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CHAPTER TIII
D-OPTIMAL DESIGN

3.1 General Results

Consider the model
y(x) = /W(x) (By + Byx +...% g X") + ¢

= BTF(x) + ¢ (3.1.1)

where x €[a,bl, F1(x) = /(X) (1,Xs...,x™) and E(e) = 0, var(e) = o2.

The information matrix is given by

A design £* is said to be weighted D-optimal if g* maximizes IM(g) |,

the determinant of the information matrix.

Remark 3.1.1: It should be noted that (3.1.1) is a generalization

of the model introduced in (1.1.1) in that it is assumed that

var(e) = W%YY in (1.1.1), where w(x) is a known nonnegative continuous
function. That is, the assumption of homogeneity of variance, which is
an important postulate in the ordinary least squares method, is violated.

We can modify the model by the following transformations:

f(x) = vw(x) (1,x,...,xm),
y = /MX) y-
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It can be easily checked that var(y) = 02. So we have the variance
homogenized and the resulting model is exactly (3.1.1).

The D-optimal design will stay unchanged under a linear trans-

formation on f(x).

°

Theorem 3.1.1: (Kiefer). Let T be a non-singular
matrix of size m+l. The D-optimal design for f(x) and the D-optimal

design for Tf(x) are the same.
Proof: See Kiefer (1959).

Corollary 3.1.1. Let x*= cx+d, ¢ > 0 be a mapping from [a,b]

to [e,f]. The D-optimal design on [e,f] is the same as the D-optimal

design on x, assuming w(x) undergoes the same transformation.
Proof: See Kiefer (1959).

The immedjate result of Corollary 3.1.1 is that the D-optimal
design remains unchanged if we use different units in measuring x.
Next we will show that the D-optimal design has another desirable

property. Let us introduce the following definitions.

Definition 3.1.1: The variance function of a design £ at a

point x is given by
_ gl -1
d(x,g) = £ ()M "(g)f(x)

provided that M'](g) exists. (Notice that the "true" variance of

the least squares estimator of BTf(x) at a point x is given by

2
gﬁ-d(x,g) where N is the sample size.)
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Definition 3.1.2: The design that minimizes max d(x,g) is called
X

the weighted G-optimal design.

Suppose we define g(x) = T f(x), where T is a nonsingular matrix
of size m+1. It is easy to check that the variance function of ¢
associated with f(x) remains the same if we replace f(x) by g(x). Thus

we have proved

Theorem 3.1.2: Let T be a nonsingular matrix of size mtl. The

G-optimal design for f(x) coincides with the G-optimal design for
T f(x).

Immediately, we have the following corollary.

Corollary 3.1.2: Let x*= cx+d, ¢ > 0, be a mapping from [a,b]

to [e,f]. The G-optimal design on [e,f] 1s‘the same as the G-optimal
design on [a,b].

Corollary 3.7.2 implies that G-optimal design remains unchanged
if we use different units in measuring x.

Guest (1958) and Hoel (1958) found the D-optimal design and G-
optimal design respectively and their results show that the D-optimal
design coincides with the G-optimal design. The coincidence led Kiefer
and Wolfowitz (1960) to prove their celebrated equivalence theorem.
The following form of the equivalence theorem can be found in

Federov (1972).

Theorem 3.1.3: The following are equivalent:

1. The design £* maximizes |M(g)].

2. The design £* minimizes max d(x,&).
X
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3. max d(x,£*) = m+l.
X

It follows that the weighted G-optimal designs are equivalent to
weighted D-optimal designs. The D-optimal design looks more appealing
now since it can be interpreted as the design that minimizes the maxi-
mum of the variance function. It is no wonder that the D-optimal
designs are used extensively. The D-optimal criterion has been applied
in different settings: polynomial regression on the n-dim cube, the
simplex and the sphere, polynomial regression on the interval with
classical weight functions; trigonometric regression on the circle,
etc. For more details see Kiefer (1959, 1961a, 1961b), Kiefer and
Walbran (1967), Karlin and Studden (1966a). Federov (1972) initiated
the study of algorithms for finding the optimal designs. His approach
gives a practical way to approximate the D-optimal design in a more
general setting. For other approaches to D-optimal design see Silvey

and Titterington (1974) and Pukelsheim (1980).

3.2 Some Admissibility Results

A design ¢ is called admissible if there does not exist a design
g' such that M(¢') > M(g). The inequality means that M(g') - M(g) is
positive semi-definite and M(g') # M(g). The proof of the following

lemma can be found in Karlin and Studden (1966a).

Lemma 3.2.7: Let w(x) = 1. M(¢') > M(g) and M(g") # M(g) iff
uile") = uy(g) for 0 < i < 2m-1 and uy (£') > u, (). Eere u; (o)
denotes the i-th moment of the measure a, i.e. ui(a) = f x'da.

a
Immediately, we have the following theorem
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Theorem 3.2.1: The design £ is admissible for polynomial

regression of degree m (w(x) = 1) iff Pom = 1 whenever p,_ is
defined, or P; = 0 or 1 for some i, 1 <1 < 2m-1.
The next theorem gives a sufficient and a necessary condition

for admissibility.

Theorem 3.2.2: Let S(g) denote the spectrum of &.

(i) If there exists a positive definite matrix T such that
(f(x), Tf(x)) <1 for all x € [a,b] and equality holds for
x € S(g) then £ is admissible. (The notation (u,v) signifies
the inner product of the vectors u and v.)

(i) If £ is admissible then there exists a nonnegative matrix T
(not necessarily positive definite) such that (f(x), Tf(x)) <1

for all x € [a,b] with equality occurring for x € S(g).
Proof: See Karlin and Studden (1966b).

The following theorems give necessary conditions for admissibility

for several weight functions.

Theorem 3.2.3: Let fT(x) = vyw(x) (1,x,...,xm) where

w(x) = Ix(1-0 T [x - 41V, x € [0,13, 2 -1, v » 0. Suppose £ is
admissible. If m is odd then the spectrum of £ contains at most mtl

points. If m is even then the spectrum of £ contains at most m+2

points.

Proof: Assume o > -1. If £ is admissible, then Theorem 3.2.2
implies the existence of a nonnegative polynomial T2m(x) of degree at

most 2m such that
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w(x)P, (x) <1

Zm
for all x € [0,1] and equality holds on the spectrum of £. Suppose
the spectrum of £ contains r points. Since [x(]-x)]“+]|x - %1Y

vanishes at x = 0 and 1 the equation
L(x) = w(x)PZm(x)-] =0
has at least 2r zeros, counting multiplicities. The derivative of
W(X)PZm(X) is found to be
[X(1-x)1%1x = 2T p(X)  x € (0, %)
(101 x = 50 p (1) x€ (35 1)

where 02m+2(x) is a polynomial of degree 2m+2. By symmetry, L(x) =0
has r zeros on each region. Thus, by Rolles' Theorem, L'(x) has at
least 2r-2 zeros other than 0,1 and %u On the other hand, L'(x) has
at most 2mt2 zeros other than 0,1 and %u It follows that

2r-2 < 2m+2 or r < m+2. In case m is odd, one can see that the design
with m+2 points must have 0 in its support which is absurd. So

r = mt1 follows. The proof for the case o = -1 is similar.

Theorem 3.2.4: ¢ is admissible for f(x) = vw(x) (1,x,...,xm),

x € [0,1] implies that the support of g has no more than m+1 points,

where w(x) is one of the following:

() wix) = -0, a5 o1, 8 5 -1
(2) w(x) = ! o> -l

(3) w(x) = (1-x)f*T g5 -1

(4)

=
—
x
~—
i

= (1-1x - 2D%, k> 0.
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(5) w(x) = 1-Vx.
(6) w(x) = /x(1-¥x).
(7) w(x) = x(1-¥%).

Proof: Karlin and Studden (1966a) gave the proof of (1).

The others can be proved similarly.

3.3 The Weighted D-Optimal Design for Polynomial Regression

The D-optimal design (w(x) = 1) was first solved by Guest (1958).

Studden (1980) gave a new proof using the method of canonical moments.

Theorem 3.3.1. The D-optimal design for f1(x) = (T,%,....x")

has canonical moments

=1 . -

pZ'H'] "2 1 0,1,...,m]

o _m-i+] _— -

T i=1,2,...,m-]
Pom = 1.

It puts weight E%T-on each of the zeros of x(x—])Pé1{1)(x) = 0,

where {Pé]’])(x)} are orthogonal with respect to w(x) = x(1-x).
Proof: See Studden (1980).

The method of canonical moments was applied to the problem of

weighted D-optimal design.

Theorem 3.3.2: Let fT(x) = /w(x) (1,x,...,xm) where w(x) is

one of the following:

(1) w(x) = xa+](]—x)8+], a> -1, 8 > -1
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+
Xot] ,U.>"]

(2)  w(x)
(3) w(x) = (-0, g > -1,

Then the determinant |M(g)| is uniquely maximized by the

design ¢ having canonical moments

atm+1-1

Poin1 = Grprg(miory T Ol

= m+1-i .
T oatp+H1+2(m-i+1) i=1,2,...,m1.

P2
For case (1), we have Pome2 = 0. The design & puts equal mass

—lT-on each of the zeros of P(“’B)(x) = 0. For case (2), we have

m+ m+1

PZnHJ = 1. The design & puts equal mass E%T on each of the zeros of
(x—])Péa’])(x) = 0. For case (3), we havep, ., = 0. The design ¢
puts equal mass E%T on each of the zeros of xPé]’B)(x) = 0.

Proof: See Studden (1982).

Theorem 3.3.3: Let fT(x) = /W (X) (1,x,...,xm) where

w(x) = [x(]-x]a+]|x - %{Y, a>-1, vy >0, x€ [0,1].

If m is odd, the determinant |M(£)] is maximized by the measure g*

having canonical moments

=1 -
p2i+] = 72 1 O,],...,m

yrm-i+]
204y +2 (m-1+1)

P2

m-i+1 .
2a+y+1+2(m-1+1) i=2,4,...,mt1.
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If o > -1, then P2m+2 = 0. The weighted D-optimal design g*
1 -
puts equal mass — on each of the zeros of Pm+](x) = 0 where

{Pk(x)} are orthogonal with respect to w(x) = [x(1-x)1%|x - %JY.
If o = -1, then P2m = 1. The weighted D-optimal design £* puts equal

mass —l—‘on each of the zeros of x(x-1)P__,(x) = 0 where {Pk(x)}

m+1 m-1

are orthogonal with respect to w(x) = x(1-x)|x - %4Y,

Proof: Notice that we can consider symmetric designs only since
w(x) is symmetric about %u By Theorem 3.2.3, we see that the support
of the weighted D-optimal design consists of m+1 points, say Xg» X7»

A% Then |M(g)| can be written

=3
(e]

M(g)] =

w(x;)  IMo(e)]

where Mo(g) is the information matrix when w(x) = 1. By Theorem

2.4.10, we have

T X. = = (]
RS B L Come1 = 20 9294 -+ om
m 2m+1
_ _ o 1ymtl
T (-x) = gy = ()" "a44-- 92
i=0 i=1
m
1, _ dy2m
and mlxg - gl = @ 7PoaPe - Pom

So |M(£)] can be written

m .

+ -1+1
const( ¢ ](p2q4p6---p2m)Y .nz(q21_2p21)m Y.
‘]:

1

q§1>

=3

1

By rearranging the terms, we obtain the desired results. Comparing the

pi's we obtain here with those of Example II.4.1, we find the support
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of €% is the zeros of P -(x) = 0 where {P,(x)} are orthogonal with

m+1
respect to w(x) = [x(1-x)]%|x - %1Y if a>-1. Ifao-=-1, {Pk(x)}
are orthogonal with respect to w(x) = x{1-x)|x - %1Y. The proof is
completed.

The problem we have solved in the last theorem can be formulated
in another way. Let us introduce some notations and preliminavy

results. Letd ., denote the set of (m+1)-tuples (XO’X1""’Xm)

with 0 < xp < Xq <.oe< X < 1. Further let us define

m-—-
r(x) = =2 (x), v=0,1,....m
/w(xvi
- 2(x) -
where zv(x) aliryy cany s VRN 0,1,...,m
v v
m
and 2(x) it (x—xi).
i=0

The following lemma has been proved by Karlin and Studden (1966a).
Lemma 3.3.4: Let fT(x) = Yw(x) (1,x,...,xm). Then we have

w2
d(x,&) = (mv“l)W(X)_ZO ri(x).
":

Proof: See Karlin and Studden (1966a).

The problem of interest is to find a suitable choice of Xqs

X]"“’Xm so that

H~13
-5
3]
—~
x
~

max w{x)
i=0
is minimized. By Theorem 3.1.1, the equivalence theorem, we see

that
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mo2
max w(x) J ri(x) > 1
i=0

and the equality sign holds when X« - o Xy are elements of the
spectrum of the weighted D-optimal design. We thus prove the

following theorem.

Theorem 3.3.4: Let m be an odd natural number. If

w(x) = [x(l-x)]a+]lx - %1Y, where a > -1 and y > 0, is defined on
[0,1], then

inf sup [x(]-x)]“+1|x - %JY{rg(x) ...+ ré(x)] =1
Jm+1 0<x<1

and the infimum is uniquely attained when XgoXqs oo Xy are the zeros

of P .(x) = 0, where {Pk(x)} are orthogonal with respect to

m+1
w(x) = [x(]—x)]a|x - %1Y if a > -1. If a=-1 then {Pk(x)} are

orthogonal with respect to w(x) = x(1-x)[x - %JY.

Remark 3.3.4: The case w(x) = X 1-x)" ', a > -1, B > ~1

has been already solved by Karlin and Studden (1966a).
The case where m is even seems intractable. The following example
1]2

gives the weighted D-optimal design when w(x) = |x - 5 and m = 2.

Example 3.3.1: Let x = [0,1], w(x) = (x - %)2 and fT(x) =

(1,x,x2). Let us transform the interval to [-1,1]. The weight function

becomes x2,x ¢ [-1,1]. The information matrix M(g) can be written

UZ 0 Uq_
0 Mg 0
114 0 U6
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let y = x2. The determinant of the above matrix can be written
12
|

AT
where u% is the i-th moment of y(=x2). The determinant can be written
in terms of canonical moments

p.(p +qp)p2qpqp
11 T2/t ettt

After a tedious calculation we find the above expression is

maximized if Py = élégii, 5 = ]]'ggT.and p; = 1. Converting back to
the interval [-1,1], we have
= —
p2.i+-l - ?, 1 = 0,1,2
. 31-/61
2 30
b = 11-/61
4 6

The design is supported on 4 points. The support is the zeros

of x(x—])Qz(x) = 0, where {Qk(x)} are orthogonal with respect to

. _ 2 1/8TH ., 11-/T |
x(1-x)de. In this case Q,(x) = X" - 5 —— X + — 355~ = 0.

3.4 Regression Function through the Endpoints or Midpoint of the
Regression Interval

Sometimes the regression function will assume some specified
values at some points. For example, we want to find the relationship
between the speed (x) and the distance (y) to stop for a car. Suppose
the model is a polynomial of degree m, say E(y) = By * ByX *o..t Bmxm.

Without taking any data we are quite sure that y = 0 if x = 0. This
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implies By = 0 or some other lower coefficients may vanish also, say

80 = B] =...= 8_=0. The model can then be written

r+1 r+2 m
E(Y) = Bpgp X F Bayp X oot B X

We recognize at once that this model is the weighted regression

model with weight function w(x) = x2r+2

. Sometimes the regression func-
tion may assume some specified value Yo at some point X0 € [-1,1]. Then
the model can be written

)m

E(y) = yy + 8y(x-xg) +...+ 8, (x-xq

0, we have

In case B] =,,.= Br

)r+] +...+ B (x-xo)m.

E(Y) =Yg * Bryq(x-%g m

If we make a transformation z = ¥-yq» we see the model becomes

r+1

E(z) = 8,1 (xxg)" " .t 8 (x-x0)"

It is readily seen that the above model is the same as the weighted
regression model with weight function w(x) = (x-x0)2r+2.

In particular Xg may be an end-point or the midpoint of the
regression interval. The D-optimal designs for the resulting models
have been found in preceding sections.

If the regression function vanishes at both endpoints and the
midpoint of the regression interval, then the regression function

becomes, by factorization,

OBy - Ny M-o-8-y
E(y) =x*(1-x)7(x - 2) (B + Byxte..48p o X )

where o, 8, y are non-negative integers and m-a-8-8 > 0. So again
we go back to the weighted regression model with weight function

w(x) = xza(l—x)zg(x - %)ZY.
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3.5 Trigonometric Regression

In this section we will discuss the D-optimal design for the
complete set of trigonometric functions, namely, fT(x)=(1,cos X,Sin X,
...,COS mX,sin mx) x € [0,27], and the admissibility problem. Karlin
and Studden (1966a) proved that the D-optimal design for
fT(x) = (1, cos X, COS 2X,...,cos mx) on [O,nr] can be reduced to the
D-optimal design for polynomial regression of degree m on [-1,1]. It
should be noted that the same conclusion holds for fT(x) = (1, sin x,
sin 2x,...,sin mx) on [- %3 %J since sin(x- %) = cos x. The same
authors proved that the D-optimal design with the smallest size of sup-
port for the complete set of trigonometric functions are those
measures concentrating mass 7%¥T on each of the 2mt1 equidistant
points on the circle. Here we will use the parameters that we
introduced in Chapter II section 6 to characterize all measures that
will maximize |M(£)|. The proof is new and the spirit of this
approach can be extended to other problems.

Let us write fT(x) = (1, 2 cos x, 2 sin X,...,2 c0S mx, 2 sin mx).

Notice that we put 2 before the sine and cosine functions for the sake

of convenience and it will not affect the D-optimal design. By Euler's

formula,
2 cos kx = e1kx + e_1kX and
2 sin kx = ie KX _ ie1kx,
we can writé
f(x) =S g(x)

where
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0 0 0 0 O

0 1 0 0

0 O i -1 0 O
S = , (3.5.1)

1 0 1

i 0 -7

gT(x) = (7 1MX e—1(m—1)x,.._,1’.__’e1(m-1)x,e1mx).
Since S is a linear transformation, we have
T - -

0N ()F(x) = oT (MG (2)a(x), (3.5.2)

27
where Mf(g) [ f(x)fT(x)dg(x) and
0

2n T
é g(x)g" (x)de(x).

Me(£)

Note that we put the regression function f(x) as the index of the

information matrix to emphasize the dependence of the information
2r .

matrix on the regression function. Let Cn = f e'1nxdg(x). We can
0

write Mg(g) as

Com  Come1 € 1
Come1 Som-2 *°° 1 c-1

“ Voo “Coom Coam
T ¢y - Com1 Som

It can be easily seen that

ST (2)s = MG(e)

where S is defined in (3.5.1). So we have
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2
Me(e) | = M (e)] [s]
- (207" M (6]
Let
1
/0 4
J=|
1 0

1 ¢ cer Con 1 Com
C_q 1 R R
T2m(g) = : : :
Coom1  Coome2 ] €1
Coom  C-2mtl ¢y

and the determinant of T2m(g) is denoted by Ao It is clear that

Mg(g) = TZm(g)J and thus lMg(g)I = (-1)mA2m. So the maximization of

{Mf(g)] is equivalent to the maximization of Ao By (2.6.8), Bo CaN

be expressed in terms of the parameters {ak}, namely

b = (=131 921 12 1HZ™ 1 (1- 2y, 119)

where Iakl <1, k=0,1,...,2m-1. It is clear now that Ao 1S maxi-

mized iff

So we have the following theorem.

Theorem 3.5.1: Let fT(x) = (1,2 cos x, 2 sin X,...,2 COS-mX,

2 sin mx), x € [0,2r], then |Mf(g)| is maximized by those measures

having
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aO = a] =,,.= a2m—1 = 0.

There are infinitely many measures representing dp = a4y T...T
a1 = 0. One possible choice is the continuous uniform measure on
the circle. In Example 2.6.3, we showed that the continuous uniform
distribution is characterized by a; = 0 for all i and so it is a
possible candidate. Another possible choice is those measures that
put mass f%:T on each of well defined 2m+1 equidistant points on the
circle. In Example 2.6.2, these measures are characterized by

a, = 87 T...= @ =0
o 2m-1 . (3.5.3)
and |a2ml = ]
. 1
Similarly, those measures that put equal mass T On each of
2m+1+n equidistant points (where n is a natural number) are also D-
optimal. On the other hand, the measures characterized by (3.5.3)
are also D-optimal for trigonometric regression of degree less than m.
In the following we will find the variance function of those

designs characterized by (3.5.3). Since

My(e) = Ton(£)ds
by noting that g(x)TJ T. g(x)TJ = g(x), we have
a(0) M1 ()9(x) = TR Topl£)a(0), (3.5.4)

where g(x) denotes the complex conjugate of g(x). Since

=0, T m is vreduced to the identity matrix. By

3 T 8 T Gome 2
(3.5.2) and (3.5.4), we see that

d(x,€) = F0x) ! () F(x)

)T

a(x) M (£)g(x)
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Noting that
T _=imx imx
g(X)—(e 9“'9]:°'-,e )9

we see that ETYTTg(x) = 2m+1. As a consequence, the confidence inter-
val for the trigonometric regression has a constant width.

In the following we will discuss the admissibility problem for
the trigonometric regression. Recall that £ is admissible iff there

does not exist a design &' such that M(g¢') - M(g) is positive semi-

definite and M(g') # M(g). Since M.(g) = SMg(g)ST

T . .
T, (£)J, we have Mc(g) = ST, (£)Is'. Let V = ssT. It is readily

T T

and Mg(g) =

checked that S = V', so we have M(g) = V TZm(g)V. Since T2m(g) is a
Hermitian matrix and V is non-singular, we see that M(g) is positive
(semi-) definite iff TZm(g) is positive (semi-) definite. It follows
that the admissibility for the trigonometric regression can be written
in terms of the Toeplitz matrix: & is admissible iff there does not
exist a design ¢' such that T2m(g‘) - T2m(g) is positive semi-definite

' -
and T, (g') # T, (£). We have the following theorem.

Theorem 3.5.2: Every design is admissible for the trigonometric

regression.

Proof: Suppose ¢ is not admissible. There exists &' such that
T2m(g') - T2m(g) is positive semi-definite and T2m(g) # T2m(g‘).

Notice that both £ and &' are probability measures, the diagonal



92

elements of both T2m(g) and TZm(g‘) are identically one. Thus the
diagonal elements of T2m(g) - T2m(g') are identically zero. The posi-

tive semi-definiteness of T2 (g) - T2m(g ) implies that sz(g ) = TZm(gL

! H

A contradiction.

3.6 D-Optimal Rotatable Designs

Let X denote the unit m-dimensional sphere and let {fi: i=20,1,

m o
..,n} be the set of all functions of the form I x11, where aj'S are
m i=1
nonnegative integers satisfying |} oy < d for some positive integers

j=1
d. It is known that n can be determined from m and d, namely,

n = (m;d). We want to find a design £* such that |[M(g)| is maximized
among the orthogonal invariant measures - the measures that are
invariant under orthogonal transformation on X. It is also known that

any orthogonal invariant measure ¢ can be written as

1
e(A) = [ £q(r"T (A NS ) (dr)
0

where S, is the (m-1)-sphere of radius r, g is the uniform probability
measure on S], o is a probability measure on [0,1], and the integrand,
when r = 0, is taken to be one if 0 € A and zero if 0 ¢ A. So ¢ can be
decomposed into two parts, one is the radial component, o, and the
other is the uniform measure on the {m-1)-sphere, Eq- Our aim here js
to investigate the radial component of the D-optimal rotatable design.

The entries of M(&) are given by

o o B Bmd _ + +
X7 e exn Xq eeex e (x) = clogtBys ey Bm)“z(a]+s1)

where C(a]+81,...,am+8m) denotes the (a]+s],...,am+8m)th moment of the

uniform measure on the (m-1)-sphere and U is the s-moment of p. Notice that
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C(a]+81,...,am+8m) = 0 if there exists one i such that as + By is odd.
For more details, see Kiefer (1961b) or Karlin and Studden (1966a).
The moments of the uniform measure on the (m-1)-sphere can be found
by differentiating the Fourier transform of £. The following result

is given by Shilov (1965).

Lemma 3.6.1: Let F(o) denote the Fourier transform of the uniform

measure on the m-1 sphere. We have

L
2 ()

F(U) = ————m—‘———\]m (IOl) (3.6.])
@z 7

where |o| = /o% +,..+ oi and J_ (x) is the Bessel function of order
1

SE=]

-1.

ST

Proof: See Shilov (1965).

By expanding the Bessel function Jm (x) in power series, (3.6.1)
3 -1
can be written
© i 2]
()oY
r(@ 5 Ll

§%0 §12790(F +3)

rMol? r(Pol®

2%(% +1) 2!‘24r(-r2”- +2)
So, by partial differentiation, we have
c(2,0,...,0) = ¢(0,2,0,...,0) = ... = c(0,...,0,2) =Jn;
) L 3
¢(4,0,...,0) = ¢(0,8,0,...,0) = ... = c(0,...,0,4) = >
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c(2,2,0,...,0) = ¢(2,0,2,0,...,0)

m{m+2
) T
C(6,0,...,O) - C(O’G’O"") Toeee 7T m<m+25(m+45
C(4a2303'~-30) = C(2’4’O""’O) e 5 m<m+235zm+45

In the following example, we will show how to find p by using canonical

moments.

Example 3.6.1: (d = 1). It is known that

c(2,0,...,0) = ¢(0,2,0,...,0) = ... = ¢(0,...,0,2) =

So we have

(e
l._.l

where v, = é rzdp(r).

If we make the transformation t = rz, then
1
Mo = é tdp'(t) = 13

where p'(t) = p(rz) and “i is the first moment of o'. Hence we have

M= (=p )M

_ 1 1

Here Pk is the canonical moment of p'. It is clear that Py = 1, i.e.

we have to put all the mass on the surface of the (m-1)-sphere.

Example 3.6.2: (d = 2). Write fT(x) = (1,x$,...,x§,x],...,x

3

m

X1Xps++«sXo 1X,) and we find
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1 1

Tomw o om M2
1 3 1
m¥2 mm2)*a 0 m{m2)Y4
3 N
m(m+2) "4

1 3
mm2) "4 mimt2) M4

1
= U
2
M(g) = .
1
m "2
1
m(m+2) "4
S
m{m+2) "4
- J
Immediately, we have
(m-1) (m+2)
2, M2
[M(E)I = const. (114"112)112114
Using the transformation t = rz, we have
(m-1) (m+2)
I |2 1 t
M(e)| = const. (wy=ui®) ()M
pee 1) (mr2) (n-1) (m#2)
2 2
= const. p, a{py*a;p,) .

By differentiating the above expression, we have

_ _m{m+3)
P17 T w2y

Py = 1.

By direct calculation, we see the resulting design puts mass

2 _ 2 _ m{m+3)
Y e (= q]pz) at the centre and 1- CHICHARRCICH on the

surface on the (m-1) sphere. The computation for d > 3 is difficult.
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CHAPTER IV
DS—OPTIMAL DESIGNS

4.1 General Results

Suppose we are interested in only s out of the m+1 parameters

in the regression model
E(y) = /w(x) (Bg *...* B X") = 8 £(x)

where x € [a,b] and w(x) is a known nonnegative continuous function.

f.(x)
Let us write f(x) in the form ( 1 ) so that f,(x) is the s-vector
fz(x) 2

that corresponds to the s parameters of interest and f](x) is a

(r+1)-vector (r = m-s). Similarly we can write M(g) as
Mp(e)  Myp(e)
Myq (€) Moo ()

It is known that

2 (e)| = % M, (£)-Hyq (DN (DM (5 |

is proportional to the inverse of the generalized variance of the least
squares estimator of the s-vector of coefficients. The Ds-optimaT
design is defined to be the design that maximizes lzs(g)l. The

following is an equivalence theorem for Ds—optima1designs.
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Theorem 4.1.1: If |[M(g*)| # 0, the following assertions are

equivalent.
(1) The design £* maximizes |zs(g)]

(2) The design £* minimizes max d_(x,£), where

X

S

d (x,8) = FOOM () F(x) - (MG (6)F1(x).

Proof: See Kiefer (1961a).

In most of the following sections we will concentrate on the
discussion of the Ds—optima1 design for the s highest coefficients of

the regression polynomial. We have the following theorem.

Theorem 4.1.2: Let x*= ax+b, a > 0, be a transformation from

[0,1] to [b, atb]. Suppose w(x) undergoes the same transformation.
Let £ be the Ds—optima1 design for the s highest coefficients on [0,1].
If £' is the design induced by ¢ on [b, a+b], then ¢' is the Ds-optima1

design for the s highest coefficients on [b, atb].

Proof: Let gT(x*)= MO (1, x*, ..., x*™) and x*€ [b,at+b].
Decompose g{x*) into two components as we did for f(x), i.e.

g' ()= (](x*),9,(x*))

where g](x*)is a (r+1)-vector, and gz(x*)is a s-vector (r+s=m).

We see that

* L 0 fi(x)
o ) e[ LI
gz(X*) LZ] Loz fz(x)
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The result follows at once.

4.2 The DS—Optima1 Design in Case w(x) = 1

The following result was given by Studden (1981). We will give

a shorter proof here.

Theorem 4.2.1: Let w(x) = 1. The Ds—optimal design £* is given

by
_ 1 P
P;i = 7 i is odd
5 § = 1,2,y
Poi ~
m-i+1 .
ACEIE] i= r+1,..,,m-1
Pom = 1.

x(x—U[PS.% =%><x>p§1;”<x) - %—2-2—21 pé]’%)(x)pglé])(x)] (4.2.1)

where {p(1’3)(x)} denotes the monicpolynomials orthogonal with respect
to x1(1—x)j. If we order the zeros of (4.2.1) in such a way so that

0= Xy < Xy Ceea< X4 = 1, and define 2x1—1 = CO0S ei, then the

weight attached to each point X; is given by

* = 2 '
g*(x;) = ST(zerTe; (4.2.2)

2m+1+

in 6.
sin 6,

Proof: Here we give a new proof of (4.2.1) only. The rest of
the proof can be found in Studden (1981). By Theorem 2.6.1, the

support of g* is given by the zeros of
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1.1 S Y Rl 21 1z 111
’ ( 777 F 771 52723737272
x 1 X x 1 XeooX 1 X 1 X
Using Lemma 2.7.3, we can write this as
1 11 s-1 1 s S31_ 1121
4 4 2 2s-1 2 2s-1 52 23 32
x(x-1)K
1 x x 1 X 1 X 1 X 1
Making an odd contraction, we have
L S 1 os-1 1 s(s-2 b
16 °°° 1 8 2s-1 4 (2s-1)(2s-3) °°* 45
X(x-1)K
1 1 1 1 1
X‘-—é‘ X- ?... X—-2— X—'é' S X-'é'
By Theorem 2.3.2, we obtain
Sl L 1 se2 11
16 ° 1 4 (2s-1)(2s-3) 45
x(x-1) | K K
1 1 1 1
X-‘é' X'—Z" X—'Z" X-*Z'
_l L s-1)(s-3)
1 s ) 1 16 " 2s-3)(2s-5
X--é‘ X—f X-i X-

which is the desired result.

Corollary 4.2.1: The variance function of the Ds—optima]

design £* is given by

nmr 2 -
ds(x,é*) =5 4 Eg%i:}gi!] X(]_x)[p(é’ﬁ)(x)p(1i])(X)
1 -1 5.5 (1,1
- g7 p£-1 )(X)ps-z :
((2s-1)11 = (25-1)(25-3)...3.1)
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If s = 1, then we have

1

4 (x,6) = 1-42" (10 [p{E 3 (x) 1%,

Proof: It is obvious that

d (x.6%) = s-ex(1-0) [plE ) (0p{ 131 ()

where ¢ is a constant to be determined. It is easily seen that
c = ———l————-and the result follows.
51 om

Corollary 4.2.2: If s = 1, then the support of the Ds-optima1

design £* is given by the zeros of x(x- 1)p(2’2)( ). The corresponding

weightson 0 = x; <...< X =Jarel : 2 :2:...:2: 1.
1 m+1

Proof: The result follows from Corollary 4.2.1 and (4.2.2).

4.3 The DS—Optima1 Designs for w{x) = x, 1-x, x(1-x)

The results in this section are mainly from Studden (1981). We
add improved expression for the support of the weighted Ds—optima]
designs for the above weight functions. The extension of the results

to general Jacobi weight functions seems extremely difficult.

Theorem 4.3.1: If w(x) = x, then |2$(g)} is maximized by

- - J— '- -
pZ'i > 1 1,2,...,m
1 -
> i=0,1, ,r
Poi+1 °
m-i+1 .o
ACRAEY i=rel,. .. ,m-
Pomet = 1
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More explicitly, the weight attached to the point X; is given by

2
sin 2(r+T)e, (4.3.1)

sin 6,
i

2m+2 +

where 2x.-1 = cos 6., 0 < 6. < = and the x;'s are the zeros of

(e P82 Gpl 11 () - 1 os2L o220 (pl 1 ()7 = o

8 2s-
(4.3.2)

Proof: We only indicate a proof for (4.3.2).

The rest of the proof can be found in Studden (1981). The

support of the Ds-optima1 design is given by the zeros of

1 s-1 1

T 221 72

_ 1
5 .

N —
N| —

X 1T x ... X 1 ... 1

1 s(s-2) 11

1 s-1 1 _ 11
2s-1 4 (2s-1)(2s-3) °°° 45

L
1

1

(x-1)K

l__ X"l X~ = X= =
X—4X AR > 2 ‘e 5

—

Using Theorem 2.3.2 again, we obtain
1 1

S 1 - L
16 *°° 1 4 (2s-1)(2s-3) " 45
(x-1)|K K

L R
X 4 5o

rO| —
»

H
no| —
b3
i

|
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L L _ 1 (s-1)(s-3) _ 11
et ( 1 1 ) <' T (25-3)(25-5) 45>
R K
8 251 1.1 1 1 1
X-ZX— 5... X--2— X——Z“ X—§

which is the desired result.

Corollary 4.3.1:

mHy 2 11
o + oo I 1

1;1)(X)

- %’2::} ps-%’z)(X)pgjé])(x)]z.

Proof: Similar to the proof for Corollary 4.2.1.

Corollary 4.3.2: If s = 1, then the support is given by the

zeros of

1
2

D

(x-1)p{ ) () = 0.

The corresponding weightson Xp < Xg Seen< X g = Tare2: 2: ... : 2:1.

Proof: Follows from Corollary 4.3.1 and (4.3.1).

Similarly, we can prove the following results for w(x) = 1-x.

Theorem 4.3.2: If w(x) = 1-x, then lzs(g){ is maximized by

! i=1,2,....m

% i=0,1,...,r
e 2T 1T ]
Pome1 = 0-
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The support of ¢*, the Ds—optima1 design, are the zeros of

G5-3) (yp(1,1) 1 _s-1 p(3,-3) 1,1)
X(Pﬁi] (X)Ps-l (x) - 8 2s-1 P ® (X)PS—Z (x).
The weight for x; is given by
_ 2
ex(x;) = sin 2(r s,

+2 + .
2mt+2 sin o,

where 1—2x1 = COS 6, -
Proof: The proof is similar to that of Theorem 4.3.1.

Corollary 4.3.3:

mtr 2 11
N it e RO
] - L’—% )
- 5 7] Pﬁz )( )PQZU(X)]Z

Proof: The result follows by the same steps in proving

Corollary 4.2.1.

Corollary 4.3.4: If s = 1, the support is given by the zeros

(3:-%) () = , - -
of x Pm 2/(x)= 0. The correspondingweightson 0 = X] € Xp <een< Xoig

arel: 2: 2: ... : 2.
Proof: Similar to the proof which was given for Corollary 4.3.2.

In the case w(x) = x(1-x), we have the following results. The proofs

are similar to those we gave for the previous cases and so are omitted.
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Theorem 4.3.3: If w(x) = x(1-x), then Izs(g)l is maximized by

o141 = 2 P
1? i=0,...,r+l
Pomez = O

The support of g* is given by the zeros of

( ]:’ ];) (]9]) l s-1 ("Ls"'l') (]9]) -
Praz’ 2 (0P 37 (X) - g ggoy P 0 (XIPg 7 (x) = 0.
The weights are given by
£(x;) = 2 =1, ,m
i sin(2r+3)ei 2t
S

where 2x1—1 = C0S ei.

(831

Corollary 4.3.5:

-r+1 1 _1
A sy 1P pl2 5)(X)p(1 D (x)

d(x,&*)

=S st(s-T1)! r+2
- 11
o R

Corollary 4.3.6: If s =1, the supportof g* is on the zeros of

P( %’ “)(x) = 0. £* assigns equal mass to each of these points.
It is difficult to extend the above method to the general
Jacobi weight functions. We cannot even find the general solution
for the simplest case w(x) = xz,except for the particular instance m = 1

which is shown in the following example.
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Example 4.3.1: Llet X = [0,1], w(x) = x2 and m=s =1,

‘!zs(g)l can be writtenin the form
H2 H3
2
113 U4 _ Q](C2C3)(C]C3)
lUZ! C](C]+C2) )
. . 2 _ 1
After some tedious calculation, we can show that Py =T Pp T — and
1+/2 /2

Py = 1. The Ds~optima1 design is given by

ex(/2-1) = and £*(1) = 1-g*(vV2-1).

A
V2

4.4 DS—Optimal Design for the s Highest Odd (Even) Coefficients

We assume throughout this section that the regression interval
is [-1,1]. Let us first assume that the regression polynomial is of
odd degree, i.e. m is odd. Suppose we want to estimate the s highest
odd coefficients 8. oc.0s By ocigs+--28,. Before we give the main

results, we first prove the following lemma.

Lemma 4.4.1: The Ds—optimal design £ for the s highest odd

(even) coefficients is symmetric. Here m may be odd or even.

Proof: Let ¢'(x) = t(-x). It is easily seen that
IM(£)| = [M(¢')| and ]M]](g)]= [M]1(g')L Hence |ZS(£)] = |Zs(g')].
Using the fact that

] -l 1 ) ] ] t
t(zEtze) >51(8) + 51 (")

where equality holds if M(g) = M(g') (see Kiefer's lecture notes),

we see that



5 e+ 3e)] 2 [5Ele) + 55 (e

The convexity of -log det implies that

1 1 5 S -
s (e) + 5 (e)] > |r ()P [ (e")[F = [z ()]
So we have M(¢) = M(g') i.e. & is symmetric.

Lemma 4.4.2: Let {uk}4n+2 and {ué}2n+] be two sequences such

» k=0 k=0
that Moy = “é and Mops] = 0. Then

U 0 ... H

O 2n H 1 1] 1 ¥
0w, ... 0 o Y2 oMl M b
Wop O Han Mp o Mngd Man Hn Mon-1
Mo 0 - Hon 0

0 uz see 0 u2n+2 UfJ ...un U:l o--l:jn_’_-l
0 e Han+2 Hp **° H2ni tHn+l © 00 H2n+]

Proof: Use the Laplacian expansion of the determinant.

Theorem 4.4.1: The DS—optima] design for the s highest odd

coefficients when m is odd is given by

_ 1
Podd = 2
% i is either evenor i = 1,3,...,m-2s
Dy: = m-i+2 N _
21 {m'l m2$+2,...,m2
Pom = 1.

106
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The support of the D_-optimal design is given by the zeros of

S~ N

2 (-3,3),.2.5(1,1) .2y 1 s-T (-3,5),.2yp(1,1),.2
O PRy ™ ()P 3 7 (x7)- g gy P 727 (K0P 3 () 1.
7 z
The weight at X; is given by
1
sin(m-2s+1)6.
ml + - 1
sin 0.
;
where 2x2—1 = oS 0., 0 <0, <
i i 7 =71 ="
Proof: By Lemma 1 and Lemma 2, we see that
Uy Hp e U'Eﬁl_
2
U'Z U3 U'_nl_}.-_z—
2
Wi Vs M
2 LI
2, (e) |= - : (4.4.1)
u u
“éilA_s V25
5 e

where “Q is the k-th moment of ¢', and ¢' is a design on [0,1] which

is related to a design ¢ on [-1,1] by the following relation
£ (x?) = £(x) + £(-x) = 25(x). (4.4.2)

From (4.4.1) we see that the problem is reduced to finding the
D.-optimal design ¢' on [0,1] with w(x) = x. The solution to the
original problem £ can be recovered by (4.4.2). The result now

follows from Theorem 4.3.1.
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Similarly we can solve the problem of finding the DS—optimal
design for the s highest even coefficients when m is even. In this
case the problem can be reduced to finding the Ds-optimal design for
the s highest coefficients with the degree of the regression polynomial
given by %'and the regression region equal to [0,1]. The result can

then be found by using Theorem 4.2.1. So we have proved

Theorem 4.4.2: The Ds-optima1 design £ for the s highest even

coefficients when m is even is given by

1

Podd ~ 2
%— i odd or i = 2,4,...,m-2s
p .
2 m-i+2

mi = m-25+2,...,m-—2.

The support of £ is given by the zeros of

20 pER (&R 1 6 § 52

—

pEe
1

-—

The weight at x is equal to

1 .
if x=20
mEl + UZrlxi

X .
—-———-———(—‘)' TfX#O.
mtl + U2r X

Remark 4.4.1: It should be noted that the problem for finding the
Ds-optimal design for the s highest odd coefficients when m is even can
be reduced to the case where m is odd by ignoring the last coefficient.
when m is odd the similar remark applies when finding the Ds—optima1

design for the s highest even coefficients.
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It is natural to insquire about the Ds—optima1 design for an
arbitrary subset of the g-vector. It seems that the problem is quite
complicated except in some simple settings as the following examples

show.

Example 4.4.1: Let x = [-1,1] and E(y) = By * ByX- It is easily

seen that the Ds—optima] design for estimating By is identical to
the D-optimal design. Any design that is symmetric about zero is

good for estimating By

Example 4.4.2: Let x = [-1,1] and E(y) = By * Byx * Bzxz.

The Ds-optima1 design for By and Bo is identical with the D-optimal
design. The Ds-optimaldesigns for {80,82}, {84,80} and {82} are ident-
ical. The Ds—optima1 design for By is identical with the Dg-

optimal design for B in Example 4.3.1. The Ds—optimal design for By

is just the design thatputsall mass at x = 0.

Example 4.4.3: Let x = [-1,1] and E(y) = By * Byx + 82x2 + 83x3.

This is the lowest degree model in which not every combination of the
Bi‘s has an easily determined Ds-optimal design. For example, it is

hard to compute the Ds—optima1 design for {BO’B]}'

2

4.5 Ds-Optima1 Designs for w(x) = (1—x2)x2 and w(x) = x
In this section we assume that x = [-1,1]. Using the same
argument as in Section 4.4, we see that the Ds—optima] design for

Z)XZ

the s highest odd (even) coefficients is symmetric when w(x) = (1-x
or w(x) = xz. Using the same technique we used in the

last section, we have the following results.
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Theorem 4.5.1: Let x = [-1,1], w(x) = (1—x2)x2 and

fT(x) = W(x) (1,%,...,x™) where m is even. The D.-optimal design

for the s highest even coefficients is given by
1

p2_i+-| ='2"' 1 ZO,.I,...,ITH']
% i is odd or i = 2,4,...,m-2542
Ppi ©
m-i+2 .
‘Zv(m 1= m—25+4,...,m
Pomea = O-

Proof: By Lemma 4.4.1 and Lemma 4.4.2, we find that

'} (]_XZ)X2+i+jdg’T |
2. (e)] = -7 LJ20 (4.5.1)

i,J=0

‘f (1-x2)x 21+ g,

By making the transformations t = x2 and £'(t) = £(x) + £(-x), we

can rewrite (4.5.1) as

m

1 |2

[t(-t)t e |

0 170 (4.5.2)
% =S

1 2

[ t(1-t)t g

0 i,3=0

By Theorem 2.2.2, (4.5.2) can be written as

m
7 *1 : )g'+2-1
I {yp: gy
j=1  2i-172i
m
7 ~stl -% -5+2-1
.H1 (vp5_1724)
":
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which can be simplified as

m m
7 St c2 2 +2-1
I Oegared)” 1 (aggva)

It is maximized if

P, =-% i is odd or i = 2,4,...,m-25+2
Cme2it2 o m
Poi = 2lmzieTy T2 TPeees 2
Prwz = O

Converting it back to [-1,1], we obtain the result.

Immediately we have the following corollary.

Corollary 4.5.1: If s = 1, we have

—

Pi = 7> i=1,2,...,2m3

o

Pomta =

The support of the design is given by the zeros of Tm+2(x) =0

where Tm+2(x) is the (m+2)th Tchebycheff polynomial. The weight

1
m+2 " _
The case m is odd can be reduced to that of finding the weighted

D -optimal design with weight function w(x) = xZ.

attached to each point is

Example 4.5.1: The case m = 3, s = 1 and w(x) = (1—x2)x2 can

be reduced to the Ds—optima1 design with w(x) = x2 withm=s =1
and X = [0,1]. The solution has been given in Example 4.3.1.

The same reasoning leads us to the following results.
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Theorem 4.5.2: Let x = [-1,1], w(x) = x2 and

fT(x) = w(x) (1,x,...,xm) where m is even. The Ds—optima1

design for the s highest even coefficients is given by

_ | .
pz-i+'l - .2— 1 = O,],...,m
%- i is evenor i = 1,3,...,m-2s+1
Poj =
m-i+3 . _
TmeT+2) i = m-2s+3,...,m-1
Pome2 = 1+

Corollary 4.5.2: If s =1 in the above theorem, we have

P; = i=1,2,...,2mt1 and

—t Nl""

Pomt+2
The support of the Ds—optima1 design is given by the zeros of
(x2—1)Um(x) =0

where Um(x) is the m-th Tchebycheff polynomial of the second kind.

4.6 Ds—Optima1 Design for Trigonometric Regression

Consider the trigonometric regression model

m
—
<
g

m
Q
o
+
He~—3

](an cos ne + B, sin ney.

The problem of interest is to find a Ds—optima1 design for the s

highest pairs of coefficients. We have the following theorem.

Theorem 4.6.1: A Ds—optimal design for the s highest pairs of

coefficients is characterized by the condition
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aO = a] .= azm_] =

where a, is a parameter of measure on the circle which is defined

in Chapter II Section 6.
Proof: It is easy to see that

A
(g)] = x 2m_ const.
2m-2s

S

where Aoy denotes the Toeplitz determinant of order k+1. By (2.6.8)
we see that Izs(g)[ can be expressed as

2m-1

2y2m-1
T (1-]ay |9
i=0
2m-2s-1 .
I (]_!a1|2)2m 2s-1
i=0
2m-2s-1 2m-1 .
2\2 2, 2m-
= 1 (-[a19% 1 (1-]a [HE
i=0 i=2m-2s

The preceding quantity is maximized iff

aO = a] =, ..= a2m_] = 0.

Remark 4.6.1: The Ds-optima] design coincides with the D-optimal

design for the trigonometric regression.

4.7 Rotatable DS-Optima1 Design

The rotatable Ds—optima1 design is difficult to find in general
except in some simple cases that we will indicate be]ow.

For the 1st degree regression (d=1) on the m-ball it is obvious
the rotatable Ds—optimal design (s=1) is the same as the rotable

D-optimal design. (For the notation see Chapter III, Section 6.)
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Example 4.7.1: Let d = 2; i.e. 2nd degree regression on the

m-ball. [ZS(g)l can be expressed as
Lo Am=1) (m+2) {m-1) (m+1)
Py aqP,(Py+a1p,)
2

The above quantity is maximized by

p, =W mt1)
1 m2+m+2
Py = 1.

This means that we have to put mass %-on the outer boundary and the

rest on the center.

. . _ -
4.8 D -Optimal Design (s=1) for w(x) = WETZT-Where wn(x) Is a

Positive P01yn0m1a1 on [-1,1].

Let ¢ be a (mt1)-vector and consider estimating cTB where B is
the vector of coefficients of the regression po1ynomia1; A vector
c is said to be estimable with respect to the design iff ¢ belongs
to the space generated by the set of vectors {(1,x,...,xm)lx € s(&)
(spectrum of £)}. If ¢ is estimable with respect to &, let

T2
d(c,g) = sup —%5—91—
d'M(g)d

where the sup is taken over the set of vectors d such that the
denominator is nonzero. If c is not estimable with respect to &,
we define d(c,) = =. It is known that the variance of the best

1inear unbiased estimate of cTB is proportional to d(c,g).
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Definition 4.8.1: A design ¢ is said to be c-optimal if ¢

minimizes d(c,£).

Theorem 4.8.1: (El1fving's Theorem). A design &g* = {xv,pv}

minimizes d(c,g) iff there exists e, = +1 such that
k
)

e p. f(x,) = Ac €3R (= boundary of g)
vel Vv Ty

where the integer k may always be taken to be at most m+2 and at most
m+1 if ¢ is a boundary point of R. Here R is the convex hull of
{f(x)] x € X} U {-f(x)|x € X} and X is the regression region. Moreover

1
d(C,E) = 5.
AZ

Proof: See Karlin and Studden (1966b).

Lemma 4.8.1: Zv evpvf(x )= Ac € 28 iff there exists a nontrivial

v
polynomial u(x) =Zia1f1(x) such that |u(x)| < x for all u,

ey u(xv) = ) and cTa = 1.

Proof: See Studden (1968).

Now, observe that

. . (d'c)?
min d(c,£) = min sup -
£ g d dMe)d

T2

= min sup T(d C)Z

g d {(d f(x))"de(x)
T A2
> sup min (d c)

d ¢ [(d"£(x)%de(x)
X
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We can restrict ourselves to those d satisfying ch = 1, hence the

above expression can be rewritten as

1

inf max f(de(x))
g x X

sz(X)

1

>
" inf maxIde(x)[2
d x

1
a
Since min d(c,&) = 1?3 equalities hold. It is clear
now that thegsupport of %he c-optimal design consists of points that
satisfy the equation
1dTF(x) ] = .
Notice that the Ds-optima1 (s=1) design for the highest coefficient must

coincide with the c-optimal design when ¢ = (0,0,...,1). In this case
de(x) is the "polynomial" of least deviation from zero. In Theorem

2.8.3, the "polynomials" of least deviation from zero are given for

2
1 1-
f(x) = (1,...,xM, /w—n)((?T“’“"xm)’

/ 1- ¥
Wl(§Y (1,...,x™ and Wi(éT'(]""’Xm)’

n

So we have the following theorem.

.1 . . -
Theorem 4.8.2: (1) Let w(x) = W;(;j;The Ds—opt1ma1 design (s=1) for

estimating the highest coefficient has its support resting on the zeros

2 1 1 .
of (x —1)Um_](x, W;TYTJ where Uk(x, WQTIY) is the k-th orthogonal



A

. . 1-x 1-x

polynomial with respect to and 2m > n. (2) Let w(x) = .
nwnixi wnixi

The Ds-optimal design (s=1) for estimating the highest coefficient

. . 1
has its support resting on the zeros of Tm+](x, W;T]ﬁg where

1 . . .
Tk(x, W;T§7Q is the k-th orthogonal polynomial with respect to
1

and Z2m > n.
wwn(x) 1-x2
_1-x _ . . - . .
(3) Let w(x) = W;T~7u The D, optimal design (s = 1) for estimating

the highest coefficient has its support resting on the zeros of

1 1 . .
(1+x)wm(x, W;TYT) where wk(x, W;(YY) is the k-th orthogonal polynomial

N L /1-x
with respect to ?W;Yiﬁ‘ Tix and 2m > n.

v _ 1+X _ . . - . .
(4) Let w(x) = WQTIT' The D optimal design (s=1) for estimating
the highest coefficient has its support resting on the zeros of

1 1 . .
(x—])Vm(x, W;TIY) where Vk(x, W;TQT) is the k-th orthogonal polynomial

- 1 /TX and 2
with respect to FW;TYT' oy and 2m > n.
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CHAPTER V
IO—OPTIMAL DESIGN AND OPTIMAL EXTRAPOLATION DESIGN

5.1 IU—Optimal Design
Recall that the variance function of a design £ at a point x is

defined as

d(x,£) = £(x) M () F(x).

Notice that d(x,g) is a function in x in general. Sometimes the
accuracy required at each point is different and some weighted "sum"
of the variances at different x's may serve as a optimality criterion.

Thus it seems reasonable to minimize
v(g,o) = [ d(x,&)do (5.1.1)

over all designs ¢ for a fixed probability measure . A design g*
which minimizes v(£,0) will be called an IO-optima1 design. Some
results have been obtained about the Ig—optima1 design by Studden
(1971), (1977) and Federov (1972). Since the I_-optimal design is
quite difficult to obtain in general, Studden (1976) suggested using
an approximate design. Some asymptotic results have been obtained in
the same paper. In this section we will find Io—optimal designs for
some special o and try to express v(g,0) in terms of canonical moments.
Some asymptotic results will be given in Chapter VII. Let g{x) = Tf(x)

where T is a nonsingular matrix of size mt1. It is clear that
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[ £x) ) F(x)do(x) = fa(x) M1 (€)g(x)do(x).

Thus we have

Theorem 5.1.1: The Io-optima1 design for f(x) coincides with

the Io-optima1 design for g{x).

Corollary 5.1.1: If f(x)T = W(XT (T.%,...,x"), then the I-

optimal design remains the same under a linear transformation on the
regression interval (assuming w(x) undergoes the same transformation.)

If we write trA for the trace of the matrix A, then (5.1.1) can
be written as

v(£,0) = trM 1 (£)M(o).

The next theorem gives a necessary and sufficient condition for

the Io—optima] design.

Theorem 5.1.2: The design £ is IO-optima1 iff

oM MM (£)F(x) < e (£)M(o). (5.1.2)
Proof: See Fedorov (1972).
Immediately, we have the following theorem.

Theorem 5.1.3: Suppose o has arbitrary weights

m
CRERRRRL 120 9; = 1, on the support of the weighted D-optimal design.

Then the Ig—optimal design £ has the same support as o with weights

proportional to /ﬁ},i =0,1,...,m.
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Proof: Notice that we have assumed that the weighted D-optimal
design has its support resting on m+1 points. Let fi(x) = zi(x) where
Qi(x) denotes the Lagrange function corresponding to the support of the
weighted D-optimal design {xo,...,xm}. It can be easily seen that

(5.1.2) becomes

The above equation holds by Theorem 3.1.3; the proof is

completed.

Corollary 5.1.3: Let X = [0,1]. The above result holds for

the following weight functions

(1) w(x) =1

(2) w(x) = -0, as -1, 85 -

(3) w(x) = x**! o> -1

(4) w(x) = (1-x)8+1, g > -1

(5) w(x) = [x(]—x)]a+1[x - %1Y, «>-1, vy >0 (mis odd in this
case)

Theorem 5.1.4: Let fT(x) = (1, 2 cos X, 2 sin X,...,2 COS mX,

2 sin mx) and X = [0,2r]. If o is characterized by a; = 0,

i =0,1,...,2m-1, then any design characterized by the same condition

is Ic—optimal.
Proof: Use (5.1.2).

The following examples show that the integrated variance v(g,o)

can be expressed in terms of canonical moments of ¢ and o.



Example 5.1.1: Let m = 1. The integrated variance v1(g,o)

can be written

1
V](€30) = é d](X,E)dO

where d](x,g) is the variance function of the design g for simple
linear regression. It is known that d](x,g), can be expressed as

sum of squares of orthonormal polynomials.

1
P191P;

dy(x,8) = 1+ P?(x,da)

where {Pk(x,dg)} are monic orthogonal polynomials. Since P](x,dg)

X=py> v](g,o) can be written
1

[ [+
0 P191P2

(x-py)*1do(x).

Let ay denote the i-th canonical moments of ¢ and let 81 = 1—&1.

Then we have
1

1 2
Vi(£,0) = [ 1+ ——— (xX-aq+aq-pq) “do
1 0 Py@pp 1T
_ 1 2
=1+ [(py=aq)™ + aqBqap].

P191P2
To minimize the preceding expression, we need to take Py = 1
Yaq{a¥8,0,)
V&](a]+81a2)+/e](31+a]a2)

and Py =

Example 5.1.2: Let m = 2. d2(x,€) can be written

1 2
N P2(x.e).
P191P292P343Py 2\ 8)

| 1 2
dy(x,8) = 1+ PT(x,d
o(x,8) =1 51419, 1 (x,de)

As in Example 5.1.1, P1(x,dg) can be written

P1(X,d€) = P](Xadc) + (a]“p])-

121
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Similarly we can write Pz(x,dg) as

3
P,(x,dE) = P,(x,do) + (iZ] o - 1 1c1)P1(x,do)

I e~10

+ c3(c]—ci)-zi(ci+cé—c]—c2)-
Here {Pk(x,do)} are (monic) orthogonal with respect to do and
c% = 81—1“1 for i > 2 and gi = . It follows that

2

vo(gs0) = 1+ [(gy=z9)™ + qepl + {gqeon3ey *

C]CZ €1§2C3C4
1 1 2 ] ] ] ' i H 2
A N ) c1c2+[c3(§]-c1)—a1(c]+52—c]~c2)] }.
It should be remarked that for given &, vk(é,o) is a nondecreasing

function in k. If we let Pi T 9y for i < 2k-1, Poy = 1, then

Vk(é,c) <k + Lot

5.2 Weighted Extrapolation Design

Let w(x) be a continuous nonnegative weight function on [a,b] < R

and let f(x) = w(x) (1,x,...,xm). We want to find a design & such that
d(z,,8) = Flzg) M (£)F(z)
0’ 0 0

is minimized. The resulting design is called the weighted optimal
extrapolation design. This is a special type of c-optimal design with
ch = (l,zo,...,zg) where z § [a,b]. According to the discussion in.
Chapter 4, we see that it is equivalent to finding a polynomial

an(x) = y(x) such that max|u(x)| is minimized subject to aTc = 1. The
support of the design is the set of all x such that max|u(x)| is
attained. Once the support of the optimal extrapolation design, say
xO,...,x: is given, the weight attached to each point can be calculated

m
by the following method. Let
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fo(xg) (%) folx)
F(z,l,.::jmx ) - f1(x0) f](x]) . f](xm) ,
0”1 >m
flxg)  F(x) f(x )
and
Ogccey v=1, v, v+1,...,m
g = O
F(XO,.. . ,Xm)

where fi(x) = w(x) x1, i =20,1,...,m, then the weight at X is
given by

IL.(zn) |
3 =~ﬁ,———~1—-9— (5.2.1)

Lo

It is easy to observe that the Ds—optimal design when s = 1
coincides with the c-optimal design when ¢ = (0,0,...,0,1). On the
other hand, according to the discussion in Chapter 4, the support of

the optimal extrapolation design are those x such that

min maxlan(x)[ is attained
a X

T (1:2ps.v.s2), 2z [a,b]. Compare to the
0 0 0

where cTa = 1 with ¢
similar formulation for the case cT = (0,0,...,1), we conclude that
the optimal extrapolation design has the same support as the DS— ‘
optimal design for s = 1.

In case we are interested in finding the weighted optimal

extrapolation design for sTg(zO) where z ¥ [a,b] or zy € [a,b] with
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w(zO) = 0, and gT(zO) = (1,20,...,23). The criterion function is

o' (29! (£)a(z,)

(9(zp),d)
N Sgp (4, m(e)d)”

d(z;,¢)

Following the same procedure in 4.8 we see that it is equivalent to
finding a polynomial that assume one at the point 24 and has
minimum maximum (weighted) deviation from 0. So we see that the
support of the optimal extrapolation design is the same as we have

found above. But the weights are given by
1

IL:(zq) |———
i‘?0 " x1
_ i=20,1, S
T L (zg) |
1= it VW<X1'5
where
0,...,v-1, v, vl,...,m
F( )
) Xgs oo Xy 19202 Xys100 02Xy
L (zs) =
Vo 0,...,m
F( )
XO,...,Xm
95(xg)  9p(xq) 9o (x)
(0,1,...,m ) 91(xg)  9y(xq) .en gp(x)
F =
X0,X'I,-.-,Xm .
9.(x0)  9p(xq) In(Xp)

Theorem 5.2.1: (i) Let X = [0,1] and w(x) = x. The support

of the optimal extrapolation design is given by the zeros of

(x-1)P§1'%’%)(x) - 0.
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(ii) Let X = [0,1] and w(x) = 1-x. The support of the optimal
11
extrapolation design is given by the zeros of x Péﬁ’ 2)(x) = 0.

(iii) Let X = [0,1] and w(x) = x{1-x). The support of the optimal

(-3:-2) () = 0.

extrapolation design is given by the zeros of Pm+1

(iv) Let X = [-1,1] and w(x) = (1—x2)|x|2 and m is even. The
support of the optimal extrapolation design is given by the
zeros of Tm+2(x) = 0 where Tk(x) is the k-th Tchebycheff

polynomial.

(v) Let X =[-1,1] and w(x) = x2 and m is even. The support of

the optimal extrapolation design is given by the zeros of

(1—x2)U (x) = 0.

m

(vi) Let X =[-1,1] and w(x) = Wﬂ%—Y' The support of the extrapola-

n
. . 2 1 _
tion design are the zeros of (x -1)Um_](x, W;TYT) = 0.
2
1-x

(vii) Let X = [-1,1] and w(x) = . The support of the optimal
wnixi

. . . . 1 -
extrapolation design is given by the zeros of Tm+](x, W;TYT) = Q.

(viii) Let X = [-1,1] and w(x) = Wl%éf' The support of the optimal

n
extrapolation design is given by the zeros of

(T+)H_(x, ﬁﬂ) = 0.

n
. T+x .
(ix) Let X = [-1,1] and w(x) = . The support of the optimal
, wnlxi

extrapolation design is given by the zeros of
1 -
(]-X)Vm(X, W) = 0.
The following example is taken from Fedorov (1972).

Example 5.2.1: Let E(y|x) = By * 81X and w(x) = xz, 0 <x <1

It is required to find the design minimizing d(0,£). The regression
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problem formulated is very often met in the investigation of the
scattering of elementary particles. The support of the optimal
extrapolation design was found in Example 4.3.1, supp(g) = {v2-1,1}.

According to (5.2.1), the weights at these two points are given by

g(v/2-1) = ZZ/?
_2-/2
g(1) = =4

5.3 The Stieltjes Transform and Canonical Moments of the Optimal

Extrapolation Design (w(x) = 1).

Let X = [-7,1] and <l = f(zo) = (1,20,...,28) where |zO[ > 1.

Hoel and Levine (1964) showed that the optimal extrapolation at z4
lLi(ZO)l

T ILi(2)
jgoljzol

and Li(x), i =0,1,...,m is the i-th Lagrange interpolation polynomial.

v
where X, = cos — 7w, v=20,1,...,m

is given by g(xi) = -

In this section we will show how to find the Stieltjes transform
and canonical moments of the optimal extrapolation design. With this

formula we can prove some limt theorems.

Theorem 5.3.1: Let &£ denote the optimal extrapolation design

when w(x) = 1. Then we have
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T T 1 Tm-2"m
m-1 m-1 -
1 T (7~ 7 gl
de (x) 1 m m m-1
-{ Z-X To-1 1 Tm-2 . T 1, -3 Tme2
2- 3y oty )
m m-1 m m-2 m-1
1 T s 1T 1T
S i i
] Tn-2 T3 T2
7- J(Im:ﬂ._ Im:i) - ge l(jl.- IZ) . _(IQ.- Ijg
2 T3 -2 P 2’1y T
152
- 4 ]
- (5.3.1)
Z'*"Z—-I--]—

Here Tk denote the k-th Tchebycheff polynomial evaluated at Zy-

Before we proceed to prove Theorem 5.3.1, we first give the

following results.

m

Lemma 5.3.1: ) |L

Lo Sz 1 = 1T(zg) |

m

Proof: See Karlin and Studden (1966a).

Lemma 5.3.2: (1) & (x2-1)um_1(x)1x_X =0 (x ) (E-1) = (-1)?
for v = 1,2,...,m-1. !

. ) 2m X = Xq = -1
(2) H}'(x —])Um'](X)’x=i1 T ZUm'](i]) i }(—1)m2m Xx=x_=1

Proof: See Polya and Szeg6 (1972).
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Lemma 5.3.3: Every polynomial p(x) of degree m can be written

p(X) = 5= U () Dp(1) (1) +(=1)"p(=1) (x-1)]

2
m-1 U1 (x) (x-1)
B M

i~

E1R

Proof: See Polya and Szego (1972).

By the definition of Stieltjes transform, we can write

! dg(x) _ 1 m “‘v(ZO)|
{ Z-X

Z-X m <
VZOILV(ZO)l "~

where X, = cos-% m and g is the optimal extrapolation design.

It is easily checked that

’/

U_1(zg) [ (z5-1)
2m(zo-1) v=20
U, 1(20) | (25-1)
ILV(ZO)I=< 2m(20+1) v=20
U, _4(2z9) 1 (25-1) )
m(zo—xv) v=T,

ce,m=1.

For definiteness, we assume Zg > 1. The case zq < -1 can be treated ’

similarly. By Lemma 5.3.1, Lemma 5.3.2 and Lemma 5.3.3, we

the Stieltjes transform as

can write
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2
Up-102) 120D 1 1 1 1 9 —L+lm§] 1 ]
[Tm(zo)| Zm 20—1 z-1 m zo+1 z+1 " m = (zo-xv)(z-xv)
Ut (2 (25D 3 ] L I T B
- (szO)iTm(zo)] Zm Gt 7w " L g, T @t e
1
) ﬁ'vzl z'Xv:I
] U 4(zg) [(z5-1) Tiz) T
Tn(Z) | U (z)(25-1) U (2)(25)

Tm(ZO)Tm(Z)Z+[Tm—1(ZO)-Zon(ZO)]Tm(z)_Tm(ZO)Tm-](Z)

Tm(zO)Tm(Z)ZZ'ZOTm(ZO)Tm(Z)Z-Tm(ZO)ZTm—l(Z)+ZOTm(ZO)Tm—1(Z)

Expanding the preceding expression in continued fraction, after a
tedious calculation, we obtain (5.3.1).

We can find the canonical moments from the expression (5.3.1).
We will give the first three canonical moments in below. By

(5.3.1) we see that

-1
2c.-1 = m
1 Tm
T T
-1 m-1
bgoc, = 2 (z,- 1)
172 Tm 0 Tm
T T
1 "'m-2 m-1
20,120,-1 = 5 -
2 73 2 Tm—] Tm
Hence we obtain
= l.(] + Tm'1)
P72 T
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CHAPTER VI
D-OPTIMAL DESIGN FOR MULTIRESPONSE MODEL

6.1 Introduction.

It happens quite often that we have several, say r, regression
functions defined on the same interval, say [a,b]. A general discus-
sion of the optimal design in this case can be found in
Federov (1972). Lduter (1976) suggested the use of s-optimality
criterion in finding optimal designs. 1In this chapter, we try to
find the D-optimal design for the case r = 2 assuming some relation-
ship between the two regression polynomials. In many statistics
textbooks on linear models we can find some discussion on the compari-
son between two regression lines. Given the models

Y1 = Bop T EpX T

Y2 = Boa T By T e
where £ and e, are uncorrelated normal variables.
Usually there are four models to be considered.
(A) 81 7 Bops B17 7 B
(B) Parallel regression, B11 7 B2
(C) Concurrent regression, By = B12
(

D) Coincident regression, Byl = Bgps Byp = Bio-
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The problem of testing (B) ((C), (D) resp) against (A) is treated
under the title comparison of models. The testing of (D) against (B)
is usually discussed in the field called analysis of covariance.

In this chapter we will find the D-optimal designs when the
regression polynomials are related in different ways. Consider the
models

Y15 = Bgp * X oot B 4y
n (6.1.1)
Yai T Bop T BypX oot BppXtep;

Throughout this chapter we assume all the random variables {511} {821}

are independent. Three cases will be considered in the following

sections:
(I) The two regression functions have no common parameters. This
is related to model (A) above.

(II) Let n=min 6.1.1. We will consider the case that the highest
m-k coefficients of two polynomials are identical. This is a
generalization of model (B) above.

(ITI) Assume n = m in 6.1.1. We will consider the cases:

(1) Byy = Bpos (i1) Byl = Bpps Byp = Byp- This is a direct

generalization of model (C) above.

6.2 The D-Optimal Design for Estimating All the Parameters in Two

Regression Functions

Consider the model
om
Y1i T Bop F BppX Feeot BppXo ey

- n
Yoq T Bop T BppX feeot BpoXT + epps (nxm).
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We first tackle the problem of finding the D-optimal design for the

parameter vector BT = (801’8]1”"’Bm]’602’812""’8n2)‘ We have the

fo?]owing theorem.

Theorem 6.2.1: The D-optimal design is given by

_1 .
p21+]_2 1 —O,],--.,n
_ _mn-2i+2 . _
Poi = Zmran-47+2 1s2e.oom
= Noitl i = mtl n-1
P2i 7 2n-27+1 SRR

Proof: The information matrix can be written

1 R
?] H2 ' 0
*m Hom
M(g) = Ty .
u TP
1 2
0 . .
Hn Hon

The determinant |M(g)| can be found to be the product

)m—i+1

(29:_ 1895

n =i+l

n= =3

. (225-1%24

i 1

The result follows immediately.

If we use the following criterion

(6.2.1)
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we will get different results and the resulting design has higher
efficiency in estimating the parameters in the lower degree model

compared to the design in Theorem 6.2.1.

Theorem 6.2.2: The design that maximizes (6.2.1) has canonical

moments

_ ] .
p21+1 =7 1 = 0,1,...,!’1—1

2(m+1) (n+1)-i(mtn-1)
Poi = TnFT)(2m+1)+(m+ 1) (2n+1)-27 (mn+2)

_ _n=i+l .
Poi = Zn-2i+T i=ml,...,n.

Proof: (6.2.1) can be written as

1

m .
m-i+1-mt+]

1
)n—1+1]ﬁIT

=S

](Czi-ﬁzi
By direct calculation, we obtain the desired result.

Example 6.2.1: Letm=1and n = 2. The D-optimal design

given by Theorem 6.2.1 has canonical moments

= =1

P1 = P37 72
3
Pp = 7
Pg =1,

Following Theorem 6.2.2, we obtain another design with canonical
moments:

T
Py P37 7

=
N
|
— Wl

i=1,2,...,Mm
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Suppose m = n and we interest in estimating the vector

.
(By=Bgps B117Bqps- 3By =Byp) - Let
1 0 0 -1 0 0
0 1 0 0 -1 0
A= : : - (Im : 'Im)
0 0 1 0 1

The covariance matrix of the least squares estimator of

- T . ' . -1 T
Ag = (BOT_BOZ""’Bml'BmZ) is proportional to AM '(g)A .

T

So it
is natural to find a design that will minimize |AM-](€)A In

this case, we see

o Mp(€) O I,
|AM™(e)A | = LT o -1 ] R o
0 MZm(g) Iy

= |2 (e) |

So the D-optimal design for estimating AR is the same as the

™. We obtain

D-optimal design for fT(x) = (1,XyenesX

Theorem 6.2.3: The D-optimal design for estimating Ag is the

same as the D-optimal design for g.

Still assuming m = n, we can find the D-optimal design for
estimating CB, the difference of the s-highest coefficients, where C
is given by

[0 E IS E 0 : -IS].

Theorem 6.2.4: The D-optimal design for estimating Cg is the

same as the Ds—optima1 design for B.
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Proof: It suffices to notice that

} M, (£) ]
|CM ](€)CT1 = o™ TF%%%ETT
where
M, (&)
_ 2m
M(g) = L M2m(g)]
Myq(E) Moo(E)
B 11 12
and an(8) = [Mm(g) M22<a>] '

6.3 Case II: n = m, the Highest m-k coefficients of Two Polynomials

Are Identical

Consider the model

_ k k+1 m
y],i - 80] +...+ Bk-'X + 8k+]x +...+ BmX + ¢

% _ k k+1 m
y21 = 802 +...+ Bkzx + Bk+.]X +,...+ Bmx + €.

The determinant of the information matrix can be written as,

assuming X = [0,1],

A B
I Bl C
where
10w 0wy om0 Jigal Mz o
001 0 w 0 .0 sl ez ot
A=l 0wy 0 mgees iy O BT Mg Hieg oo M
5 : Wg+2 M3ttt Yl
0w O gy 0 --- 0wy ,

Mok+1 Hok+2 "t Pmk
Hop+] H2k+2 ©7 Mmrk
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2uosn  Coppg v M
C=| 2M2k+3 ZHokaq cor ZHpigar

S R

By adding the 2j-1th row (column) to the 2jth row (column), then
subtracting %-times the 2jth row (column) from the 2j-1th row (column),

for j = 1,2,...,k+1, we end up with the following determinant

D E
ElOF
where
5 0 2H 0 %UZ éuk
0 2 0 2u] 0 0
s 0 sy 0 g e
D - 0 24 0 2u, 0 0
Bup 0 3wy 0 By Fiee2
e 0 By 0 B Shok
0 0 0 .0
Zuk 2uk+] 2“k+2 ce Zum
o 0 0 e 0
D] Perp Dy cee Pl
S 0 0
PMerg By Boeg e Piep
Mok-1 Pak PMopan tr D
0 0 0 ... 0
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Pupk  Pgkel o Dimk
2ussr ZHope2 vt i

Zumik Mmeke] o 2uom

The above determinant can be further written as

1 M1 cee W 1 My cee M
(1)K Mpod2 e M om M Y2 ity
2
Mo PR+ M2k Mmoo M Hom
Lk N jeisl T =i+
iaq 2i-1"2i L tk2i-1%2i

To maximize the preceding expression, we have to choose

mtk-21+2

Poi = Tmok-divz | =1 <Kk
_ o m-i+] .
Poi = Zm-27+T ktl <7 < m.

Thus we have proved the following theorem.

Theorem 6.3.1: The D-optimal design £ for two general regression

functions having the same m-k (0 < k < m) highest coefficients has
canonical moments

1

P2i+1 7 2

_ mk-2i+2 :
Poi = Pmtok-4i+2

o _m-it]
P2i = 2m-27+1
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Remark 6.3.1: If k = 0 or k = m, we have the D-optimal design.

Example 6.3.1: Let k = 1, i.e. the first two coefficients of

two polynomials are different while the others are the same. The
canonical moments of the D-optimal designare given by

_ 1

Pois] = 7 i=0,T,...,m-1
- Itm
P2 = 7m
_ m=i+] .
il =i S

Example 6.3.2: For the case m =k = 2 i.e. we have the model

Y17 Bor FEpXt 8y K €1
B 2
Yp 7 Bpp T BypXx * By X0t ey
The information matrix can be written

1 0 My 0 Ho
0 1 0 Hy Ho
o 0wy 0 g
0w 0 Wo M3

oo My H3 H3

The determinant |M(g)| = const P197P, (p]q]p2)2q2p3q3p4. It is

maximized if

_ 1

P1 = P3 773
3

Pr = 7

Py = 1.
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6.4 Case III

Consider the model
- m
.y'|1 - BO + B]“X +,..t Bm]X + 811

- n
y21~ = 80 + B]ZX +,..+ anx + 821 n>m.

The determinant of the information matrix can be written,

assuming X = [0,1],

2 M1 Mo I Hy ee WMy
Hy H2 M3 oo Hme
Hp Mg Mg e Hpeo 0

(6.4.1)
“m Pl Ml 0 Mom

1 F2oor e

Hn Untt o0 Mop

The above expression is hard to simplify in general. We will find

the solutions for several special cases below.

Example 6.4.1: Let X = [0,1]J] and m=n = 1. (6.4.1) becomes

2wy :
M Hp 0 (6.4.2)
i 0w

which can be further simplified by using the formula

M M
11 12 - -1

Mpp Mo
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(6.4.2) then can be written

Mo 0 : u% u%
2 . "7l 2 2
| H2 1M
12 12
Mo T2 W 2 M
=2
12 _1 2
2 ™M Mo T2 M
=2 uz(uz-u$)
= 2py(py*ayp,) (P1a7P,) -

It is easy to see Py = 1 and Py = %; It should be noted that the
D-optimal design in this case is not invariant under a Tlinear

transformation on X.

Example 6.4.2: Let X = [-1,1] and m = n = 1. The determinant

of the information matrix is the same as (6.4.2). If we multiply
the first row and first column by -1, the value of the determinant
remains unchanged. That means if £ with support S is D-optimal then

so is £ on -S. Using the inequality

MG eq + 3 )| > e TTE,) T,

we see that £ is symmetric. Hence uy = 0. (6.4.2) becomes 2p§ which
is maximized if P, = 1. Since & is symmetric we have Py = %n

The next three examples also give the D-optimal design on [-1,1].

Example 6.4.3: Let X = [-1,17]J andm=n = 2. (6.4.1) becomes
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2w oup mp

Hp o M 0 M3 0

wp 0wy 0 M3 (6.4.3)
ﬂz U3 0 U4 0

wp 0wy 0y

Using similar method in Example 6.4.2, we see that My = g S 0.

(6.4.3) can then be written

2wy
2 M U 0
Mo 2 4
wp 0 Mg

The last expression can be further simplified to

2 1.2
H2 7 M2

N =

U4 =

H2
1.2 1
22 Mg~ W

2
2
_ 2 2
= Uz(U4'U2)U4
_ 2
= PZ(PZQZP4)P2(PZ+QZP4).
The maximization of the last expression gives
P275
p4 -

By symmetry, we have Py = P3 = %u

Example 6.4.4: Let X = [-1,1]J and m=n = 3. (6.4.1) becomes
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2wy oWy oWy My Mgoug
wpowp 00wy 0y 0
b 0w 0wy 0y
mp vy 0y 0wy 0
wp 0wy 0wy 0 g
u3 g 0 Hp 0 Ve 0
vg 0wy 0 g 0 g

Using the same technique as in the preceding examples, we can

write down the determinant as

2 2wy
Mo Mg 0
Mo Mg
U, U
4 6 Mo 0 Mg

4 2 5.2
= Po(AoP404P6) " 2P505P4(Po+a5P,) -

By differentiation, we find

p, = 0.667
Py = 0.616
Pg = 1.

By symmetry, we know Py = P3 = Pg = %u

The last case we consider is to find the D-optimal design if
the first two coefficients of the regression functions are equal.

Let us consider the following example.

Example 6.4.5: Let X = [-1,1] and m = n = 2. The determinant of

the information matrix is given by



Using the same argument in Example 6.4.2, we see that u =y
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2 2y oy o
2up 2up  ug o owg
by by w0 (6.4.5)
wp vz 00y

37 0.

2wy m
2“2 U2 U4 0
o 0y

= 2U22(U4“U§)U4

3
= 4p5q,p4(P,yta,sn,)
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CHAPTER VII
LIMITING DESIGNS, ROBUST-TYPE
DESIGNS AND COMPARISON OF EFFICIENCIES

7.1 Some Asymptotic Results

In the last five chapters we have investigated optimal designs
for polynomials of degree m under different criteria. In this section
we will discuss the Timits of these designs when m tends to infinity.
A unified approach to finding the limiting design is proposed. Namely,
we will identify the Timiting designs by their canonical moments. This
is valid since the designs we discuss so far are measures on a compact

set. We have the following theorem.

Theorem 7.1.1. Let En denote the weighted D-optimal design for

fT(x) = w(x) (1,x,...,xm), x € [0,1], where w(x) is one of the

following:

(1) w(x) =1

(2) w(x) = (-0, o5 -1, 8 5 -]
(3) w(x) = & , o> -1

(4) wix) = (1) e -1,

Then £, converges weakly to ¢_, the arc-sine distribution.
1

The density of ¢_ is given by ————.
w/x{1-X)
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Proof: The case w(x) = 1 was proved by Kiefer and Studden
(1976). We will give a similar proof here by using canonical moments.
Recall that the canonical moments of the D-optimal design (w(x) = 1)

are given by

-] .
D21-+~| ""2" 1 —O,],...,m"]
m-i+1

p21=§—m—_—21—+]— 1=1,2,...,m.

It is clear that 1im Pi = %-for all i. Since ¢_ is the only

oo

distribution with p; = for all i the result follows.

rof—

The proofs of the other cases are similar and so are omitted.
The following six theorems have similar proofs so we will state

the theorems only.

Theorem 7.1.2: Let gm denote the weighted D-optimal design for
fT(x) = (X) (1,%,...,xM x € [0,1], where m is odd and w(x) is one
of the following:

(1) wx) = [x(1-) 1% - 3175 as v > 0

(2) w(x)

1
|X—?1Y, Y > 0.

Then ¢_ converges weakly to the arc-sine distribution.
m

Theorem 7.1.3: (i) The D-optimal design for estimating two

regression polynomials converges weakly to the arc-sine distribution

if the degree of one of the polynomials tends to infinity.



147

(ii) The D-optimal design for estimating the difference of the s
highest coefficients of two polynomials of the same degree
converges weakly to the arc-sine distribution if the degrees
of the polynomials tends to infinity.

(iii1) The D-optimal design for estimating two polynomials with the
same highest k coefficients (0 < k < m) converges weakly to the

arc-sine distribution if m tends to infinity.

Theorem 7.1.4: Let En denote the weighted Ds—optimal design for
the s highest coefficients. If the weight function w(x) (x € [0,1])

is one of the following:

(1) w(x).=1

(2) w(x) = x

(3) w(x) = 1-x

(4) w(x) = x(1-x).

Then gm (s fixed) converges weakly to the arc-sine distribution.

Theorem 7.1.5: Let X = [-1,1] and Tet En be the Ds—optima1

design (w(x) = 1) for the s highest odd (even resp) coefficients.

Then gm converges to the arc-sine distribution.

Theorem 7.1.6: Let X = [-1,1] and let £ be the weighted D,-

optimal design for the s highest even coefficients where the weight
function is one of the fo]lowing:

(1) w(x) = (1-x3) x|

(2) w(x) = [x|°,

|x
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Then £, converges weakly to the arc-sine distribution.

Theorem 7.1.7: Let En denote a D-optimal design for

fT(x) = (1,2 cos X, 2 Sin X,...,2 COS MX, 2 sin mx), x € [0,2n].

Then £, converges weakly to the uniform distribution on the circle.

Theorem 7.1.8: Let the degree of the polynomial m be fixed.

(i) The optimal extrapolation design (w(x) = 1) converges weakly to

the Ds—optimal design (s=1) as zg > .

(1) The optimal extrapolation design (w(x) = 1) converges to
dg(x) = N S dx as m > o=,

W‘ZO-le

Proof: (i) Using the facts that

T, 1(z4)
. n-1""0" _
11Tm Tn %0 )
0
and
Tim z Tn-14%0) =1
0 T (z,) 2°
zgoe n=0
(5.3.1) becomes
: 101 1
() .1 2 & .2
_{ Z-X z-2-2- z
So (i) is proved.
Tn-l(XO) 1
(i1) Notice that lim — AR for xq > 1. So (5.3.1)
ne  n 0 Xg* &S_]

_becomes




149

1 1 2
H1-(——)%)
5(
2 1 1
} de(x) . 1 Xg+r¥g-! 7 7
REERL 7 - 1 i 1 -z-2Z-
X +/x2—1 X +Vx2-1
0 "0 070
i.e Py = %—(x0+1 - ng-])
= = =J—
P2 = P3 2

By Example 2.8.3, we know that £ is absolutely continuous and the

density is given by

2
x0—1

n(xo—x)ﬂ-x2

Tn-10%) 1
If Xg < -1, then T1im T %) = . So we have
N0 n*"0 _ &2_]

2
(x0+]— xo-l) and o = P3 = 7.

o
w—

Il
N —t

There are more 1limit theorems in the next section. (See

Coroltlary 7.2.1, Corollary 7.2.3).

7.2 Robust-Type Designs
Throughout the last four chapters we have assumed the model is

a polynomial of a specified degree m. In many practical situations

the exact form of the model is unknown. It happens quite often that
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the experimenter faces several possible models or in our problem
setting, several polynomials of different degrees. We first
consider the case that there exists two possible choices: two
polynomials of degree r and m respectively with r < m. Let us
introduce the notations.

"

Let X = [-1,1] and fT(x) = (1,Xseu. X

= (£3(x),,(x)), where f;r(x) = (1,%,...,x") and

fz(x) = (xr+],...,xm). We then write M(t) as

Here M]] has size r+1 and M22 has size s = m-r. By the principle

of parismony, we tend to think the model is of degree r but try to
guard against the possibility that the highest s(= m-r) coefficients
are nonzero. We would 1ike to maximize the determinant IM]]I subject

to the condition

M
15,(2)] ﬂﬁ%’gﬁzc (7.2.1)

where MM(gé is proportional to the inverse of the generalized
11

variance of the least squares estimators B "ém' This 1is the

r+1°°°
so-called Dy,m problem (Studden 1981). The solution to this problem
is called a Drm-optimal design. A few remarks should be made about
the formulation of the Drm problem. Let us give the following

definitions first.
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Definition 7.2.1: The D-efficiency of a design ¢ is given by

M, (€) ]
D 2 1
em(g) B <mame2mZnH>nH

where m is the degree of the regression polynomial.

Definition 7.2.2: The Ds—efficiency of a design & is given by
1

D 2, (&) \g
e (2) = (i)

n

If we Tet ¢ = p° max]zs(n)l(o <p < 1) in (7.2.1), by rearranging
n
the terms, we have

i.e. ems(g)_i 0. Since eE(g) is proportional to [M]]I, we therefore
have a restatement of the Drm problem: Maximize the D-efficiency of
degree r subject to the condition that the Ds—efficiency is larger than
or equal to p. The problem is hard to solve in Stigler's original
approach and he gave the solution for the D12 problem only. By

using canonical moments, Studden (1981) can give solutions for D]m

and D2m problems. (See Stigler (1971).)

Theorem 7.2.1: The D, optimal design has canonical moments

Tm
_ 1 .
p21-_] -7 i=1,2,...,m
- 1+/1-p
P2 2
_ m=it] B
Poi = Zmzrer 1T Za3ae. e

1.
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Proof: See Studden (1982).

Corollary 7.2.1: D]m optimal design converges weakly to £1e0

having canonical moments Py = ]+2]'9 and Py = %—for i# 2. g]w

is absolutely continuous with density

1 P
T (14/T5) 24/ Tox

2 .

Proof: The limits of the canonical moments are easy to see.

The density was calculated in Example 2.8.4.

Theorem 7.2.2: The D2m optimal design has canonical moments

=] .
pz_i_-l "'2— 1 "],2,...,m

_oomei+l L _
pz,i - 2m"'2.i+] 1 3,4,--.,m ‘I

Pom = 1.

Py is the root of the equation

0(1-2p,)2 + 16(2-3p,) (p, - 3 (p,~1) = 0.

p4 is given by

= 0+ (1 - 2]
Pg = 2 4p2q2 )

Proof: See Studden (1982).

Notice that the D, optimal design has the same canonical

Im
moments except for p2.as the D-optimal design. The D2m optimal design
has the same canonical moments as the D-optimal design except for pza"d
pg- The same pattern holds for r > 3. It is also clear from these

examples that the Drm optimal designs for m > r share the same first r
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even canonical moments. We see that the explicit solution of Py and
Pg cannot be found in the D2m problem. We can expect some complexity
in the Drm—optima1 design as r grows larger.

In using the Drm design, we will first test the hypothesis
Bt = Bpyp To007 0 versus the alternative H1: not all B; = 0,
i=r+l,...,m; if we accept the hypothesis, fit the simpler model,
if we reject the hypothesis, fit the complete model. It seems interest-
ing to investigate the relation between design and testing, or the
power of the test.

In testing the hypothesis HR = 0, we know the power of the

test is an increasing function of the non-centrality parameter x which

is given by ‘
v = L e THTTHT (x %) " THT The.
ag

In our case, we have H = [0 IS] where I is the identity matrix of

size s and [HT(xTx)']H]'] = My, - MZ]M{} Mio. Let BT = (@{, §£)= where

B is the (r+1)-vector and By is the s-vector. Then we have

n T -1
—7 By (Myp=MyyM

A= 22- MMM )8,

Q

It should be noted that x is dependent on the regression interval.

In the case s = 1 and X = [-1,1], we see that

2r+]
_n ,2(r+l1) 2
e X T (P395)P 0081y
o i=]
i - : - - =1 -
A is maximized iff Py = Py =eev= Popyy T 3 and Popin 1. Note that
D

in this case the condition ]ems(g)l > p is equivalent to A > some
constant. In the case s = 2, X = [-1,1] and assuming symmetry of the

design, we see that
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PodsPg---P
27274 2r+2 Bt

n
A= = [B 1580l
2 r+1°"r+2 Br+2

o 0 P292Ps- - Pors
For each i, the above expression describes an ellipse in the
(6r+1’8r+2) plane. To ensure the test has the desired power, we
have to choose the sample size n and the design so that the acceptance
region (sphere) contains the above ellipse. Notice that the Tonger
axis will correspond to the minimum eigenvalue of the matrix
M22-M2]ME}M]2. It is clear that the design thatmaximizes the minimum

eigenvalue will give the higher power. In this case the minimum

eigenvalue 1is P191P202- - - Poyss and it is maximized iff
Py = Pg =-ev= Popyo = %—and Popsq = 1. All odd canonical moments are

%-by symmetry. We will compare efficiencies of different designs in the
next section. In the following, we will use the same example suggested
by Stigler (1971) to see how the D]3—opt1ma1 design is used in
practice.

Suppose we wish to design an experiment to estimate the inter-
ference effect (measured by induced voltage) of a certain power line on
phone calls as a function of distance. Based on past experience with
similar situations, we know that the log of the induced voltage behaves
approximately as a linear function of the distance from the power 1iné,
and that the errors of measurement are independently normally distribu-
ted random variables with a common variance. Let us further simplify
the problem by transforming (linearly) the scale of the distance

measurements (x) so that our range of interest is from x = -1 to

x = 1, and by assuming that the common variance of the errors is known.
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Our aim here is to design the experiment in such a way that if the
true relationship differs significantly from a linear one we will
detect the difference with high probability. Also we want to have
high D-efficiency in estimating the model we choose after the testing.

As a measure of departure from linearity, we could consider the
non—céntra]ity parameter, i.e.

P,0oP B ]
_n 2724 2
. [32’33][ p2q2p4q4p6][e3_,

g

For the case under consideration we might define "does not differ

significantly from a linear relationship" to mean that

The number 0.25 was chosen since, for the purposes of prediction to
which the model will be put, the presence of 82x2 + s3x3 with

851 < 0.250 and |g,] < 0.250 would be largely "washed out" by random
error.

Let us decide to follow the procedure "test the hypothesis HO =

By = By = 0 versus the alternative H] =8, # 0 or B # 0 at the signi-
ficance level a« = 0.10 with power of 0.70 at the alternative

182[ = 0.250 (B3=O) or 133{ = 0.250 (82=O). For the above significancé
level and power, the non-centrality parameter is 5.974 (see Selected
Tables in Math. Stat. Vol. 1, IMS). For a given value of the non-

centrality parameter and design, we can find the sample size that will

achieve the required power and significance level. In this case, we have
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n 2 2
A= ;?'(pzqu432 MLPUPLYCILRNE

By Theorem 7.2.1, we see that p, = ]+2]'p, Py =‘% and pg = 1. Given

B
that [EQJ 5_%3 we find
np > 1720.51.

That means the sample size should be at least 1121. If we take

p = 0.9, the sample size should be at Teast 1912. If we choose

p = 0.72, we find n should be at least 2390.

7.3 The Comparison of Designs
We will compare different designs under different criteria.

Let us introduce the following designs first.

(1) The minimum bias design INE Box and Draper (1959) suggested
the design which has its first 2r+s moments agree with the first
2r+s moments of the uniform distribution on [-1,1]. This design
is supposed to have the bias (that caused by the s extra terms)
minimized. If s = 1, the minimum bias design is given by

p21-+-l=7 - 1=0,],...,Y‘

Poi T 1T Ly
Pors2 =

If s = 2, the minimum bias design is given by

=] .
p21+-] —~é' 1 —O,],...,Y"*‘]
- .
pz_i - 2_i+~l 1= ],2,0..,r+]
1.

Por+g =
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From the theory of moments, the design £RD has its support rested on

the zeros of (XZ-T)Pﬁ(X) = 0, where P&(x) is the derivative of the

m-th Legendre polynomial and the weight attached to X is given by

(2) The discrete uniform design ¢ on n equally spaced points on

un

[-1,1], i.e. -1 = Xp < Xo <ea.< X = 1. The canonical moments

are given by (See Example 2.3.1).

p2i+'| = 1 = ],2,.-.,”‘2

| —

- 1 nh s _ _
p2.i‘2.i+]n__‘l— 1 ],2,.--,“2

Popn-2 ~
(3) B-optimal design

Lauter (1974) suggested using the criterion function

"2
IM(&)I ‘M]](E)I s Or

W]KHIM(E)I + Wzﬂn[M]](g)l

where Wi, W, are nonnegative constants which may be chosen to
get a desired relation of orders between the different factors.

= ] = __]_ 3 3
If we take Wy T T and Wo = 73T We call the resulting design
the Brm-optimal design. So Brm—optima1 design can be interpreted
as the design that maximizes the product of efficiencies of the

models. It is easy to prove the following theorem.

Theorem 7.3.1: The Brm-optimal design has canonical moments

_ ] ..
Poi 1 = 75 i=1,2,....m
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_ 2mr+2(mtr-i)-(mtr)i
P2i = Amri3mt3r-4i-21 (mr)+2°

i=1,2,...,r

m-i+1

P2i = Zm-27+T° i=rl..,m.

Corollary 7.3.1: Let ¢ be the 1imiting design of Brm-optimal
design when (r fixed) m tends to infinity. Then £ has canonical

moments

=] .
p21_] L i=1,2,...,m
__2r+2-i .

Poi = re3-zi 152,
_ 1
P2i = 20

—

Y

i=r+l,...,m.

Next we will introduce other ways to compare the performances of

different designs.

Definition 7.3.1: The Io-efficiency of a design £ is given by

min trM (1) M(o)
u

I
o (8) - i 1 (£)M(o)

It is difficult in general to find min trM"](u)M(o). Some
u

numerical work has been done in Studden (1977) for the case
do(x) = % dx. The denominator can be expressed in terms of canonical
moments as we have shown in Chapter V. For the first four integrated
variances trM'](g)M(u) where u denotes the uniform measure

_ 1
V](E,U) 1+ 3p2

- 1 2
VZ(E,U) - V]<€’U) + p2q2p4 [45 (3 pz) ]

1 4 1,2 2
+ = (& -
P2d,P49,Pg [175 3 (5 q2q4) ]

vag,u) = vy(g,u) +
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1 8,2, 4
)

3 = s + + T
valgsu) = va(g,u) P20, 492 e0ePa (105

T3
1 2, ] 2 1,42
(= 7 -4P6*a,50,4)" + [3 (a,0,- £)+qps(a- 3) 17

We also write the first four D-efficiencies down because we will

use them for comparison.

D -
e;(g) = vp,
2 1
P5d,P,; =
D _ 2°274,3
GZ(E) - 3( 4 )
1
D 1-.5_3 2 4
e3(g) = 5157p5(a,p,) "aPc]
1
D _ 35 49 4 3 2 5
e4(€) = “ﬁ{Tﬁg'pz(q2p4) (Q4+p6) q6p8] .

Although it is not our main concern here to discuss the testing
power, we will include a comparison of powers of different designs
in terms of their sample sizes. For example, in case r = 1 and

s = 2, we equate two noncentrality parameters, i.e.
NPoA,Pa94Pg = M PoA2P494Pg

P»A5P292P6
[ PCPC

=

Here n and n' denote the sample size. If we choose Py = Py =-%

and P = 1, i.e. the design with maximum power, then n will be the
smallest possible sample size for the given power and significance
level. Thus the ratio-%r will measure the efficiency of the design

in testing. In this case, the ratio %T-can be written as

nr = 16P3a5Pa4P5 -
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If r=2ands = 2, we have, by equating their minimum eigenvalues of
the matrix oo

P5>95P;94Pg%6Pg

P292P4%P6%Pg

n
nr

To achieve the highest power we just need to set Pp = Pg = Pg -%

and Pg = 1. Thus we have
n — 1 1] 1 ] t 1
T = 64P345P495Pg6Pg-

The ratio %T-again indicates the efficiency of the design in testing.
Before we give the canonical moments of the designs that we are
going to compare we first introduce the following notations:

1. denotes the minimum bias design.

*BD
2. Eun denotes the discrete uniform design on n equally spaced points.
3. - denotes the Drm—opt1ma1 design.
£p denotes the B-optimal design.
5. € denotes the D-optimal design.
In case r = 1 and s = 2 the canonical moments of above designs

are given in the following table. Notice that all odd canonical

moments are equal to %u



P2
0.333
0.556
0.407
0.340
0.336

]

.658

o]

.765
0.714
0.600

Py
.400
.800

o O o

.533

(ew]

412
.404
.667
.667
.667

oS O O o o

.667

0.619
0.446
0.434
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2, the canonical moments are given by:

P2
0.333
0.500
0.407
0.34

0.625
0.611
0.571

Py
0.400
0.700
0.533
0.412

0.752
0.700
0.600

P6
0.428
0.857
0.619
0.446

0.667
0.667
0.667

Pg

1

1
0.691
0.467



Table 7.3.1.

Table 7.3.2.

ep(e)

0.

(ew]

QO O O O o

585

.839
.707
.597
.906
. 882
. 828

e

0.

g(a)

585

0.905

o o O O o o

.707
.597
.589
.874
.852
.869
.866

2.

2.

e3(e)
0.745
0.959
0.785
0.621
0.609
0.997
0.920
0.963
1

The efficiencies of various designs for the case
r=1ands

162

0.853
0.632
0.595
0.388
.373
. 800

o O O

.639
0.726
0.853

The efficiencies of various designs for the case r = 2
and s

0.835
0.412
0.627
0.407 .
0.621
0.710
0.836
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From Table 7.2.1 and Table 7f2.2, it can be seen that £8p does
very poorly in D-efficiencies and it does a little better in IO-
efficiencies. The discrete uniform designs perform quite well when
the number of design points, say n,is closed to m+1.

When n gets larger, both the efficiencies and

testing power are’decreasing. Both £]3 and E24 have high efficiencies
in D-optimality. The D-optimal designs - (m = 3,4) performs very well
in different criteria except in the lower degree model. On the whole,
it seems that E13 and Eon perform quite well no matter which model

is used. The tg design behaves similar to £13 and Eog-

Below we will discuss the asymptotic efficiency of the various
designs we mentioned above. Let us investigate the 1imit of D-

efficiency first.

Theorem 7.3.2: Let £ denote the arc-sine distribution. Then

. D
Tim em(

Mo

£,) = 1.

Proof: See Kiefer and Studden (1976).

The following theorem gives the limit of the D-efficiency of a

design ¢ satisfying certain properties.

Theorem 7.3.3: Let £ be a probability measure with canonical

moments p., i = 1,2,..., such that ) (pi- %02
=1

< o, Suppose further

that £'(x) = w(x). Then we have

1
Tim eg(g) = %-exp(%—[] Jog w(x) dx).

e A2
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Proof: By Corollary 2.8.6, we see that

1 1
— 1+ log w(x)
: Tim 2m+]lM2m(£)|m+1 2mexp{- {1 > dx}

Tim pm(i) = T~ = 1
1

Mpreo . 1 m+]1 . mt] m+1

Tim 2™ M, (£ )] Tim 2" M, (&) ]
2m'=m Zm

By Theorem 7.2.5, the denominator can be replaced by

lim 2
Mo

1
T
m+1 IMZm(Em)lm ],

which is, by Corollary 2.8.6,

log

1
1 VA
Znexp{;]; f] —’—‘j“;—:')‘(*—
- V1-x

dx}

m
= 2nexp{-log m- %-f log sinede}
' 0
= 4.

So we have
1
. D _ T 1 log w(x)
lim e (£) = 5 exp{- {] dx}.

Moo 2
T-x

The next theorem was proved by Kiefer and Studden (1976). We

first have a lemma.

Lemma 7.3.4: Let f and g be non-negative and integrable functions
with respect to a measure u and s be the region in which f(x) > 0.

If [ (f-g)du > 0, then
3
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[ f(x)log g(x)du
5

is maximized uniquely by taking g(x) = f(x) (u a.e.).

Proof: See Rao (1973).

Theorem 7.3.4: 1lim eg(g) is maximized by taking w(x) =

e A=<

where £ satisfies the conditions mentioned in Theorem 7.2.6.

Proof: Directly follows from Lemma 7.2.7.

In case ¢ = gu, the uniform measure on the interval [-1,1], we

have the following theorem.

h

Theorem 7.3.5: 1lim eg(gu) =
Mo

Proof: By Theorem 7.2.6, we have

lim 2(¢ ) =

e -] Y1-x

|
no|=
(6]
>
o
b,
3|
—

ESE

Theorem 7.3.6: Let £8D denote the minimum bias design with all

jts first 2m-1 canonical moments identical with those of the uniform

measure and Pom = 1. Then

ENE

. D
Tim e (e,4) =
- m'~BD

Proof: Notice that
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1
1 1 1
('MZm(EBD)’>’"” L (LT L 2mel
MZm Su Pom m

Hence we have

Tim
[imastd

1
IMzm(gso)l) m
<]MZm(gu” .

and the result follows.

Theorem 7.3. 7: Let gun denote the design with equal mass onn

points. Then

Proof: Observethat Eun converges weakly to the uniform measure

as n - ». For fixed m, we have

D(e ).

. D _
1im em(gun) A

N>

Hence the result follows.

Theorem 7.3. 8: Let E1m denote the optimal design for D]m'

problem. Then, we have

Tim eg(glm) = 1im eg(g]m) =p.
Moo Moo
Proof: Notice that E1m has the same canonical moments as the
D-optimal design except Por Ble has the same canonical moments as
g » the arc-sine law, except Py But Py for E1m is the same P2 for

E et By comparing with Theorem 7.2.5, we have
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1
Tim (%ﬁgﬂéfbl;+>ln+] = 1.
oo MZm g]

Hence the first part of the theorem is proved.

By Theorem 7.2.6, we have

log

( 0 )
1 A2 2 2
Tim er?](g]m) 3 expld | =X [(4/1-0)-8/1-0x1 4

Moo ™27 ﬁ_XZ

m
exp{%—é(1og p-1og [(1+¢1—p)2—4/1-p cosze])de.

After some calculations we find
. D
Tim em(

Mo

g]oo) =p.

The following theorem gives the form of the asymptotic DS—

efficiency.

Theorem 7.3. 9 : Let £ be the measure with canonical moments

Pi> i=1,2,..., such that (pi - %)2 < w, Then
i=1

D 1
Vim 221542 o S(c) = zrexpck [ 109 (X gy
-

Moo ]_XZ

where w(x) = £'(x), the derivative of ¢.

Proof: By Theorem 2.8.7a, we see that

11m[é2m+1 Mo (&) H2m-1 Mop_2(8)] p2(m-s+1)+1 lMZ(m—s+1)(g)iJ%

M Mg T M2 (1) B

Mo L 2m=-2 &



168

1
= 2rexpd f 109wlx) gy
2

/]—x2

By simpT1ifying the left-hand side, we obtain the desired result.

Use the same reasoning in Theorem 7.2.7, we have the following

theorem.

D
Theorem 7.3.10: 1im 22m'5+2em2(g) is uniquely maximized by
Moo

taking ¢ to be arc-sine.
Proof: Use Lemma 7.2.7.

Definition 7.3 .2: The G-efficiency of a design ¢ is given by

m+1

g) = max d(X,£)"

X

m

. 1imeS(r )y = L
Theorem 7.3.11: 1lim em(gw) = 5

Proof: See Kiefer and Studden (1976).

The following theorem shows that the uniform design has G-

efficiency equal to 0.

Theorem 7.3.12: Tlim eg(gu) - 0.
Mmoo

Proof: From Guest (1958) it is known that
2 !
dn(x58,) = (M) 250 - (P-1)[py(x)1%

when m is Targe. Here pk(x) denotes the k-th Legendre polynomial.

Guest (1958) has also shown that



- _ 2
mix dm(x,gu) = dm(il, gu) = (m+1)°.

Hence we have

s . G . ]
Time (g ) = Tim — = 0.
mu mt 1

For x € (-1,1), we have the following comparison between £,

Theorem 7.3.13: For x € (-1,1), we have

A2,

d (%)

= T
dmix,gui 2

Tim
Moo

Proof: Use Theorem 2.8.8.
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and

The result shows that g performs better than &y in the region

|x| > 0.7718.
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