model. The conclusion of the theorem now follows
from BAN theory for the structural model. [

In the structural model, there are well known methods (e.g., maximum _
1ikelihood) to find BAN estimators of g(6). Unfortunately, just as in Section
2.1, we cannot reverse (the proof of) Theorem 2.3 to assert that BAN esti-
mators {QN} for the structural model are also BAN for the corresponding func-
tional model (under Assumptions 1 and 2). If, however, we can show that in
the functional model (2.5) holds for {QN} with M(s) = I(6), then by Theorem
2.5 this sequence of estimators is BAN in the sense that no other asymptoti-
cally normal sequence of estimators of g(6) can have a smaller asymptotic
covariance matrix.

For example, in the model (1.7) with Iy T 021r+s’ normally distributed
data, the MLE of the slope B is the same function of the data Y-under both
the functional and structural forms of fhe model. Since Gleser (1981) shows
that the MLE of B is asymptotically normally distributed in the functional

model (under Assumption 1), and this estimator is BAN in the structural model,

Theorem 2.5 shows that the MLE of B is BAN in the functional model.

'2.3. Summary and Discussion

The points made in this section can be simply summarized as follows:

(1) Corresponding structural and functional forms of errors-in-variables
should be analyzed together.

(2) The parametric regularity of structural models make such models
preferable for considering identifiability questions, problems of

showing nonexistence of consistent sequences of estimators, and
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asymptotic ifficiency theory. It is also frequently easier to
identify good classes of estimators in the context of such models.
(3) Proofs of asymptotic consistency and asymptotic distribution for
sequences of estimators {QN} need be given for the functional models
only, since results on consistency and asymptotic distributions in
functional models imply similar results in structural models

(Theorems 2.2 and 2.3, Remark 1).

In connection with point (3), it should be noted that in functional
models the matrix U, treated as a matrix of known constants, plays a role
similar to the design matrix X in classical regression models. Consequently
(Gallo, 1982a, b), existing asymptotic theory for classical regression models
can be utilized in proving asymptotic consistency and asymptotic normality
of estimators in functional models.

In connection with the last sentence of point (2), it is worth noting that
MLEs for a functional model may not exist even when the corresponding struc-
tural model is fully identified (o is jdentifiable). In this case, MLEs
for the structural model (which do typically exist) can serve as good esti-
mators in the functional model -~ "good" since, as we have shown, if these
estimators are asymptotically normal in the functional case, they must be
BAN. This approach is utilized in the context of factor analysis by Anderson
and Rubin (1956).

Finally, it is worth noting the parallelism of this discussion to both
the fixed factor (Model I)-random factor (Model II) categorizations of ANOVA,

and to the compound decision-empirical Bayes statistical decision-theoretic
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formulations of Robbins (1951, 1955). The structural form of (1.1) is an
empirical Bayes reformulation of the corresponding functional model. However,
by imposing Assumption 1 on the parameters of the functional model, we remove
the need for a random mechanism to generate the ui's, requiring only (in the
spirit of compound decision models) that the seguence u = {ui: i=1,2,...} of
columns of U have some of the properties of i.i.d. sequences of random rxI

vectors.
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3. ULTRASTRUCTURAL MODELS

Dolby's ultrastructural model (1.4) can be rewritten as follows:

- (0 1 . .
Yig = () (g + e T<i<m 1 <3 <, (3.1)
where
= 1 ' ..
fij = (b)(u13 ”1) tegy are i.i.d. N(g,zf)
and
2 2 2
_ (o1 9f12\ _ [%ertoy b9y .
5 " \op opp) T \po2 2 22 - (3.2)
boy, ce2+b 9,
2 2 2 - .
As 9a1° %a2° 9y and b range over their possible values, Ze Can equal any

2x2 positive definite matrix. However, the requirement that Ggl’ 022 and

03 be nonnegative places the following restrictions on Ze and b:

lof1or2l = 101 < Uoggpopa s bagyy 2 0. (3.3)

Except for (3.3),when n > 1 the model (3.1) is recognizable as an equally-
replicated functional model. The requirement (3.3) doesn't change the para-
meterization of the model, but does limit the parameter values. to a subspace.
(of the same dimension). Consequently, if the MLEs for b and e in this model
satisfy (3.3), they are also MLEs for the parameters of Dolby'sultrastructural
model (1.4). (This 1is essentially the approach of Cox (1976).)
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A model equivalent to (3.1) is treated by Anderson (1951). Anderson's

model is (in our notation)

Yij =¥ tEst fij’ (3.4)

m
where ) g; = 0, and there exists A = (151,)" such that
=1

\eo =0, 1< <m (3.5)

It is easy to see that the following correspondences hold:

_ (0 - - - .y = b
Y = (a) MR T ST T ("), (3.6)
- 1
where u. =m ' ) , and ¢ is an arbitrary non-zero constant. The relationship
j=

U
;1
of the models (1.4) and (3.1) to the model (3.4) appears to have been over-

Tooked by both Dolby (1976) and Cox (1976).

Let
y qm _ _ _ g mon _ _
- 121 (¥, =¥ 04 -y )0 S = (o) iz1 jz1 (vi37¥3 Jy45795 )
- .1 h _ g mon
where y. =n"" J y.os y..= ()7} ) yig. Let ty > t, be the ordered
' j=1 i=1 j=1

J
roots of the determinantal equation

W - tS| =0

9
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and let g,,9,: 2x1 satisfy
1272

ng = tngi, _g;Wg% =1, i=1,2.

Then Anderson (1951, 1982) shows that the MLEs of the parameters of the model

(3.4) are
. X1 - .
ve\n,) T % 8T Sg197(¥; -y ) T<i<m,
(3.7)
Y T 59199y s Zp = S ¥ 656,955,

Consequently, the MLE of the unrestricted model (3.1) are ﬁf and

6= X_’I "=(-B)" =5 n(')_(9)1<1'<m (38)
S e 780y 0 - (g) T T e '
2

Let

~ (%11 912

Zf_ g

°f12  9f22/

If

o120 | < IB{-<3(|§*] o ])‘] bo .y > 0 (3.9)

F19F120 2 1P M9e00 1210 0 Bopp 20 B

then the MLEs of o, b, Wi in Dolby's model are given by (3.7), (3.8), and
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A A 'IA A

oy = b Tog12s 9e1 T 9y

A"lA A

= b Togy9s 0gp = 0gpy - bo

£12° (3.10)
are the MLEs of 02 02 02 respectively
u> “el? “e2’ :

If (3.9) fails to hold, then the supremum of the likelihood occurs at
one of the three boundaries of the parameter space (defined by 03 = 0, by
021 = 0, and by o2, = 0). The boundary defined by 05 = 0 is part of the
parameter space of Dolby's model. Cox (1976) shows how to obtain the maximum

of the 1ikelihood on this boundary (and also on the boundaries 02 =0,

el

022 = 0), but recommends ignoring the 05 = 0 boundary as an approximation to
the correct maximum likelihood procedure. (On the 05 = 0 boundary, B is the
solution of a quartic equation.) This approximation makes sense in Cox's
approach (where the model is regarded as a replicated structural model, and cﬁ >0
is assumed), but is not acceptable:from the ultrastructural viewpoint of Dolby
(where 05 = 0 means that there is no structural. component to the model).

when o2 > 0 (and o2, > 0, 05, > 0), (3.9) holds with probability tending
to one as n ~ » (m fixed). This assertion follows from the consistency of
the MLEs of b and e in the unrestricted model (3.1), as shown by Anderson
(1951) and also Healy (1980). Consequently, the MLEs for b, 03, 02], 022
in the ultrastructural model are consistent estimators of these parameters.
The MLEs of o and u; are also consistent, by the same argument. The joint
asymptotic normality of the MLEs in the unrestricted model (3.1) has been
shown by Amemiya and Fuller (1982) for both normal and nonnormal data; for

normal data, the asymptotic covariance matrix of these estimators has been

calculated by several authors. Because (3.9) holds with probability tending
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to one as n +~ », these large sample results can be used to show that &,

;i’ 1<i<m, 6, Su, ég],-égz are jointly asymptotically normal as n + o,

even for nonnormal data, and the asymptotic covariance matrix of these esti-
mators can be calculated. The asymptotic variances are obtained by Cox (1976).
As Cox (1976) notes, the accuracy of the large-sample distributional approxi-
mation depends upon (3.9) holding with high probability for the given repli-
cation size n (and number of groups m).

It should be noted that the magnitude of m relative to that of n cannot
be ignored in determining whether n is Targe enough to permit asymptotic
distributions to be used as approximations to the exact distributions of the
MLEs. Healy (1980) considers Anderson's (1951) replicated functional models,
but allows the number of groups m to go to infinity. In the present context
(Healy's results are more general), if m > «» and n stays fixed, n > 1. Healy's
results show that b is consistent but Ef is not consistent. Whether, (3.9)
continues to hold with probability tending to one as m » » (n fixed) is thus
an open question. If the probability that (3.9) holds fails to converge to

one, then the MLEs 1in the models (1.4) and (3.1) are not necessarily asympto-

tically equivalent for distributional purposes.

The method of approach used here is one that is frequently useful:
embed a given errors-in-variables model in a similarly parameterized model
whose parameter space is less restricted, and whose MLEs are either known,
or easily determined. If this approach is successful, one can also apply
consistency and asymptotic distribution results for the MLEs of the broader
model to obtain similar large-sample results for the MLEs of the given model.

However, in using this approach care must be taken to make sure that the two
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parameter spaces have the same dimension, differing only in that the parameter
space of the given model is a open subset of the parameter space of the broader
model. Although this approach is mentioned in popular mathematical statistics
textbooks [e.g., Bickel and Doksum (1977)], it is frequently overlooked, with

a resulting expenditure of unnecessary effort.

Dolby (1976) also considers the unreplicated case (n=1) of the ultra-
structural model (1.4), noting that without additional restridtions on the
parameters, the formal solutions of the 1ikelihood equaitons will be unsatis-
factory as estimators. This fact is not surprising since as Dolby notes
(quoting Solari (1969)), these formal solutions define saddlepoints of the
likeTihood. Indeed, using the general approach outlined in Section 2.1, it
is easy to show that the structural model corresponding to (3.1), where the
ui's are i.i.d. N(u,cz),ris not identified. More specifically, in this

2

structural model none of the parameters 03, 021’ Tan and b are identifiable.

Consequently, in the model (1.4) with n = 1, no consistent (as m + =) esti-

mators of oﬁ, 021, 022, and b can exist. In this sense, the unreplicated
ultrastructural model is nonidentifiable.

Dolby imposes the conditions

where k] and k2 are known nonnegative constants. In this case, e in the

corresponding model (3.1) becomes

5 <1+k2 bk,

el | bk k+b2k2> ’ (3.11)

e T O
f 2 K
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and the restrictions (3.3) are no longer needed. It is interesting to note
that the model (3.1) with L defined by (3.11) generalizes the model in
Gleser (1981). Gleser (1981) treated the case

_ 2 :
zf =g 20, 20 known.

In contrast, (3.10) has the form
_2~1 0 Ty /1
e = oglly ) * lp)p)']

Dolby's MLEs for a, b, and 021 in hismodel, yield MLEs for a, b, and e

in the model (3.1), (3.10); and vice versa. Unfortunately, Dolby's MLE for

b involves solution of a quintic polynomial equation. It is possible that
Gleser's (1981)..algebraic approach-to finding MLES in functional models may either
yield simpler formulas, or show that only one of the roots of the quintic poly-

nomial is an acceptable solution. Work on this question is in progress.
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