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SUMMARY

Belief in the Likelihood Principle was substantially advanced when
A. Birnbaum showed it to be derivable from the apparently more natural
Sufficiency and Conditionality Principles. This axiomatic development
subsequently came under attack from a number of directions, among the most
interesting being a criticism (by D.A.S. Fraser, G. Barnard and others) of
the Sufficiency Principle for failure to take into account "structural®
knowledge of the performed experiment. This criticism is addressed in this

paper from two directions. First, a weak set of alternative axioms for the

Likelihood Principle is developed. Second, ideas of coherency are employed
to question the validity of knowingly violating the Likelihood Principle.
In this development, arguments are presented for basing coherency on
decision-theoretic concepts, rather than the more usual betting concepts.
The basic conclusions of the paper also apply to other theories which can
violate the Likelihood Principle, including many noninformative prior

Bayesian theories.

Keywords: LIKELIHOOD PRINCIPLE, CONDITIONALITY, SUFFICIENCY, STRUCTURAL
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1. INTRODUCTION

The Likelihood Principle (LP) received its major (non-Bayesian) impetus
from ideas of R.A. Fisher and G. Barnard. (See Berger and Wolpert (1984)
for references.) It essentially states that any decision or inference in a
statistical problem should involve the data and experiment only through the
1ikelihood function of the unknowns given the observed data. The implications
of the LP are farreaching, and the case for it is strong. The non-Bayesian
case rests on various axiomatic developments of the LP from simpler believable
principles, such as the Birnbaum (1962) development of the LP from the Conditionality
and Sufficiency principles.

Arguments against the LP usually take one of four forms. First, are
arguments concerning the "unintuitive" consequences of the LP, such as the
consequent irrelevance of stopping rules in the final inference or decision
and the incompatibility of the LP with significance testing and randomization
analysis. Discussion and references concerning such matters can be found in
Basu (1975) and Berger and Wolpert (1984), but in general it is hard to see
how anyone believing in Tlogic could reject the LP because of its consequences
‘without rejecting at Teast one of the precepts upon which it is based. The
three remaining arguments against the LP thus focus on either (i) the existence
of the 1ikelihood function, (ii) the validity of the Conditionality principle,
or (iii) the validity of the Sufficiency principle.

As presented in Birnbaum (1962), the LP is dependent on the existence of
a likelihood function (and in fact on the discreteness of the sample space).
Thus, it can be argued that in nondiscrete nonparametric problems (and one
is rarely completely sure of a parametric model) there may be no clearly

defined 1ikelihood function, and even when there is a likelihood function the



nondiscreteness makes Birnbaum's arguments questionable. Basu (1975) answers

this by arguing that, in reality, data is always discrete (because of limitations

on observational accuracy) so that no difficulties arise. The importance of

using continuous approximations to discreteness is well recognized, however,

and validity of the LP for nondiscrete situations would, therefore, be comforting.

A general version of the LP (called the Relative Likelihood Principle) was

developed for essentially arbitrary situations in Berger and Wolpert (1984).

It was shown to follow from conditionality and sufficiency, and also shown to

have essentially the same consequences as the LP. Rejection of the LP on

the grounds of nonekistence of likelihood functions can be circumvented, therefore.
The Conditionality Principle (CP) roughly states that, if an independent

coin is flipped to decide between performing experiments E] and EZ’ both

pertaining to some unknown quantity 6 of interest, then the evidence about ©

obtained from the data should not depend in any way on the experiment not
actually performed. First stated explicitly. by Cox (1958), the CP seems
completely obvious, but, rather startlingly, it is in sharp opposition to
standard frequentist reasoning in statistics. The experiment not actually
performed is another part of the sample space, and hence a frequentist would
average over it in determining the performance of his "procedure". Numerous
attempts to partially follow the CP and then go frequentist have been advocated,
but do not seem to be ultimately justifiable (c.f. Berger and Wolpert (1984)).
It is not, on the other hand, illogical for a frequentist to simply reject the
CP, arguing (c.f. Neyman and Pearson (1933)) that the notion that one can obtain
“evidence about ¢ from an experiment" is misguided; all one can do is evaluate
how well a procedure that will be repeatedly used performs in the long run,

and the procedure's performance will be an average over both E] and E2. While



logically viable, the artificiality of the position is clear. I doubt if many
users of statistics would be willing to accept the point of view that one
cannot obtain evidence about 6 from an experiment. (Note that the CP and

LP presuppose nothing about what this "evidence" is, or even that it is any:
single quantity.)

The final criticism of the LP comes from ideas of Barnard (c.f. Barnard
(1980, 1982), Barnard and Godambe (1982), and the discussion in Basu (1975))
and Fraser (c.f. Fraser (1963, 1968, 1972, 1979)) concerning the validity of
the Sufficiency Principle. The criticism concerns the "sufficiency" of
representing the experimental structure solely in terms of probability distri-
butions on the sample space indexed by the unknown 6. This turns out to be
a very difficult criticism to answer, and indeed it does not seem answerable
in the same self-contained sense as the other criticisms. Although an attempt
is made to deal with the issue axiomatically in Section 3, the attempt is
something of a failure, one crucial axiom being suspect. Instead, therefore,
we turn to Bayesian arguments of coherency and inadmissibility, in an attempt
to indicate the difficulties in violating sufficiency. These arguments are,
of course, more or less familiar, but because of the importance of the issue
and the bearing that these arguments have on theories of inference such as
Barnard's Pivotal Inference, Fraéer's Structural Inference, and even various
noninformative prior Bayesian theories, certain aspects of which may violate
the LP, we will include a fair amount of detail and discussion. It should
be stated at the outset that, in no sense, do we unequivocally resolve the
controversy. The paper should be viewed more as an attempt to carefully
state a Bayesian view of the issue.

Some Bayesians may wonder why there is any need to be concerned with the

LP, except as a trivial consequence of the Bayesian position. There are



essentially two reasons. The first is the purely pragmatic reason that promoting
Bayesianism can often most effectively be done by first selling the LP, since
this can be done without introducing the emotionally charged issue of prior
distributions. The second reason is that the LP shows that Bayesians should

be concerned with conditional (posterior) conclusions. This may seem to be a
strange statement to most Bayesians, but it is certainly possible to be a
Bayesian and not believe this. For instance, one could believe that only
frequentist measures of procedure performance have validity, and yet, because
of various rationality, coherency, or admissibility arguments, believe that

the only reasonable procedures are Bayes procedures, and that the best method

of choosing a procedure is through consideration of prior information and
application of the Bayesian paradigm (c.f. the discussion by L. Brown in

Berger (1983)). The posterior distribution will provide a convenient
mathematical device for determining the best procedure, but (from this view-
point) the overall frequentist (Bayes) performance of the procedure would

be the relevant measure of accuracy. The LP directly attacks this view, arguing
that thinking "conditional Bayes", not "frequentist Bayes," is important.

In Section 2 the needed notation will be given. Section 3 presents a
weak set of principles which imply the LP, and discusses at which point the
Barnard-Fraser criticism enters in. Section 4 outlines the scenario -through
which considerations of coherency and admissibility become relevant. In this
section it is argued, as a side issue, that decision theoretic admissibility
is a more valid evaluational tool than the more common (to Bayesians)
betting coherency. Section 5 argues against violation of the LP because of
these considerations, with particular attention given to the Barnard-Fraser

criticisms. Section 6 gives some concluding remarks.



2. NOTATION

2.1 The Experiment

We will more or less follow Birnbaum's (1962) notation for reasons of
familiarity. The first important issue is - what is an experiment? We will

denote an experiment by
E = (X, 6, Py}, (h, ), (2.1)

where X (a realization of which is the data and will be denoted x) is a

random quantity taking values in a sample space X according to the probability
distribution Pe’ the unknown aspects of this distribution being denoted by o,
an element of the parameter space @ . (We will not overburden the description
of E by including Z or @ in (2.1).) The unknown 6 could include typical
unknown parameters and also could index unknown functional featﬁres of the
distribution. For instance, if Pe(A) = G((A-u)/c), where u and o are unknown
and it is only known that G. € £, some set of distributions, then 6 would
equal (u,0,G). We will, however, for simplicity restrict consideration to
situations where a Tikelihood function exists, i.e. where'{Pe, 8 €@} is

dominated by a measure v, with respect to which we have densities

dP

Also, in axiomatic discussions we will implicitly assume that X is discrete,
so that f(x|e) is well defined. (Again, as argued in Basu (1975), this
assumption reflects ultimate reality; discussion of the philosophical validity
of the LP in this setting is thus appropriate.) The density, considered as

a function of o for fixed x, is of course the likelihood function for 6 given

that x is observed.



The final element of E in (2.1), the pair (h,w), is included to allow
consideration of the criticisms of Barnard and Fraser. Barnard, with his theory
of Pivotal Inference (c.f. Barnard (1980, 1982) and Barnard and Sprott (1983)),
and Fraser, with his theory of Structural Inference (c.f. Fraser (1968, 1972,
1979)), argue that it may sometimes be known how X, ¢, and Pe are related,

and that this can be important information. Thus it may be known that
X = h(e,w),

where w is an unknown random quantity taking values in @ according to a known

distribution Q, and h is a known function from @ x @ + X . (Often in
Structural and Pivotal inference, Q is known only to belong to some

class 2. For simplicity, we assume Q is known.) This is actually

more or less the "structural" formulation of the problem. The formulation

in Pivotal Inference is baséd on "pivotals" w = g(X,8) having known distributions.
Typically g will be an appropriate inverse function of h, so the two approaches
are very related. We will, for the most part, consider the structural
formulation, although comments about differences for the pivotal model will

be made. The structural model is sometimes called a functional model (c.f.
Bunke (1975) and Dawid and Stone (1982)), but we will stick with Fraser's
original term. The following example, from Fraser (1968) (and related to an
example in Mauldon (1955)), illustrates the key issue.

Example 1. Suppose X = (X1, X2), 6 = (o],r,¢), and Py is bivariate normal

with mean zero and covariance matrix
2

oy (r2+¢2)



This could arise from either of the following two structural models:

(i) w-= (w],wz) is bivariate normal, mean zero and identity covariance

matrix, and
X = h(0,0) = (oqup> Turuy); (2.2)
(i1) w is the same but
X = h*(o,w) = (T'w]+¢'w2, 02w1), (2.3)

where g, = V&2+¢2, ' = c]¢(cz,‘and ¢! ='o]r/02. In Barnard's setup one
would write (2.2) and (2.3) as

w = (w]swz) = (X]/U]s (Xz'TX]/U])/¢)s (2°2)l

w = (w]awz) = (XZ/OZ’ (X]'Tlxz/gz)/¢l)s (Z-S)I

and W and Wy would be the pivotals with known distribution upon which the

inference would be based. In pursuing this example later in the paper, we

will assume that independent observations X], ...» X" from the model are taken,

giving the "sufficient’ statistic S = (X1)t(X1), which has a Wishart

.i

ne~-13

1

(n, 1) distribution.

We do not presuppose that knowledge of (h,w) is available, although our
main concern will be the value of knowing (h,w) if it is available. When
it 1s available, we will say that we are in the "P-S situation" (for pivotal-

structural).



2.2 Evidence and Mixtures

Of interest from an experiment is the "evidence" about 6 obtained from
knowledge of E and the data x. This will (following Birnbaum) be denoted
Ev(E,x), and could be any measure or collection of measures whatsoever (including
frequency measures). The completely arbitrary nature of this concept should
make it acceptable to most people. In Section 3 we will investigate principles
that Ev(E,x) should follow. (Dawid (1977) prefers to replace the concept of
evidence by that of an inference pattern, and then talk about principles
which inference patterns should follow.. This might have some philosophical
advantage, but we will stick to the more usual approach.)

The final concept needed is that of a simple mixture of two experiments
E, = (X120,4P 3, (hyowy)) and E, = (X,.8,0P2}, (hysw,))
1 1°72 972 NPT 2 2272 g Y22

(It is important to note that, throughout the paper, 6 will be assumed to

be the same quantity in the two experiments.) Let J be a random variable
(independent of the Xi’ ws 5 and any information about 6) taking on the values

1 and 2 with probabilities A and (1-1), respectively. Then the mixed experiment

EN is the experiment in which first J is observed, and then experiment EJ is

performed. Thus the outcome of E* is the pair (J,XJ). We will often imagine,
given E] and E2, that we can perform EA, and hence can think of Ev(EA, (j,xj)).
Certain objections have been raised (c.f. Durbin (1970) and Kalbfleisch (1974))
concerning the treatment of E* as a "real" experiment, but it is clear that >
could be performed, and hence any proposed statistical methods should work

well for it. Further discussion can be found in Birnbaum (1970), Dawid (1977),

and Berger and Wolpert (1984).
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3. PRINCIPLES OF EVIDENCE

This section is independent of the rest of the paper, and can be skipped
by those less interested in axiomatic arguments. No attempt will be made to
survey the wide array of principles that have been discussed and which lead to
the LP. References include Birnbaum (1962, 1972), Basu (1975), Dawid (1977),
Godambe (1979), Barnard and Godambe (1982), and Berger and Wolpert (1984).
The key principles are the Weak Conditionality Principle below, and some
version of the Sufficiency Principle. The weakest versions of sufficiency
are Mathematical Equivalence (see Birnbaum (1972)) and the Distribution
Principle (see Dawid (1977)) which essentially state that (h,w) in (2.1)
is irrelevant to EV(E,x). This section is an attempt to formulate weaker
principles which lead to the LP. The effort is not as successful as had been

initially hoped. We first 1list the principles.

Weak Conditionality Principle (WCP): Ev(E, (3:x;)) = Ev(E;ox,).  (Thus

37
the evidence obtained from a simple mixture experiment is simply the evidence

obtained from the experiment Ej actually performed.)

Weak Ancillarity Principle (WAP): Suppose E, (as in (2.1)) consists of

observing the random quantity X] = (Y],Z), where Z has a known distribution
independent of Y], wys and 6, and E2 consists of observing X2 = g(Y],Z),
where g is a known. function for which there exists a known function g* such

that Y, = g*(X2). Then Ev(El,x]) = Ev(E2,x2). (The point here is that it seems

1
clear that only Y] contains information about 6 in E], and we can determine Y]
exactly from X2. But since X2 depends only on Y] and the irrelevant Z, it

can contain no more information about 6 than Y]. Note that passing from X1 to
X2 and back to Y] is via known functions, so the important structural elements

of the experiments are preserved.)
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Weak Distribution Principle (WDP): Suppose.Ei, i=1,2, consists of observing

X1.= (Y, Zi)’ where Y is the same random variable and the Zi are each 1 or 2
with probability %—, independent of Y and 6 (but not necessarily of the wi)'

Then Ev(E;, (y,3)) = Ev(E,, (y,3)) for j = 1,2.

It is the WDP that is potentially inconsistent with P-S analysis, in
that the Zi may contain structural information which is ignored because of the
lack of dependence of the distribution of the Zi on Y or 6. In some sense,
the WDP is no more intuitively obvious than Birnbaum's principle of Mathematical
Equivalence, but does appeal to a somewhat different intuition, namely the
“frequentist" intuition behind sufficiency which states that if Y is a
sufficient statistic (of (Y,Z])) for 6, then Z] could be replaced by any

random variable with the same distribution without affecting any conclusions.

Likelihood Principle: 1If E] and E2 are two experiments and there exist
observations xi and xé in the respective experiments for which fT(Xile) =

cfz(xéLe)for all o (and some fixed constant c), then Ev(E1,xi) = Ev(Ez,xé).
Theorem 1. The LP is a consequence of the WCP, WAP, and WDP.

Proof. Consider the mixed experiment E*, where A = 1/(1+c). By the WCP we

have that

Ev(E", (35x})) = Ev(E oxt). (2.4)

Next, define Y = (J,XJ) (the outcome of EA) and

Y if X; # x! or x!
v, = J oo 2 (2.5)

0 otherwise,
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and

]
—
-+
>
I
1
—

g - xi, or V] #0and Z =
Z, = (2.6)

2 if X, = xé, or V] #0and Z = 2,

where Z is a random variable (independent of everything, probabilistically
and structurally) taking values 1 and 2 with probability %u Consider the
experiment E* with observation (Y,Z), and note that an application of the

WAP (with g(Y,Z) = Y) shows that

Ev(E),y) = Ev(E*, (y.z)). (2.7)

Also, defining E** as the experiment of observing X* = (V],Z]), noting that

(2.5) and (2.6) define X* = g(Y,Z), and observing that

V] if V1 #0
g*(X*) = , - v,
(Z],xz1) if V] =0

the WAP can be applied to conclude that

EV(E*,(y,z)) = Ev(E**, (vy24)). (2.8)
Note that
P(Z=1)=—;— if vy # 0
P (Z,=1]v,) =
8 "1 IV] Af (X'l@)
— 1] Ty = 1 if vi =0,
Af1(x1|e)+(1-x)f2(x2|e) 2 1

so that Z] is independent of both V] and 6. Application of the WDP to E**

shows that Z1 could be replaced by any (structurally independent) random
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variable with the same distribution, and use of the WAP (as in (2.7)) then
shows that Ev(E**, (v],z])) does not depend on z,. Combining. this with
(2.4), (2.7), and (2.8) yields the desired conclusion.||

Since the WDP is in as much conflict with P-S analysis as Mathematical
Equivalence, not much progress has been made. The point of developing
alternative simple principles is the hope that they will spur those who
question the LP into finding a clear counterexample to at least one of the
principles. Unfortunately,"counterexamples" so far developed are either
of the extermely involved variety (such as the Stopping Rule Paradox), or aré
of the form - here is an example of where 'My Method' clashes with Principle A -
without a quantified demonstration of harm that would result in following
Principle A. O0f course, we don't believe valid counterexamples will be found.
The reason is simply that repeated use of any method violating the LP seems

likely to itself be demonstrably inferior. We turn now to this issue.

4. LONG RUN PERFORMANCE
The practical importance of considering the long run performance of
statistical procedures or methods is certainly a matter open to debate, but one
feature of-long run performance seems clear: it cannot be right (philosophically) to
recommend repeated use of a method if the method has "bad" long run properties.

There have been two main approaches proposed for long run evaluations: decision

theory and betting schemes. We will argue that fhe decision theoretic approach
is the more satisfactory of the two (even for "inference" problems), although
either approach stronglycontraindicates violation of the LP. It is interesting
that frequentist decision theory emerges (even for Bayesians) as an important

testing ground for statistical theories.

4.1 Decision Theoretic Evaluations
The decision theoretic approach supposes that the result of the statistical

investigation is to take an action a € @ (which could conceivab]y be the
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action to take a particular "inference"), the consequence of which, for
given data x and when o obtains, is the loss L(x,a,6). It is also supposed
that the statistical method being evaluated provides an action to take for
each possible x, thus defining a statistical procedure §(*):x~ G . (For
the most part we will stick to nonrandomized procedures for simplicity.) As

usual in frequentist decision theory, we define the frequentist risk and the

Bayes risk (with respect to a prior distribution = on @ ) as, respectively,

R(8,8) = E,L(X,8(X),0), and r(m,s) = E"R(0,6).

Of interest will be the following standard definitions. The procedure 6] is

strictly inadmissible if there exists a 62 with R(e,éz) < R(e,G]) for all 6, and is

extended inadmissible if R(e,az) <:R(e,6]) - &:for all® and some e>0. If r(w,éz) < w

for all countably additive =, the above risk inequalities can be replaced by
r(w,az) < r(n,al) and r(n,az) < r(w,a]) - ¢ for all countably additive .
Following Hi11 (1974), and in a similar manner to many betting scenarios,

we consider the following game.

Evaluation Game. Player 1 proposes use of 6] and Player 2 proposes 62. A

master of ceremonies will choose a sequence 8 = (8],62,...), and for each ¥
the experiment E will be independently performed yielding an observation Xi
(from the distribution P, » or equal to h(ei’wi))' Player j will use

i
~63(x1), paying to the other player his "loss" L(xi,GJ(xi),ei). After n plays,

Player 2 will have won

_ 7 1 2
S = Z [L(X.,6 (Xi)’ei) = L(Xisa (xi)’ei)]'
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Theorem 2. 1In the situation of the above game,
(a) If 6] is strictly inadmissible and r(n,az) < o for all countably additive

T, then

P (liminf +s >0) =1, (3.1)
T n

N0

n

where PTr denotes the joint probability distribution of the Xi and 0,
(b) If 6] is extended inadmissible and the random variables
Zi = [L(Xi,s](xi),ei) - L(X1,62(Xi),ei)] have uniformly bounded

variances (i.e. Ee [Zi'Ee 21]2 <K < for all ei), then
i i

P, (Timinf1s >c>0) =7, (3.2)

B e

for any sequence g = (e],ez,...).

1
(c) 1If 51 is strictly inadmissible, @ is closed, R(6,5 ) and R(e,sz)
are continuous in ® , and the moment condition in (b) ho]ds, then
(3.2) is valid for any bounded sequence 6 (although ¢ could depend

on the bound).
Comment 1. For bounded losses, the moment conditions in the theorem are

all clearly satisfied. Even unbounded Tosses rarely cause a problem.
Comment 2. If (3.2) holds, then it also holds for Pe replaced by P1T for
any prior m, including finitely additive . Also, Hzath and Sudderth (1978)
show that 6] is extended admissible only if it is Bayes with respect to

some (possibly finitely additive) prior m.

Proof of Theorem 2. (a). If r(n,él) < w, théﬁ-EﬂZi (E1r being expectation
over the Xi and 6> and Zi being as in part (b)) has finite expectation

A= r(w,é]) - r(w,az) > 0. The result follows from the strong Taw of large
numbers. If r(ﬂ,G]) = @, the result follows by truncating the loss at a
suitably large Tlevel.

(b). Define

#og) = Eg (Z;) = R(07,61) - R(0;,6%) > .
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By the strong law of Targe numbers,

[Z,

i - w(ei)] ~ 0 almost surely,

= |-
nNe~1S
e d

i
and the result follows easily. The proof ofvpart‘(c) is similar. ||
The Evaluations Game seems to be a reasonably fair way of testing the

performance of a procedure. If 6]

is certain to lose an arbitrarily large
amount in comparison with 62, as occurs in the situations of Theorem 2, then
6] would seem to be theoretically inferior. (The word "theoretically" is
inserted, because the practical difference in a realistic finite number of
uses may be negligible.) Extended inadmissibility seems very serious, in

that 6] would always have a long run loss. Strict inadmissibility is less

compelling, in that 6] is only guaranteed to lose against a countably
additive prior =, or a bounded sequence 6 (in the situation of part (c) of

the theorem). But the fact that it will lose for any such m (even one of
Player 1's choosing) or for any such 8, strikes us as sufficient reason to
perceive 6] as not being fundamentally sound. Note that it is not necessary
to know the bound on & in case (c) to conclude that s! Toses. It is only
necessary to know that there is some bound. (And, in reality, 9 will be
bounded; unbounded ® are typically used only because one is not sure what the
bound on 6 should be.) Again, it may be-that 6] is justifiable as a good
approximate rule, even if it is strictly or extended inadmissible, but we
would certainly hesitate to call any statistical method which led to 6] a

fundamentally sound method.

Adopting a decision-theoretic viewpoint for evaluation can be
criticized, especially for inference problems in which losses (if they exist
at all) are vague or hard to formulate. This is not the place to argue the
case for a decision-theoretic outlook, and indeed a justification of decision
- theory is not needed for our purpose here. Our goal is to judge the claim in

P-S analysis (and other approaches) that the LP is invalid, because it ignores
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important features of the experiment. We will essentially try to argue that,

in any decision problem, repeated violation of the LP will result in long run
loss. Most statisticians would probably have qualms about trying to argue that,
even if the LP should be followed in any decision problem, it need not be
followed in inference problems. Essentially such an argument would be of

the variety - "I know I'm right, but will not allow any quantifiable evaluation
of my methods."

We will avoid the "unfair" possibility of taking an inference procedure
and evaluating it with respect to a particular loss function. It is somewhat
more fair to evaluate it with respect to a very wide range of loss functions
(indeed, if a wide enough range of loss functions is allowed many "inadmissible"
inference procedures become admissib]e, c.f. Brown (1973)), and strict
~ inadmissibility for a wide range of reasonable losses should be a serious
concern. More commonly, however, we will consider particular losses as
given, and see where the following of P-S reasoning might lead us. Criticizing
P-S reasoning (in particular, possible violation of the LP) in decision
settings for which it was never intended is, of course, an uncertain undertaking,
especially since it is not clear what P-S reasoning in decision contexts would
be. Of relevance here is the following comment of Hill (1974):

“But no matter what is meant by inference, if it
is to be of any value, then somehow it must be
used, or acted upon, and this does indeed lead
back to the decision-theoretic framework. I
suspect that for some 'inference' is used as a
shield to discovery that their actions are
incoherent."

As a final comment, it should be mentioned that even Bayesians should be

willing to submit their procedures (usually derived conditionally) to long run
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performance evaluations, especially when robustness is a serious concern or

when improper prior distributions were used.

4.2 Betting Evaluations

Studying coherence in betting has a long tradition in statistics,
especially Bayesian statistics. The typical scenario deals with evaluation
of methods (usually inference methods) which produce, for each x, either a
probability distribution for 6, say g, (e) (which could-be a posterior
distribution, a fiducial distribution, a structural distribution, etc.),
or a system of confidence statements {C(X), a(x)} with the interpretation that
6 is felt to be in C(x) with probability a(x). For simplicity, we will
restrict ourseives to the confidence statement framework; any {qx(e)}
can be at least partially evaluated through confidence statements by choosing

{C(x)} and Tetting a(x) be the probability (with respect to qx) that 6 is in
C(x).

The assumption isthen made (more on this later) that, since a{x) is
thought to be the probability that 6 is in C(x), the proposer of {C(x), o(x)}
should be willing to make both the bet that 6 is in C{x) at odds of (1-u(x)) to
a(x), and the bet that & is not in C(x) at odds of a(x) to (1-a(x)). An
evaluations game, as in Section 4.1, is then proposed, where the master of
ceremonies again generates ¥ and Xi’ Player 1 stands ready to accept bets on

{C(x), a(x)}, and Player 2 bets s(x) at odds determined by a(x). Here,
s(x) = 0 means no bet is offered; s(x) > 0 means that an amount s(x) is bet
that 6. € C{x); and s(x) < O means that the amount |s(x)| is bet that
6: ¢ C(x). (As discussed in Robinson (1979a), restricting s(x) to satisfy

[s(x)] <1 is also sensible.) The winnings of Player 2 at the ith play are
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W_i = [IC(Xi)(e'i) - a(x'i)] S(x-i)s

where IA(e) is 1 if 6 € A and 0 otherwise, and of interest is again the

W,. If

lTimiting behavior of 1
n2qp 1
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for all sequences § = (e],ez,...), then {C(x), a(x)} is called incoherent, or

alternatively s(x) is said to be a super relevant betting strategy. If it

is merely the case that for ei generated according to any countably additive w,

.. 1
P (1im inf =
TrY'I—><>o n'i

0o~

Wy > 0,

then {C(x), a(x)} is weakly incoherent or s(x) is weakly relevant. (These

concepts can be found in this or related form in such works as Buehler (1959,

1976), Wallace (1959), Freedman and Purves (1969), Cornfield (1969), Pierce

(1973), Bondar (1977), Heath and Sudderth (1978), Robinson (1979a, 1979b),

and Lane and Sudderth (1983). Other general Bayesian works on coherency

include Ramsey (1926), deFinetti (1937, 1974), Savage (1954), and Levi (1980).)
If {C(x), a(x)} is incoherent or weakly incoherent, then Player 1 will

for sure Tose money in the appropriate evaluations game, which certainly casts

doubt on the validity of the probabilities o(x). A number of objections to the

scenario can, and have, been raised, however, and careful examination of these

objections is worthwhile.

Objection 1. Player 1 will have no incentive to bet unless he perceives the

odds as slightly favorable. This turns out to be no problem if incoherence

is present, since the odds can be adjusted by /2 in Player 1's favor, and



20

Player 2 will still win. If only weak incoherence is present, it is still
often possible to adjust the odds by a function g(x) so that Player 1 perceives
that the game is in his favor, yet will lose in the 1oﬁg run, but this is not
clearly always the case.

Objection 2. Weak incoherence has been deemed not very meaningful, since a
sequence § = (91,62,...) could be chosen so that Player 1 is not a sure loser.
However, the fact that Player 1 is a sure loser for any = (even one selected by
himself) or any bounded 9 (under certain reasonable assumptions) seems quite serious.
Objection 3. Of coukse, frequentists who quote a confidence level o for

{C(x)} remove themselves from the game, since they do not claim that « is the
probability that 6 is in C(x), and hence would find the betting scenario
totally irrelevant.

0bjection74. The game is unfair to Player 1, since Player 2 gets to choose
when, how much, and whfch way to bet. Various proposals have been made to
"even things up." The possibility mentioned in Objection 1 is one such, but
doesn't change the conclusions much. A more radical possibility, suggested

by Fraser (1977), is to allow Player 1 to decline bets. This can have a
drastic effect, but strikes us as too radical, in that it gives Player 1
license to state completely silly a(x) for some x. It is after all {a(x)}

that is being tested, and testing should be allowed for all x.

Objection 5. The most serious objection we perceive to the betting game is
that {a(x)} is generally not selected for use in the game, but rather to
communicate information about 6. It may be that there is no better choice

of {a(x)} for communicating the desired information. Consider the following
example, which can be found in Buehler (1971), and is essentially successive

modifications by Buehler and H. Rubin of an earlier example of D. Blackwell.
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s~Example 2. Suppose X = 8 + w, where P(w=1) = P(w=-1) = %3 and 6. € ® = {integers}.

We are to evaluate the confidence we attach to the sets C(x) = {x+1} (the
point (x+1)), and a natural choice is a(x) = %— (since & is either x-1 or x+1,
and in the absence of fairly strong prior information about 6, either choice
seems equally plausible). This choice can be beaten in the betting game,
however, by betting that ¢ is not in C(x) with probability g(x), where
0 < g(x) <1 1is an increasing function. (Allowing Player 2 to have a randomized
betting strategy does not seem unreasonable.) Indeed, the expected gain per
bet of one unit, for any countably additive = on ® , is E"[g(6+1) - g(e-1)1> 0,
so that a(x) =-% is weakly 1ncohefent. (A continuous version of this example,
mentioned in Robinson (1979a), has w normal (0,1), @ =IR], C(x) = (-», x), and
a(x) = %u Earlier examples of similar phenomenon include the usual Student -t
intervals, c.f. Stein (1961), Buehler and Fedderson (1963), and Brown (1967),
and confidence intervals in the Behrens-Fisher problem, c.f. Fisher (1956). It
should also be noted that Fisher originated the idea of looking at confidence,

conditional on "relevant" subsets, which is the basis for many of the betting

examples.)

In this and other examples where {a(x)} loses in betting, one can ask the
crucial question - Is there a better o that could be used? The question has no
clear answer, because the purpose of a is not clearly defined. One possible
justification for a(x) = l-1‘n the above example is that it is the unique

2
limiting probability of C(x) for sequences of what could be called increasingly

vague prior distributions (c.f. Stone (1970)). (A more formal Bayesian
justifiéation along thése Tines would be a robust Bayesian justification, to
the effect that the class of possible priors is so large that the range of
possible posterior probabilities for (-<,x) will include 1/2 for all x.)

An alternative justification can be found by retreating to decision theory,

attempting to quantify how well o(x) performs as an indicator of whether
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or not 6 is in C(x), and then seeing if there is any better o. For instance,
using the quadratic scoring function of deFinetti (1962) (any‘proper
scoring function is a possibility - see Good (1952), Savage (1971), Buehler
(1971), and Lindley (1982) for other scoring functions) as an indicator of

how well o(x) performs, would mean considering the Toss function

L(xsa(x),0) = (I¢(y(8) = a(x)2. (3.3)

(For the moment, we are considering {C(x)} as given, and worrying only about
the choice of o. Note that, for any "posterior" distribution on 6, the
optimal choice of a(x) for (3.3) is the posterior probability of C(x), so
(3.3) is a natural measure of the accuracy of a.) One can then ask if there
is a better o in terms of (3.3), employing usual decision-theoretic ideas.
The answer in the case of Example 2 is - no. A standard limiting Bayes
argument can be used to show that a(x) = %—is admissible for this loss, and
hence no improvement (for all 6 or all m) is possible. (The same cannot

necessarily be said, however, if choice of C(x) is brought into the picture.

For instance, a reasonable overall loss for {C(x), a(x)} is
L(C(x)»a(x),8) = ¢ (Ig () (0)-a(x))® + Co1-Ip () (8)) F cqulC(x)),
where C; are constants and u is a measure.of the size of C(x). It can be

shown in Example 2 that {C*(x),o*(x)}, with a*(x) = %—and

{{x-13 with probability g(x)
C*(x) =>
{x+1} with probability 1-g(x),

s a better procedure than the given {C(x),a(x)}.)
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Decision-theoretic inadmissibility, with respect to losses such as (3.3),
can be related to incoherency, and seems to be a criterion somewhere between
weak incoherency and incoherency (c.f. Robinson (1979a)). This supports the
feeling that it may be a more valid criterion than the betting criterion.

This is not to say that the betting scenarios are not important. Buehler, in
discussion of Fraser (1977), makes the important point that, at the very least,
betting scenarios show when quantities such as a(x) "behave differently from
ordinary probabilities." And as Hi1l (1974) says

"...the desire for coherence...is not primarily
because he fears being made a sure loser by

an intelligent opponent who chooses a judicious
sequence of gambles...but rather because he
feels that incoherence is symptomatic of some-
thing basically unsound in his attitudes."

Neverthe]ess,Obje@tion 5 often prevents betting incoherency from having a
conclusive impact, and so decision-theoretic inadmissibility (with respect
to an agreed upon criterion) is more often convincing.

Decision-theoretic methods of evaluating "inferences" such as qx(e)
(i.e., distributions for 6 given x) have also been proposed (c.f; Gatsonis
(1981) and Eaton (1982)). For the most part, however, there has been little

attention directed to these matters.

5. VIOLATION OF THE LP: INADMISSIBILITY AND INCOHERENCY
A violation of the LP will occur when there are two experiments E] and E2,

with xi;e % and xé.e %, satisfying (for some positive constant C)
f](xile) = cfy(x,[6) for all o, (5.1)

and for which different actions or conclusions would be recommended were xi or

xé observed. Using the notation of Section 3, it is thus felt that

Ev(E],xi) # Ev(Ez,xé). (5.2)



24

Consider, in this situation, the mixed experiment E1/2, in which
J =1 or 2 with probability %—each is observed (independent of elements of
the Ei’ both probabilistically and structurally), and experiment EJ is then

performed. The Weak Conditionality Principle states that

Ev(E]/Z;(j,xj)) = EV(E;ux),

which combined with (5.2) yields the conclusion
Ev(E'/2,(1,60)) # Ev(E'/2,(2,x))). (5.3)

Since xi and xé have proportional likelihood functions, behaving as in (5.3)
violates sufficiency and cannot be Bayesian, and will be seen to entail
inadmissibility and incoherency in a variety of situations. Note that the
experiment E]/2 preserves all structural features of E1 and E2, so the only
possible objection to concluding (5.3) would be to the use of the WCP. It
is our understanding, however, that Pivotal, Structural, and virtually all
other approaches (except, of course "pure" frequentist theory) accept and
extensively use the WCP.

As a final comment before proceeding, note that the formal setup implicitly
involves discrete X . As mentioned earlier, however, versions of the LP
can be developed for continuous X , the only essential difference being that

(5.1) should be replaced by

f](xlle) = C(x]) fo (g(x])le) for all o and x;. €B, (5.4)

where Bc X has Pg(B) > 0 for all o, C(x])>0 for x,. €B, and g: Xy X is

1 1
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one-to-one. (For a formulation of this without the assumption .of densities, see
Berger and Wolpert (1984).) A1l subsequent expressions should then be under-
stood to hold with xi replaced by X1 (in B) and xé replaced by g(x]). The

set B is thus to be a set of positive measure for which X and Xy = g(x]) have
proportional Tikelihood functions, and yet supposedly call for differing actions
or conclusions. We will usually refrain from explicitely stating conditions

or results in the continuous setting, but will nevertheless consider important
continuous examples. We Took first at the situation from a decision-theoretic

viewpoint.

5.1 Decision - Theoretic Evaluation
E1/2,(

Suppose Ev( j,xj)) is decision-theoretic in nature, consisting of

the action to be taken when (j,xj) is observed, to be denoted 6((j,xj)) = 6j(xj),
along with knowledge that the loss L((j,xj), dj(xj),e) is to be suffered. Note
that this includes decision-theoretic inference, as mentioned in Section 4.2.

We will only consider situations in which
L((],xi),a,e) = L((2,xé), a,0) for all a and o, (5.5)

so that any Bayes rule would be the same whether (1,xi) or (2,xé) is observed.
(Of course, losses are usually of the form L(a,8), with no dependence on the
data. The possibility of data dependence is allowed to deal with losses Tlike
(3.3).) Because of (5.3), we are assuming that the proposed procedure

0,,. _ 0 . o
J ((J,xj)) = dj(xj) satisfies

01 # 63(x5), (5.6)
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and are out to establish that this is inadmissible. We first look at the most

clearcut situation, that of convex loss.

5.1.1 Convex Loss
Suppose. G is convex, and that L satisfies (5.5) and is strictly convex

in a for all e and the observations (j,xj). Then the procedure

*((5:%7)) =

otherwise,

, TE%TT'S?(Xi) cl dg(xé) for X3 = xi or xé

(where c is from (5.1)) satisfies (using (5.5) and strict convexity)

LUGx3)58%((32%5))40) < 1oiqy LLx1)L600x0) 40)

¥ Tc1T1Y L((2,x),89(x5),6).  (5.7)

An easy calculation, using (5.1) and (5.5), then shows that (for the Experiment
E]/Z)

R(e,e%)-R(s,6%) = XL (x1]0) a (0) > 0

where A(6) is the difference between the right and Teft hand sides of (5.7).
The following lemma is immediate. (This is all, of course, a simple form of

the Rao-Blackwell theorem.)
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Lemma 1. In the above situation, 60 is

(a) strictly inadmissible, providing xi has positive probability for
all o;

(b) extended inadmissible if, in addition to (a), f](xi]e) and L are.continuous
in 6, and @ is compact.

(The continuous analog of this lemma is also very easy.)

Example 3. Suppose E1 is binomial (n,s) and E2 is negative binomial (m,6),

where)%»is the number of failures and m, the number of successes at which

experimentation stops, is less than n. The densities are f](x]|e) =

n X n-X, m+x2-1 m X5

(U )e '(1-8) and f,(x,]|8) = 1| 6 (1-8) “, which are proportional
X 2'\"2 Xs

when X = m = xi and Xo = N-m = xé. Thus, in the mixed experiment E]/Z, the

LP would call for the same action to be taken if either (1,xi) or (Z,Xé) were
observed.

If now the goal is to estimate 6 under quadratic loss L = (e-a)2 (or any
other strictly convex Toss), and one uses different estimates of o for (1,xi)
and (2,xé), then Lemma 1(a) applies, and the behavior is strictly inadmissible.
(Neither Pivotal nor Structural analysis would necessarily say that different
actions should be taken in this problem, but Akaike (1982), in criticizing the
LP, seems to say that different analyses are called for).

Example 1 (continued). Example 1 is an example where the same probability

distribution can arise from different structural models. One component of
Structural analysis is that of construction of "structural distributions" for
any 6 given the data, which can presumably be used, as are posterior or fiducial
distributions, to make inferences or probability statements about 6. The
structural densities, based on S, for ¢ = (c],T,¢) are given for the two models

(2.2) and (2.3), respectively, by (see Fraser (1968))
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Kl(s)f(s]o],r,¢)o{2¢"1, (5.8)

n1(els)

1p(6]5) = Kp(s)F(s|oy,t,8) (x7+09) 7 To71, (5.9)
(These correspond to the posterior distributions with respect to the right
invariant Haar measures on the lower and upper triangular group decompositions
of £.)

We now consider the mixed experiment E
1

]/2, where E] and E2 are the

experiments of observing S (or really X .....X™ from the models (2.2) and
(2.3), respectively. Following structuralist theory (maintaining compatibility

with the WCP), gives as the structural distribution for E]/2

m(e](j,s)) = n.(6]s). (5.10)

Note that the LP applies with B = z1 (see (5.4)), g chosen to be the identity
map, and c(x]) = 1. Thus, if different actions are to be taken for (1,s) and
(2,s), as could well be called for if (5.10) is used, then strict inadmissibility
can result. We consider two examples.

Case 1. Suppose it is desired to estimate 3} (which is equivalent to 6) under

the strictly convex loss

L(s,3) = tr(s3™") - Tog det (s37')-2. (5.11)

2

(The Toss L(s,1) = tr(si'll) would work similarly. The losses and following

results are all well known, and are discussed in James and Stein (1961),
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Eaton (1970), Selliah (1964), and Takemura (1982).) It can be shown that
the optimal estimator for this loss and the structural distribution (5.10)

(treated as a posterior) is 60((j,s)) = Gg(s), where

1 1
. 3 B T = A
6](5)—5L . 1 S| 62(5)-5U Sy (5.12)
n-1

0
where s = sLsE = sUsE, S and Sy being Tower and upper triangular, respectively.
Also, 6?(5) and Gg(s) will differ with probability one, so the inequality (5.7)
will hold with probability one. Thus 60 is strictly inadmissible. (For
indications of how much improvement over 60 is possible, see Takemura (1982).)
Case 2. Suppose someone wants to know the "confidence" to be attached to a

172

set C < X, based on observation of (j,s) from E Presumably the structuralist

would assign confidence

a((j,s)) = f ﬂj(els)de. (5.13)
C

If now the "success" of such an inference is measured by an "inference loss"
such as (3.3), which does satisfy (5.5) and is strictly convex in o, then
strict inadmissibility results if C is such that «((1,S)) and «((2,S)) differ
with nonzero probability (and there are many such C). Clearly, many other

variations on this theme are possible.

5.1.2 Complete Class Theorems

Convex losses are, of course, rather special, and it would be nice to

have general theorems concerning strict inadmissibility for other situations.
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We review below some general theorems from statistical decision theory which
can be of use in establishing strict inadmissibility. We use the common

terminology that an essentially complete class of decision rules C is a

class such that, if 60-¢ C, then there exists a ¢* € C such that

R(8,6%) < R(e,ao) for all o, ' (5.14)

while a complete class C 1is a class such that, in addition, R(8,8*) < R(e,do)

for some 6. We are informal about technical conditions in the following.

Theorem 3. The class of all decision rules based on a sufficient statistic

forms an essentially complete class (c.f. Ferguson (1967) or Berger (1980)).

Our interest in this result is, of course, that if (5.1) (or (5.4)) hold,

then

' (J,XJ) if X, # xi or X, (or Xy or g'](xz);¢ B
T(J’XJ) = for the continuous case)
X1 otherwise
is a sufficient statistic, and hence we can find a procedure based only on T
(and hence satisfying the LP) which is as good as a procedure 60 satisfying
(5.6). Unfortunately, we desire to show more: namely, that 60 is strictly
inadmissible. There are usually two problems in doing this. First, it is
necessary to show that the inequality in (5.14) is strict for some o (i.e.,
that procedures based on a sufficient statistic form a complete class); and
second, that the inequality can be extended to hold for all &, or at least

for all 6 in the support of any possible prior w. Considering the last problem

first, the following lemma is an easy consequence of complex analysis.
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Lemma 2. Suppose @ is a subset of R", that (5.14) holds with strict inequality
for some 6, and that both risk functions are analytic functions in each coordinate
(as is frequently the case when dealing with exponential families and otherwise).
Then. R(6,68%) < R(e,so), except possibly for 6. € ®* , some set of discrete points

having no 1imit point.

0 is clearly strictly

When the conditions of the Temma are satisfied, ¢
inadmissible for all nonatomic countably additive priors m. Usually it
is possible to do even more: by slightly altering &* (using, say, a local
averaging process), one can often get strict risk inequality for all 6.

The other concern mentioned above, that equality could hold in (5.14) for

all e, is more of a problem. We discuss below a few of the ways in which this

could be attacked.

Lemma 3. If R{e,8*) = R(6,8) implies that &* = & (with probability 1 for all &),
then procedures based on a sufficient statistic form a complete class (and

hence inequality will hold in (5.14) for at least one 8).

The condition in Lemma 3 can be verified for a number of situations.(besides
the obvious one of a convex loss). For instance, if the nonrandomized rules
form a complete class (as in finite action problems with nonatomic densities -
see, e.g., Dvoretsky, Wald, and Wolfowitz (1951), and in location parameter
problems - see, e.g. Farrell (1964)), then this is easily seen to be satisfied.
(If R(®,6*) = R(0,8), the randomized rule which chooses between §* and § with
probability %—has the same risk, but by assumption can be improved upon.)
Another possible situation in which this can be verified is when R(6,8) can be

expressed as Ee v(8(X)) (thus y(s(X)) is an "unbiased estimator of risk" - c.f.

Stein (1981)), ¢ is a one-to-one operator, and {P } is a complete family of
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distributions. For other situations in which the condition of Lemma 3 can

be satisfied, see Brown, Cohen, and Strawderman (1980).

Lemma 4. The Bayes rules form a complete class if @ is  compact, R(6,8) is
continuous in ¢ for all &, L(e8,-) is lower semicontinuous, and. G 1is a complete
separable metric space and is compact or has a suitable compactification (c.f.

Wald (1950) or Brown (1976)).

The Bayes rules also form a complete class in certain testing situations
with compact null hypothesis (c.f. Brown, Cohen, and Strawderman (1980)). The
use of such a result is that it can sometimes be verified directly that 60
cannot be a Bayes rule. More generally, a complete class can sometimes be
shown to consist of appropriate 1imits of Bayes rules, and it may be possible
to show that 60 cannot be a limit of Bayes rules.

A number of examples of strict inadmissibility in, say, Example 1 could
be developed using the results in this subsection. For instance, testing or
finite action problems could be formulated, in which choosing the action according
to the structural distribution (5.10) results in (effectively) a randomized
and hence inadmissible rule, which could furthermore be shown to be strictly
inadmissible via analyticity and monotonicity arguments. The point of this

section, however, was more to convey the feeling that violation of the LP is

in general, 1ikely to result in some form of inadmissibility.

5.2 Betting Evaluations

First, it is easy to show that violation of the LP leads to, at least,

weak incoherence.

Theorem 4. Consider the mixed experiment E]/2 in the discrete case, and suppose

a fixed set C < © is assigned "confidence" a((j,x&)) when (j,xj) is observed,
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where a((],xi)) = oy # oy = a((Z,xé)). Consider the following strategy: define

1 if oy < og

2 if Uy < ap s

place no bet unless XJ equals xi or xé, and then bet.cJuJ that 6, € C if J =L
and CJ(]'“J) that 0. ¢ C if J # L, where Cq = 1 and Cp = C (from (5.1)). The
expected gain for this betting strategy (assuming odds corresponding to aj are
being given if (J,x]) is observed) is %f](xile)lu]-azl. Hence the probabilities
assigned to C are weakly incoherent if f](xile) > 0 for all e.

Proof. A straightforward calculation, using (5.1).]]|

Comment 1. In the continuous case, the theorem also holds, the only changes
needed being the replacement of oy by o (xj)(defined as the "confidence'in C

if (j,xj) is observed), betting only if j = 1 and x];e Borj=2and x2:6 g (B)
(see (5.4)), letting L = L(x*) = 1 if a](x]) < az(g(x])) and letting L = 2
otherwise (where x* denotes occurrence of X] OF X5 = g(x])), and replacing

C; by Cj(xj)’ defined as 1 for j = 1 and as c(g'](xz)) (see (5.4)) for j = 2.

The expected gain is then

1
é é-a1(x1)- az(g(x])) f](xlle)de.
Comment 2. The above results only prove weak incoherence, although under
suitable extra conditions they imply incoherence. To prove incoherence in
general, results such as those in Heath and Sudderth (1978) and Lane and
Sudderth (1983) can often be employed. Under minor technical conditions,

these papers show that the quoted posterior (or structural distribution)
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w(el(j,xj)) for E]/2 is incoherent unless it is the posterior for a (in
general, finitely additive) prior on @ . This seems unlikely to be the case

if the LP has been violated. Situations 1ike Example 1 require the finitely
additive theorems, and it is not clear whether (5.10) is - or is not -

the posterior for a finitely additive prior (we would guess not), but Example 3
requires only the countably additive theorems of Lane and Sudderth (1983)

(which apply essentially whenever X or © is compact).

5.3 The Stone Example

As a final interesting example of these ideas, consider the well known
example of Stone (1976) (essentially done earlier by Piesakoff (1950) in
a less entertaining fashion), in which a soldier leaves a bar at 0, walking
one block in each of a succession of randomly selected directions N, S, E, W,
the only restriction being that he never immediately backtracks. The soldier
trails a taut string, and at some point stops and buries a treasure. Let 6
denote the path (a succession of the symbols N, S, E, and W) to this point.
(Thus @ is effectively the free group on two generators.) The soldier then
picks a random direction (by spinning a lady) walks one block in that direction
(drawing up the string if necessary) and passes out. We observe his complete
path X the next day, and have one guess as to where the treasure is. Letting w
denote a random variable that is N, S, E, or W with probability %—each, the
above can be modeled "structurally" as X = 6w, with the convention that, if
the last two symbols in a string are opposite directions, they cancel.

Although, given x, the Tikelihood function for 6 assigns value %—to each
of xN, xS, xE, and xW, and it would seem that this is the natural structural
distribution for ¢ (obtained by taking 6 to be Xw-1 with the probabilities
associated with w), Fraser (in the discussion of Stone (1976)) argues that

the correct structural distribution is
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r‘
%— if x is an extension of o
m1(8]x) =4-Tl if 6 is an extension of x
0 otherwise.
e

In arguing against the LP, Fraser, in the discussion of Hill (1981),
constructs an alternative model for X and 6 as follows. Let Xq denote a
particular fixed path, suppose 6 is as above, and let X be determined according
to the probabilities P(X=O|e:xo)= 1; P(X=x0|e=xoz) = %—and P(X=O[6=xoz) = %
for z = N, S, E, and W; and P(X=6|8) = %'and P(X=0|e) = %—for other 6. (The
soldier trails an elastic string, and after burying the treasure at the end
of 6 # X0 he passes out and has a 75% chance of being snapped back to 0; the
end of Xgs however, is very slippery, so if the soldier buries the treasure
there and passes out he will be snapped back to 0 for sure. There also happens
to be a "lady" who walks the streets within one block of the end of xO_(her
place of business), and if the soldier passes out at xON, xOS, xow, or xOE
and doesn't get snapped back to 0, the lady will take him back to xO.)

For this model, if the observation is X = Xg> the Tikelihood function
again assigns value %—to each of xON, xOS, xOE, and xow, and due to additional
"symmetry" in the model, Fraser feels that this is an accurate representation

of the probabilities of each 6: thus it appears that the recommended structural

distribution (when Xg is observed) is

1 -
wz(elxo) =7 for 6 = xON,XOS,xOE, and XoW-

Consider now the mixed experiment E]/4. The choice A = %—15 more convenient
than A = %u (For instance, suppose that on-% of the nights the soldier leaves

the bar at 0 with a lady and follow's Stone's scenario, and the other %-of the
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nights he leaves alone and follows the alternate scenario. Upon finding the
soldier in the morning we know which scenario eventualized, because if he is
unaccompanied when he passes out he bumps his head as he falls.) By the

1/4

WCP, the structural distribution for ¢ in E should satisfy

m(6[(3sxg)) = nj(e|x0). (5.15)

Needless to say, if someone were to repeatedly act in accordance with
(5.15), he would be operating in an inferior fashion. From a betting viewpoint
this is easy to establish. Let us instead, however, consider a decision-
theoretic scenario.

A forgetful professor follows a permanently placed string to his office
each day. The path happens to be X+ Every so often, he notices a string
running parallel to his and, if the strings run together for the entire
journey, the professor is intrigued and mentions the curiosity to a soldier
he sometimes finds at the end of Xg+ The soldier, in such cases, tells the
professor the situation and offers to let him Took in one direction for the
treasure (which is worth one unit). The soldier requires, however, that the

professor pay him for this privilege, the cost being .7 if the soldier had

not bumped his head and .2 if he had bumped his head (in which case he is
confused and sells out cheaply). In the first case (J=1) the professor
following (5.15) is 75% "sure" that the treasure can be found by backtracking
one block, and in the second case (J=2) feels that any direction is equally
Tikely. He, hence, accepts the offer of the soldier in either case. For
definiteness, let us suppose that, when J=2, the professor randomly chooses

one of the three directions that extend the path Xg*
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Let m(xo) denote the probability with which the above event happens, and
let Py> Pss Pps and Py denote the probabilities with which the soldier buries
the treasure at xON, xOS, xOE, and xow, given that X = Xg* One of the directions
is the "backtrack" direction, say N (recall Xg is fixed), so the professor's
long run gain will be

m(xg) G4IPy- 7133 pg- . 2) el pg- - 2)+5py -~ 2) 13 = mlxy) (-.075).

Thus he will lose money if m(xo) > 0. Of course, all the above probability
calculations are based on assuming the existence of a true (countably additive)
probability distribution n describing the soldier's paths 6 (but not on
knowledge of this distribution).

It is of interest to see how a Bayesian would approach the problem. He
would think about the generation of 6 , perhaps deciding that the soldier
has a probability Pn of having a path ¢ of length n, and assigning equal
probability to all paths of length n, there being Nn = 4_3n-1 such paths. Thus
the prior probability of a particular path of length n would be n(e) = pn/Nn'
Now if X = X0 is observed, Xg being of length m, the posterior probability that

B is Xg "backtracked" can be calculated to be

9 - pm—1/(3 Ppe1 + 9 pm-1)’

while the posterior probability that e is any particular "extension" of X0 is

pm+1/(3 Pret + 9 pm-])'

If pm+f is thought to be approximately equal to Pp-1° then the posterior



38

distribution is essentially - The Bayesian, of course, feels this is
reasonable for either of the two models when X0 is observed (since the
Tikelihood functions are the same), and will play the soldier's game but

will always backtrack. (This Bayesian analysis is essentially that in Dickey's

discussion of Stone (1976).)

6. CONCLUDING REMARKS

1. What is being criticized about Pivotal and Structural analysis is, at
most, a very small part of the twq theories. The major part of both
theories is the reduction of the original data and model to simpler
entities which preserve all available information. The reductions are
especially valuable in the very common situations where the structural
model is known with considerable confidence, but the distribution of the
error component, w, is uncertain. All theories of inference, including
Bayesian, can take advantage of the simplifications that result from such
"necessary" reductions.

Pivotal and Structural analysis cbme into possible conflict with
the LP only at the terminal stage of ana]ysis. We are actually somewhat
unclear as to when terminal Pivotal analysis conflicts with the LP; we
have seen statements to the effect that it can, but not explicit examples.
(This explains the emphasis on examples from the structural theory in
this paper.)

Structural theory can conflict with the LP at the terminal stage of
analysis in two ways: first, when significance testing or frequentist
confidence intervals are developed, and second, when structural distributions
are created. We have concentrated on the problems arising with conflicting
structural distributions, but again must emphasize that terminal analysis

with structural distributions is only a very small part of Structural
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analysis. (Indeed, in Fraser (1979), very Tittle emphasis is placed on
structural distributions.) Of course, the more classical frequentist type
of terminal analysis can also conflict with the LP, but probably not too
seriously. Indeed the degree to which Pivotal and Structural analysis
violate the LP is, on the whole very small, and not really worth making
an issue of, except that the theories purport to establish the lack of
validity of the LP.

Incidentally, the "disproof" of the LP (by Structural analysis at
least) seems to simply be the fact that the recommended terminal analysis,
especially that based on structural distribufions, can conflict with the
LP. To us, however, the justification for terminal analysis with structural
distributions is not on very firm footing (compared with the reduction
analyses of structura] theory), since it involves, at some point, a fiducial
type inversion. Besides the examples in this paper, which point out questionable
properties of such terminal analysis, there are the examples with non-amenable
groups. Indeed, if in the situation of Example 1 the model is Xt = Awt, where
A is known only to be a nonsingular matrix and of interest is I = AAt,
then the structural analysis (c.f. Fraser (1973)) gives as a structural
distribution the posterior distribution with réspect to the (right and
left) Haar measure on the full linear group, which is non-amenable. Use
of this distribution is well known to result in extended inadmissibility
and incoherence in a wide number of situations (such as in the estimation
problems considered in Example 1 (continued)). Likewise, in the Stone
example (where ® is again non-amenable), the “natural" structural
distribution for 6 seems to be the one giving probability %—to each of
the paths compatible with x, and is fairly clearly bad, and while Fraser

gives a justification for the alternate structural distribution T he
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does not clearly expose the error in the derivation of the "natural"
structural distribution.

Of course, all "objective" statistical theories have trouble dealing
with problems involving non-amenable groups (c.f. Bondar (1981)), and
Structural analysis often fares better than most: it frequently bases
the analysis on amenable subgroups of a non-amenable group, such as in
the earlier version of Example 1. (Structural analysis also justifies use
of the right invariant Haar measure as a noninformative prior, a justification
also obtained from classical invariance theory, but lacking in many purely
Bayesian theories.)

While this paper cconcentrated on Pivotal and Structural theories because

of their clearly voiced opposition to the full LP, there are, of course

many other theories of inference which also violate the LP and are

susceptible to the same inadmissibility and incoherency criticisms. Among
these are fiducial theory (c.f. Wilkinson (1977)), Plausibility inference

(c.f. Barndorff-Nielsen (1976)), and many noninformative prior Bayesian
theories in which the noninformative prior depends on E, so that one may,

in a situation like Example 3, end up using two different noninformative priors
to process proportional Tikelihood functions. Examples of inadmissibility

and incoherency are easy to construct for any such situation.

Of course, one "escape" available to any theory conflicting with the
LP is to reject the Weak Conditionality Principle, for then, when faced
with the mixed experiment EA, one could change the component experiment
analyses. Rejecting what to many is the only “obvious" principle in
statistics is not a very appealing escape, however.

Those who remain unconvinced by the inadmissibility and incoherency

arguments, and stand fast in their objection to the LP because it ignores
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the structural model, must still take notice of certain related principles,
such as the Stopping Rule principle of Barnard (1949) and the Censoring
principal of Pratt (in Birnbaum (1962)). (See also Pratt (1965), Basu
(1975), and Berger and Wolpert (1984) for very general versions.) These
principals have a crucial impact on statistics and can be derived using
only the Weak Conditionality Principle and a structural version of
sufficiency which preserves the structural information.

4. The LP is non-operational, in the sense that it does not say how the
Tikelihood function is to be used. Cogent arguments can be given (c.f.
Basu (1975) and Berger and Wolpert (1984)) that only Bayesian utilization
of the Tikelihood function really makes sense. However, Bayesian analysis
has to be concerned with sensitivity to the prior input, and, for a
variety of practical and theoretical reasons, a sensible analysis from
this viewpoint may formally violate the LP (usually, by having some aspects
of the prior depend on E or the data). A theoretical justification for
possible violation of the LP could be given in terms of Good's Type II
Rationality (c.f. Good (1976)), but the practical necessities are fairly
clear. In the same way, practical considerations may lead to a mild
degree of inadmissibility or incoherency. (For extensive discussion of
these issues and references see Berger and Wolpert (1984) and Berger (1983).)
The LP (and admissibility and coherence) should be considered ideals, to which

one shouldstrive to adhere, rather than absolute prescriptions.
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