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SUMMARY

This paper concerns the method of generalized cross-validation (G.C.V.),
a promising way of choosing between linear estimates. Two new interpreta-

tions of G.C.V. will be given. One relates Mallows' Cp and CL statistics

while the other is based on Stein estimates and the associated unbiased

risk estimates (Stein 1981). The latter approach turns out more useful. A
number of consistency results are thereby obtained for the cross-validated
(Steinized) estimates in the contexts of nearest neighbor nonparametric
regression, model selection, ridge regression and smoothing splines. More-
over, the associated Stéinis unbiased risk estimate is shown to be uniformly
consistent in assessing the true loss (not the risk). Valid confidence sets
can be constructed as an immediate consequence of this uniform consistency
at least for large sample sizes. We also discuss the case of unknown
sampling error where three options are given with their consistency properties
examined. Finally, we propose a variant of G.C.V. to handle the case that
the dimension of the raw data is known to be greater than that of their

expected values.



1. Introduction

We consider the problem of.choosing a good estimator among those being
tentatively proposed. Qufte often after some preliminary inspection on
the given estimation problem, a statistician may suggest a certain class
of estimators. Different members in the class may look reasonable under
different plaussible conditions. Instead of enforcing any subjectivity
to select one of them, it is often desirable to let the data speak for
themselves. The generalized cross-validation (G.C.V.) of Craven and Wahba
(1979) is one of many such promising data-driven techniques of selection.
While the extension to the choice among non-linear estimators has been
under way (Wahba 1982), we shall nevertheless focus our study on the linear
ones in this paper.

Specifically, let Y1s¥gse oYy be n independent observations with unknown
MEANS My, hys. o sl . Write
(1.1) Y; = H t e i=1,...,n,
and assume that ei's have mean 0 and common variances 02. To estimate
M= (u],...,ﬂn)', a class of Tinear estimators ﬁn(h), indexed by h, is
proposed. Let Hn be the index set and Mn(h) be the n x n matrix associated

with u (h) such that

(1.2) u (h) =M (h)y,

where Y, = (y],...,yn)'. G.C.V. chooses h by minimizing the quantity
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(1.3) GCVn(h) =

Here |]-]| denotes the Euclidean norm of R" and tr M (h) is the trace of

Mn(h).

For illustrations, consider the following examples.

Example 1. Periodic curve and moving averages.

Suppose p. = f(x.) for an unknown continuous function on [0,1] with
i i

f(0) = f(1) and 0 < Xp < Xp < el X < 1. Due to the coninuity of f, it
h

is reasonable to estimate u, by (2h+])-1 y Yiej? for some h < (n-1)/2.
j=-h

Here we identify Y_j with Yp-j* It is clear that the rows of Mn(h) in
this case are certain permutations of the row vector (2h+1)'](1,1,...,1,0,
0,...,0) with 2h+1 ones. (1.3) is reduced to

Gev_(h) = (2h+1)2(2n) " |y, - d

Example 2. Model selection.
Suppose associated with Y; there are Py explanatory variables

xil,xiz,...,xipf, arranged in the decreasing order of importance. To
~"n

estimate > One may employ the first h variables to form a Tinear model

h
y; = Z xiij + € with Bj being unknown parameters, and then use the
J=1

Teast squares estimator

» _ 1 -1 1
(1.4) w (h) = x 00X ) Xy, s

1

where ¥ is the n x h design matrix. Now Mn(h) = Xh(X&Xh)_ X, is a pro-

h



jection matrix with rank h. (1.3) becomes

(1.5) 6eV, () = n(n-h)"?| |y, -3, ()] |2.

In the above examples Hn are discrete. For continuous Hn’ see the

following

Example 3. Ridge regression.

.ASSUme the regression model
P
b

J=1

n

(1.6) i = XijB' s i=1,2,...,n,

J

‘with the n x Py design matrix X = (xij)' When the information matrix X'X
is nearly degenerated, the ridge regression method is often advocated.

Denoting the p_ x p_ identity matrix by I_ , the ridge regression estimate
n n Pn

of &= (Bysevns8 )" s (XX + hI] )7

X'yn and Hp is estimated by
n n

.

. ~ — vy =Ty,
(1.7) ba(n) = K00x + nE )Ty,

Here the ridge parameter h is a non-negative number to be chosen. The trace

of Mn(h) = X(X'X + hIp )—]X' is often obtained by the singular value decom-
n

position (Golub and Reinsch 1870). 1In particular, Tet X = UDV with U and
V as orthogonal matrices with ranks n and Py respectively, and D being an

}/2 > 172 > ... > A]/Z > 0 for the 1,1th entries,

n x p, matrix having i n >tz = ppan =

i=1,2,..., mih{n,pn} » and 0. elsewhere. A straight-forward mamnipulation yields
)-]

Ph
(1.8) tr Mn(h) = 121 xi’n(h * Mo



and

n
(1.9) 1y, - ﬁn(h)llz =1 n“(h + M,

where v, = (Yi,...,y ) o= U'yn. (1.3) becomes

)P 1 )™H?
1

ne-~-13

(1.10) 60V (h) = [n~! g (h+ 2, (h +

n s

1

where we write Xy T 0 for i= pn+1,...,n; We shall conveniently take

Hn = {h: 0 <h <=} without any difficulties in defining any quantities

associated with the extreme cases h = 0 and h = .

Example 4. Smoothing splines.
Suppose My f(xi) with*féiwg [0,1] = {f: f has absolutely continuous

derivatives, f, f',...,f(k']), and f(k)(x)zdx <w} ,and’ X3 €[0,1].
A 0
The smoothing spline fh is the solution of
-1 n 1
(1.11) Comin T T (v - fn? e e ek
fewsro,1] 7 0

Here the smoothing'parameter h is a non-negative number to be chosen.

fh is well-known to be linear in the yifs and the matrix Mn(h) such that

u =-(fh(x]),...,fh(xn)) = M (h)y, has been studied extensively (Reinsch

1967, Demmler and Reinsch 1975, Wahba 1975, 1978, Craven and Wahba 1979,
Speckman 1981 a,b, 1982 etc.). To implement G.C.V., one may either employ
the fast algorithh of Utreras (1979 , 1980) or carry out a singular value

decomposition (Craven and Wahba, 1979).



G.C.V. was firstly proposed to choose the smoothing parameter for a
smoothing spline (Craven and Wahba 1979); then applications were extended
to the problems of selecting the ridge parameter, choosing a model, and
many others (Golub, Heath, and Wahba 1979). In these papers, G.C.V.
was viewed as a rotation-invariant version of the(ordinary) cross-validation
(C.V.) of Stone (1974) and Geisser (1975), namely Allen's PRESS (Allen 1974).
G.C.V. is just the C.V. after the data Yn being transformed suitably so that
the value in each coordinate when being excluded from the data set may be
easier to predict from others. This transformation is invariant in certain
sense which was argued‘to be desirable. However, since it involves circu-
Tant matrices, further studies on the probability structure of the trans-
formed complex-valued data set seem to be necessary in order to get a
better understanding of G.C.V.. Alternatively, in the cases of the ridge
regression and smoothing sp11nes, G.C.V. may be written as weighted version
of C.V.: a suitably weighted sum of prediction squared errors. But these
weights may as well appear arbitrary to some people. The two G.C.V. theorems
in Golub, Heath and Wahba, seem to be most useful and persuading: the first
one compares the expected value of (1.3) with the mean squared error for
the Tinear estimator Qn(h); the second one justifies G.C.V. from a Bayesian
viewpoint in the content of ridge regression. In fact, certain asymptotic
optimality of G.C.V. in choosing smoothing splines had been obtained through
the use of the first G.C.V. theorem or its strengthened version, inter-
twining with the rather complicated eigenvalue theory associated with the
smoothing splines (Craven and Wahba 1979, Speckman 1982). However, these

results required some artificial restrictions on the range of h. Hence,



this leaves something to be desired. At least we would like to have a
consistency result without putting any conditions on h.

The goals of this paper are multifold: (i) seeking natural ways to
understand G.C.V.; (ii) establishing general consistency results; (ii) assessing
the performance of the G-cross-validated estimate; (iv) constructing valid
confidence sets.

After a brief review of some relevent data-driven techniques, Section 2
provides two new viewpoints of G.C.V.: (i) G.C.V. is just the procedure of
Mallows' CL (Mallows 1973) applied to a class of suitéb]y-constructed nil-
trace Tinear estimates (NTLE, hereafter), Tinear estimates with the associated
matrices possessingvni] traces, that approximates the original class of
estimates'{ﬁn(h):l1€Hn}; (i) G.C.V. is equivalent to the procedure of mini-
mizing simplified versions of Stein's unbiased risk estimates (SURE, here-
‘after) for the Stein's estimates (Stein 1981) associated with the original
Tinear estimates gn(h). The first viewpoint mimics one feature of C.V..

In fact, as will be demonstrated later, C.V. is just the CL applied to a

class of zero-diagonal linear estimates, linear estimates with the associated
matrices being all zeros along the diagonals. By utilizing nil-trace (of
zero-diagonal) estimates, G.C.V. and C.V. circumvate one disturbing feature

of directly applying CL: the dependence on 02.

The second viewpoint of G.C.V. turns out more useful in our development.

In Section 3, we argue that SURE estimates the true squared error loss of

the Stein estimates, not the risks! Under some conditions on gi's, we show

that SURE is always a consistent estimate of the squared error of the Stein
estimate, although sometimes this squared error does not converge at all

when the sample size n tends to infinity. Furthermore this consistency



property of SURE has a novel feature: it is uniform over all M- More pre-
cisely, consider the probability that SURE will be within the given ¢ -
neighborhood of the true loss. This probability of course depends on

true T We prove that the minimum of these probabilities over uneiRn

will tend to 1 asymptotically. This seems to be the greatest advantage

for considering the combination of Stein estimate and SURE. It certainly
can not be enjoyed by any version of CL (including C.V.) which aims at esti-
mating the risk of some linear estimate that typically possesses unbounded
risks over EneR”.

In Section 4, we shall obtain a number of desirable consistency results
for the G-cross-validated Stein estimate (GCVSE hereafter) and the SURE
associated with GCVSE (GCVSURE hereafter) in the problems of nonparametric
regression with nearest neighbor estimates (Section 4.2a), the model selection
(Section 4.2.b), the ridge regression (Section 4.3.a), and the smoothing
splines (Section 4.3.b). These results will be derived under some condi-
tions on Eils and some additional conditions on the weight sequences (for
nearest neighbor 1.12 estimates) or the number of models to be chosen and
the associated dimensions (for mode]ISE1e¢tioﬁ). However, there are absolutely
no assumptions explicitly made about M It turns out that GCVSE is a]ways
consistent whenever given Hn it is possible to choose deterministically a

Tinear estimate En(h) from the given class to estimate . consistently.

Even more appealingly, we prove that GCVSURE is always uniformly consistent.
Thus the performahce of GCVSE can be assessed satisfactorily by GCVSURE.

As an immediate consequence of the uniform consistency for GCVSURE we
are able to obtain a valid confidence set of y at least for large n. This

will be illustrated for the model selection problem of Example 2 in Section 5.



Although this procedure is apparently conservative and improvements should
be feasible, it nevertheless turns out to be the first mathematically valid
one utilizing the data-driven techniques. On the other hand, as pointed
out before, techniques 1like CL or C.V. that concern linear estimates have
the inherent difficulties of establishing uniform consistency. Unless these
difficulties are removed, valid confidence sets based on these procedures
are unlikely (although not totally impossibie) to obtain. One may also try
to use other sample-reuse methods such as boostrapping or jackknifing

to construct some kinds of confidence sets. But again the probability of
coverage is hard to guarantee. So far it seems to the author that the only
rigorously justified procedure is the method of model-robust confidence set
due to Knafl, Sacks, and Ylvisaker (1982) utilizing the appoximate linear
model of Sacks and Ylvisaker (1978). When applied to the nonparametric
regression, this method may also produce the confidence band for the whole
function. But on balance, certain information about the function to be
estimated is required; e.g., an upper bound for the size of the second
derivatives. Practically, all methods mentioned above should bé attempted
and the procedure we here introduce naturally draws a valid benchmark for
comparisons. Theoretically, one would hope that certain combination of
model robust confidence set and GCVSURE may lead to a better solution.
Further investigation along this direction seems worthwhile.

Section 6 is devoted to the situation where the varijance 02 is unknown.
Three options are diséussed: (i) estimating 02 and using GCVSE and GCVSURE
(Section 6.1); (ii) returning to the original linear estimates after G.C.V.
(Section 6.2); (iii) utilizing the G-cross-validated nil-trace linear

estimates, abbreviated by GCUNTLE (Section 6.3). The first option is parti-



cularly useful when there are large degrees of freedom to estimate 02:
consistency and uniform consistency results of Section 4 are preserved.
The second and the third options do not require the estimation of 02. We
shall show that the consistency of GCVSE implies the consistency of -
GCYNTLE. The second option amounts to the common practice of G.C.V. and
the resulted estimates seem to be the easiest to interpret. However, the
consistency is not always guaranteed. For instance, in the ridge regression
problem, some restrictions on the eigenvalues of the information matfix are
imposed. One of them seems to be unavoidable in view of a counterexample
provided there. Fortunately for many setups including Examples 1, 2 and 4,
the consistency can be established without much loss of generality. Our
results here seem to be the first ones rigorously proving the consistency
of the common practice of GCV in these contexts. Intuitive ways of
assessing the performance of estimates of options (ii) and (iii) will be
mentioned. However, unlike option (i), it seems difficult to establish the
uniform consistency for these assessments.

From Section 2 to Section 6, we implicitly assume that W could be any.
vector in R". Section 7 discusses a natural variant of G.C.V. when K
is known to be in a proper linear subspace of R". Thus for the Examples
2 and 3, depending on our belief we may have two ways to conduct GCV:
(i) the usual version (i.e., minimizing (1.3)) which assumes that no model
with rank less than n is completely appropriate, and (ii) the variant version
(i.e., minimizing (7.1) of Section 7) which assumes that some model is
absolutely correct. Further comparison study about the performance of these
two methods may be necessary for the intermediate case that some model though
not absolutely correct may be appropriate. Practically, for diagnosis, one

certainly should try both methods.
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A1l technical proofs will be given in Section 8.

To close this section, we remark that almost every author referred to
in our paper has realized one way or another that the shrinkage phenomena
of Stein estimates are relevent in choosing estimates. However none of
them directly employ the Stein estimates as we do here. Particu]ar]y,
in ridge regression our approach is completely different from others (i.e.,
Casella (1980) and the reference given there)aiming at the minimax esti-

mation.

2. Two viewpoints of G.C.V.: heuristics.

To better understand our motivation, let us briefly review some rele-
vent methods first. |
Mallows (1973) introduced the famous statistics Cp and CL for selecting

a model and a linear estimator, respectively. Define Cp(h)=c'2|[yn~§n(h)||2—~'

n+2h-and..C, (h) = cfzf‘y_fﬁu(h)V'Z?h'; 2tr M _(h). C, (h)-isran-unbiased estimate
- _ 2nn ‘ n L

€
of the scaled sum of squared errors for the linear estimate gn(h) and Cp(h)
is simply CL(h) when gn(h) corresponds to a least squares estimate with h
parameters in the associated linear model. For the case of unknown 02, it
should be replaced by an estimate. This however is rather unpleasant parti-
cularly when the degrees of freedom for estimating dzbare not large. The
instability of this estimation may greatly endanger the performance of CL
(or Cp). Nevertheless if the tracés of all Mn(h) are zeros, then there will
be no need to estimate o°. C, (h) reduces to o_zl]xn - ﬁn(h)ll2 - n and now
2

o~ has no influence on the choice of h. Unfortunately no such nil-trace

Tinear estimates have been advocated for practical uses.
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Another promising data-driven technique to be discussed is C.V.. C.V.
selects h by minimizing the sum of squared prediction errors for Yio 1':_1 <n,
with Y; itself being excluded from the data set. A rigorous definition
requires the specification of estimators to be used for sample size n - 1.

Suppose given Y1sYosewesYi 15Y54700 oY, We want to predict Y5 by

ﬁij(h)yj with ﬁii(h) being 0. Then the sum of the squared prediction
1

He~-—13

J
errors is |l¥h - Mn(h)¥n||2 where Mn(h) = (ﬁij(h)). The common practice
of C.V. comprises the minimization of this quantity (let h denote the mini-
mizer) and the advocation of gn(B). Observe that the trace of Mn(h) is nil
since all diagonal elements are zero. Thus an interesting connection of
C.V. to CL is in order. C.V. is just the CL on -some zero-diagonal Tinear esti-
mators that approximate the original ones. Thus the difficulty of estimating
02 is circumvated. Clearly the success of C.V. may in part depend on the
closeness between Mn(h) and Mn(h)' In the case of kernel nonparametric
regression with one explanatory variable and equi-spaced design points,
Wong (1982) established the consistency of C.V.. Li (1982) obtained similar
results for nearest neighbor.estimates without the restrictions on
the number of the explanatory variables and on the structure of design points.

Qur first approach to derive G.C.V. is based on the construction of a

suitable class of nil-trace linear estimates approximating the original class.
For any linear estimate ﬁn(h), consider the linear combination §n(h) =-ay,t
(1+a) gn(h) with a = tr Mn(h)/(n - tr Mn(h)). It is easy to check that the

matrix associated with § (h), -aIn + (1+a)Mn(h), has trace 0. Now consider

n
the class of NTLE, {gn(h): h € Hn } . The CL procedure on this class amounts

to minimizing
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0y - g ME = (e)® 07T (L (h)y, ||

01y, - i, (011
(1-n"Ter w ()%

(1.3)

This is exactly G.C.V.! It remains to justify the use of {pn(h) } to approxi-
mate {gn(h) }. This is done in the following theorem from an asymptotic

viewpoint.

Theorem 2.1. For any sequence {hn} such that the original tinear estimate

ﬁn(hn) is consistent in the mean square sense, namely

(2.1) En |y, - (0 )2 — 0, as e,

the corresponding NTLE,gn(hn),w111 also be consistent, i.e.,

(2.2) n [ u - 5 (h )% — 0, in probability, as n » «.

Yn o EIn
Moreover, the convergent rate of (2.2) is at least as fast as that of (2.1).

n

If in addition the following condition holds:

-1

(2.3) n"'tr W (h )/ (7 e m(h )2 —,

then gn(hn) is asymptotically indifferent from ﬂn(hn) in the sense that
_ . 2 i1~ 2 : -
(2.4) 'lfn(hn) - En(hn)ll /EllEn(hn) - Enll — 0 in probability.

(2.3) is frequently satisfied by good estimates in the §11-posed problems;
for instance, Examples 1, 3, 4 (See also Golub, Heath and Wahba). Theorem 2.1
guarantees that for large sample size good candidates in the class of NTLE

are at least as good as the good ones in the original class. Here note that
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ndthing is said about the bad estimates. However, since our purpose is to
select a good one, essentially we do not lose ahything. Nevertheless one
thing worth reminding is that this justification is only asymptotically

valid. With a small sample size, it is hard to see any appropriate inter-
pretation. This is quite different from C.V.. Although, C.V. requires the
definition at sample size n - 1 (hence a general statement 1ike Theorem 2.1

is unlikely) and its rigorous justification is also only asymptotically valid,
it seems much easier to accept by practicians.

With the admission of the weakness of the above approach for small sample
sizes, we have to seek a different way, hoping that it will be valid regard-
less of the sample size.

We start with (1.1) and temporarily assume the normality of gi'S. Con-
sider the case where Mn(h)vis symmetric first. Define the Stein estimate

associated with Mn(h) by

2
2.5 2 (h) =y - g A (h ,
(2.5) () =y, VB My, A(My,
where An(h) =1, - Mn(h).and
(2.6) B, (h) = (trace A (h) - I_ - 2An(h))“ An(h)2 .

Here the largest characteristic root of An(h) is assumed to be less than half

of the trace of An(h)’ which often is the case (see Li and Hwang 1982).
Stein showed that gg (h) dominates Y under the usual squared error loss.

The ré]afionship between Qﬁ (h) and ﬁn(h) of (1.2) was studied from an

asymptotic viewpoint by Li and Hwang; The following main results they proved
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will be useful for our development later on.

Theorem 2.2. For any sequence'{hn} such that (2.1) holds, the associated

. . ~0 . . .
- Stein estimate T (hn) is consistent; i.e.,

(2.7 o [Edh) - w ]1° —= 0 in probability.

Moreover, the convergent rate of (2.7) is no slower than that of (2.3)

except for the pathological case that ||En - ﬁn(hn)ll2 —— 0, namely,

the convergent rate of (2.3) is faster than n"] (note that even if we know

_Y-,v--,
11 i

ne~1>

1
n

fr~133

that puy = ... = and take j (h') = ( %

n yi), this

i 1

)

are asymptotically indifferent; namely (2.4) holds with gn(hn) being re-

rate is only n"'1). In addition, if (2.3) holds, then {-(h ) and fi (h,
placed by gg(hn). Therefore, just 1ike NTLE, asymptotically good estimates

in the class of Stein estimates {gg (h); her”j} are at least as good as the
good ones in the original class. But for finite sample sizes, Stein estimates
enjoy the nice property that the linear ones do not possess: the boundedness
of the risks. In fact, the form (2.1) (or the simplified version (3.1)

of Section 3) of Stein estimate, suggests itself to be viewed as a model-
robust alternative to the Tinear estimates Qh(h)- This may be best illustrated
in the model selection context of Example 2. If gn(h) js a good estimate of

Hy (in the case that model h is appropriate) then the shrinkage factor

oz/yaBn(h)y should be close to 1 and gg (h) would be about the same as

n

ﬁn(h). Otherwise (in the case that model h is inappropriate), ﬁg (h) shrinks

gn(h) towards the raw data to gain some model-robustness (for the distinction
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between model-robustness and distributional robustness, see Huber (1975)}.
Therefore, typically no matter what the sample size is, we are justified
to replace the original Tinear estimates by the Stein estimates.

-0
Now define Stein's unbiased risk estimate for Un (h) by

4, 2

| A (h
(2.8) SUREz (h) = o% - o TRy )¥n112
n(yn By(hyy)

Stein showed that SUREﬁ (h) is an unbiased estimate of the risk of go(h);
i.e.,

E SURES (h) = En” [ [y - i° (h)]]?

for any U eR" . To select a good h, it is natural to minimize SUREz (h)

over héfur Equivalently, we may minimize

n(y! B (h)y,)°

1A, (h)y, |12

(2.9)

Suppose n is large enough so that the Tlargest eigenvalue of An(h) is negligible
compared to the trace. Then we may approximate (2.6) by Bn(h)as(trace An(h))-]

Ag (h). Substituting this quantity into (2.9), GCVn(h) of (1.3) is obtained!

For a general Mn(h), Li and Hwang (1982) replaced (2.2) by

B (h) = (trace A (h) - 2A(A (h))J 1A (h)'A (h)

n n

where X(An(h)) denotes the maximum eigenvalue of %—(An(h)' + An(h)). They
showed that all the desired properties we discussed above are preserved.

The corresponding Stein's unbiased risk estimate becomes
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| g 2
(2.10) SUREﬁ(h) = o - g {: rtr A"(h)g - r” 2
1A, (h)y. ] 1A (n)y, ||

1A, (y, 11

(h)).

This Tooks rather complicated. But observe that for any Yo

with r = tr An(h) - 2>\(An

' A (h)'A (h)'A (h
ly: A (h)'A ( ; nMnl A(A ().
[1A (h)y, |1

Therefore for large n since A(An(h)) is negligible compared with tr An(h)’
(2.10) can be simplified and again this will lead to the method of G.C.V. .
In conclusion, we have seen that minimizing SURE is equivalent to the

procedure of G.C.V. .

3. Estimating the true loss, not the risk!

In this section we assume that 02 is known.

Consider the following simplified version of Stein estimate and SURE:

(3.1) u (h) ki ™) A (h)
. = y - y s
" " llAn(h)xnll2 o
) o*(tr A_(h)?
(3.2) SUREn(h) =g -

| 1Ay (), |12
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For brevity, we shall omit the.index h and assume that
An # 0 in this section.

Observe that to choose between estimates what one really needs to esti-
mate is the true loss, (or better to say, the difference of the true losses

for each pair of estimates), not the risk. Since SURE is primarily derived

from the need of estimating the risk, its performance for estimating the true

loss may be questionable. But surprisingly, we shall see that the opposite
side turns out to be the case. We shall show that under some conditions
about the ei'S, SURE is always consistent iﬁ estimating the true loss; but
it may be inconsistent in estimating the risk. The following example is

illustrative.

Example 5. Take A = diag (1, n']/z, n'1/2,..., n_l/z), and y = (0,0,
Then
, o1+ (n-1n7/E)?
SUREn =g - s
n (e +n_1§ 82)
1 i2p 1
22
. O'E-I .
which tends to — (a random variable!) as n » o, Hence SUREn
€]+O

can not be a consistent estimate of the risk E %—|1gn - Enllz since the

risk is a non-random number. On the other hand, the Theorem 3.1 below shows
that SURE, estimates the true Toss %—][gn-gn||2 consistently.

In the following development, the normality assumption is no Tonger
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required. Instead, we assume:
(A.1) The 4th moments of e;'s are bounded by a constant m;
(A.2) There exists a constant K such that for any a > 0, we have

sup p{x - a < ey g_k'+ a} < Ka, forany i .
X€ER

Looking at the forms of (3.1) and (3.2), is is clear that if ||An¥n]|2

takes too small values, then {i and SUREn will ndt be good estimates. (A.2)

n
is simply made to monitor the chance that this will happen. It can be

easily satisfied, for instance, by assuming that ei's have a common bounded
density. On the other hand, it seems possible to avoid this assumption by
modifying (3.1) and (3.2) a little bit; for instance, by adding.a positive con-

stant to the denominators there.

The following theorem is the main result of this section.

Theorem 3.1. Assume {A.1) and (A.2) hold. Then for any ¢ > 0O we have

(3.3) sup p{| SURE - n_]llﬁn - Enllzl >8>0 as n »e
p €R"

Theorem 3.1 establishes the uniform consistency property for SUREn as
an estimate of the true loss of Stein estimate gn' No assumptions about
the matrix Mn are required here. Roughly speaking, the boundedness of the
risks of Stein estimates makes this theorem plaussible. Thus it does not
seem 1ikely for the same results to hold in the case of using linear esti-
mates together with their unbiased risk estimates.

Let us briefly discuss the convergent rate. Observe that
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2
-1 - 2 _ -1 O'trAn 2
Ny - owllT o= o0 ey, - = Ayl
- ALY,
2
‘ o tr A
= n e || - 2n”] n 8
~Nn ~Nn ||A y IIZ n-n
n'n
04(tr An)2
+
2
nf Ay,
From this, it follows that
. -1~ 2 -
(3.4) ISURE, - "M [1E - w [P < T ] e 1P - of
26°[tr A | )
| <e A e>-o"tr An[ +
2 ,
n| 1Ay,
25%|tr A |
9 I < En’ AnEn >
n| Ayl

1/2

The first term of the right hand side converges to 0 at rate n” '“. Thus

it seems that the convergent rate of the left hand side of (3.4) can not be

-1/2

faster than n On the other hand, one frequently has the convergent

1/2

rate of n~| T 2 faster than n For instance, in Example 1, with
¥n ~ En

2/3 can be achieved if f

hn being appropriately chosen, the convergent rate n-
has a bounded first derivative. For optimal convergent rates in the non-para-
metric regression, see Stone (1981, 1983). This generates the following un-

solved problem:
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Does there exist an estimate of n_]llgn - Bnliz with the desired con-
vergent rate if Hy is associated with a fixed smooth f, such that at the

same time (3.3) can still hold?

4. Consistency of GCVSE and uniform consistency of GCVSURE.

Assume 02‘15 known. We shall investigate the consistency problem of
GCVSE and GCVSURE in this section. Certainly some assumptions wi]]rbe
needed on the three ingredients of the problem: the unknown parameters of
interest Qn’ the class of matrices {Mn(h): h EHn } s and the distribution of
random error € Qur assumptions on the error distribution may be further
weakened since here we only mean to keep the proofs simple. But the assump-
tions on the class of matrices will be mild enough to cover most cases under
study. Since the consistency of GCVSURE will be uniform overlﬂ]ERn, of

~

course nothing on Bn'is assumed in its proof. On the other hand, it seems
unlikely for GCVSE to be uniformly consistent; the consistency of GCVSE 1is
tied to the sequence'{gn}. However, fortunately we do not need any explicit
assumptions of ‘{Bn }; otherwise, we may get into the trouble of justifying
them. Specifically, what we need is that consistency can hold with a deter-

ministic choice of estimates; namely, there exists a deterministic sequence

h €H , n=1,2,..., such that
n-'n
-1, 2 . 1k
(4.1) n IIEh(hn) - En" —> 0 in probability.
.Here hn can even depend on gn! We shall show ‘that GCVSE is consistent:

(4.2) 0”15 (R) - w |15 ——> 0, in probability,
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and that GCVSURE is uniformly consistent: for any 6 > 0, and n » » ,

- - 2
(4.3) sup p{|SURE, (h) - n” ][u (h) = u [1°] > 6 } 0.

where h is chosen by GCV; or equivalently, h achieves

(4.4) min SURE, (h)
heH

The most difficult step in obtaining these results is to establish the

following: for any sequence { Hn Y,

(4.5) sup | SURE_ (h) - L5 n) -y |12} —— 0 in probability.
he H n n''~n ~N ‘
: n
Once (4.5) is established, then immediately |SURE_ (R) - = |5 (h) -

2 11~ 20 o .
u 19 < sup |SURE_ (h) - —I1d (h) - u [°]- 0 in probability. Now

if (4.3) does not hold, then there must be some § > 0 and some hn such that

p {]SUREn(h) - n']||ﬁn(h) - gn||2| > & } =\ 0, contradicting the above

statement. Thus we have seen that (4.5) implies (4.3). (4.2) also follows
from (4.5) and (4.1) as to be elaborated below.

First observe that

015 (h) - w112 < SURE () + |SURE, (h) - n”'[|5 () -y 17|
< SURE_(h ) + | SURE () - n™'| |5 () -4 [|°
Un upl 171

(by (4.4))

5‘rfqllﬁ(hn) - En||2 + | SURE_(h.) -

_] ~ Fal A

2 2
nu (hy)-w TIT]+ [ SURE (h)- g ()= 1]



22

The second and the third terms in the last expression tend to 0 because of
(4.5). By (4.1) and Theorem 2.2 (which holds obviously for gn(hn) in
replacement of ﬁgf(hn)), the first term also tends to 0. Hence (4.2) is

proved. We summarize what we have obtained by the following

Theorem 4.1.  Under (4.5), (4.3) holds. Suppose in addition (4.1) holds.

Then (4.2) holds.

However (4.5) does not always hold. Certain conditions on the class
{Mn(h):f1€Hn} are unavoidable. For instance, when Hn is discrete, the cardin-
ality, #Hn, may not be too 1arge; when Hn is continuous, good analytical properties
on the matrix valued function Mn(-) may be imposed. Instead of developing a
general theorem to cover all situations, in What.fo1]ows we shall look at

a number of useful cases individually.

4.1. Bounded # .

The following theorem follows immediately from Theorem 3.1 (which implies

(4.5)) and Theorem 4.1.

Theorem 4.2. Assume—that—(A.1)and (A.2) hold and that sup {#Hn: n=1,2,...,0xw—

Then (4.3) holds. If in addition (4.1) holds, then (4.2) holds.

4.2. Finte #Hn'

Consider the case that #Hn is finite but may be unbounded. Instead of

(A.1), we assume the following stronger moment condition:

(A1) 81'5 have mean 0, common 2nd, 4Eb-and 6Eh-moments,and their 8Eh-moments

are bounded by a constant M.

The following theorem will be useful in verifying (4.5). Let_}%An(h))

denote the maximum singular value of An(h).
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Theorem 4.3. Under (A.1'), for any § > 0 there exist positive numbers

n

]

C, and C, (depending on M and ¢ only) such that for any u, €R

1 ~ 2
4.6)  p {hse“ﬁn |SURE, () = — [[3,(h) = u []°] > 26}
) ) [A' (A (h))]*
< Pt g, 1150 2 oy + e i v C, ) n )
PlEHn (tr Ah(h)An(h))

4.2.a -Nearest neighbor estimates in nonparametric regression.

Let p be a natural number and X be the compact closure of an open set
in RP, Suppose y1,y2,...,yn are observed at levels 51,52,...§n€:t with
X; # §j for i # j such that the expected value M of Y; is equal to f(§1)
for an unknown continuous function f on X. Let fi(j) denote the J'Eﬂ nearest
neighbor of X; in the sense that ]|§i - 51(j)]J is the th-sma11est number
among the n values [Igi - xi|[, 1'=1,2,...,n. Ties may be broken in any
systematic manner. Take Hn={1,2,...,n}. For any h€I+n, consider gn(h),

the h-nearest neighbor estimate of My The iih-coordinate of Qn(h) is given by

wn,h(J)yi(j) with Wn,h(°) being a non-negative weight function such that

h
L

j=1

h
(4.7) Z wo (i) =1

The rows of Mn(h) are certain permutations of (wn h(1),...,wn h(h),O,...,O)

and the diagonal elements of Mn(h) are equal to W h(]). To ensure (4.1),

L]

we assume that

(4.8) there exists a sequence {hn} such that hn/n + 0 and

wn,hh(]) +0,as n >, -
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)

(see, e.g., L1 (1982)). Stone (1977) gives more general consistency results

It can be easi]y verified that (4.8) implies the consistency of én(hn
for nearest neighbor non-parametric regression.
In addition to (4.7) and (4.8), we have the following two mild restric-

tions on the weight function:

(4.9) There exists a positive number &' such that wn;h(l) <1-38

for any n, h > 2.

(4.10) For any n,h and 1, Wn,h(i) z_wn,h(i+1).

To use Theorem 4.3, we need to have an upper bound for A'(An(h)).

This can be derived from following Temma.

Lemma 4.1. Under (4.7) and (4.10), there exists a constant A (depending

on the dimension p only) such that A'(Mn(h)) < A for any n and h.

1and A = /6 for p = 2.

We may take, for instance, A = V2 for p
From Lemma 4.1, it follows that N(An(h)) < (T+A). Now using this bound and

the obsefvation that

L% > n(1 - 512,

ne~15

tr AL(A (h) = n T (1-w h(i-))2 > n(1-w

"I : n; n,

1'

we see that the right hand side of (4.6) is bounded by

pil n']llgnllz - %] 5 6} + C]n'1 + C2(T+A)4(1-6')_4n-]

which obviously tends to 0 as n - ». Hence (4.5) is established. Now the
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following main result for nearest neighbor nonparametric regression follows

from Theorem 4.1.

Theorem 4.4. Under (A.1'), and (4.7) ~ (4.10), the Steinized nearest

~

neighbor estimate ﬂn(h) with ﬂ being chosen by G.C.V. is consistent. More-

over, the associated Stein unbiased risk estimate SUREn (ﬁ) is a uniformly

~

consistent estimate of the true loss n'1!]§n(h) - Enllz-

4.2.b. Model selection.

Consider Example 2 without the restriction that models to be selected
are nested. In general, let Hn denote a class of models. Associated with
any h in Hn is a design matm‘x-Xh with d(h) columns corresponding to d(h)
explanatory variables. Assume that X}']Xh is non-singular. Consider the

~

least squares estimate En(h) of (1.4) and its Steinized versionlgn(h).
When d(h) = n, define gn(h) =Yy and SUREn(h) = 02. Here in advocating
gn(h) we implicitly assume that none of models wfth ranks Tess than n are
completely appropriate. Otherwise, we shall proceed differently; see
Section 7 for details. Also we do not require that Py be finite since
infinitely many parameter models can be useful sometimes (e.g., Shibata 1981;
Li 1982). |
Recall that here An(h) is a projection matrix with rank n - d(h). Thus

the Tast term on the right hand side of (4.6) equals CZ'héH (n-d(h))~2.

N

Hence the left hand side of (4.6) will tend to 0 if #Hn/n2-+ 0 and

») ’(n-d(h))'2 ~ 0. However occasionally some models in the suggested
he 4
n

class Hn may have large numbers of parameters so that for these h, n-d(h)
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may be quite small. If there are not too many such models in each Hn’
Theorem 4.2 can be utitized to circumvate this difficulty. Specifically,

we have the following

Theorem 4.5. Assume that (A.1') and (A.2) hold, #Hn/n2 +>0as n~>o, and

that

(4.11) for any positive number ¢ , there exists a natural number k
such that for any n, we can find a subset Hr']C:Hn with cardin-

-ality no greater than k so that ) (n-d(h))_2 <e.
héHh
Then SUREn(h) with h chosen by G.C.V. 1is uniformly consistent. Furthek-

~.

more ﬁn(h) is consistent whenever given B there exists a sequence of

models'_{hn eHn } , such that the least squares estimate gn(hn) is consistent.

Example 2 (cont.) In this case, #Hn =P, <. Put HA = {n,n-1,...,
-2 no.-2 . Q .-2
n-k-1} AH . Then Y (n-d(h))™° < Vo . Since i
het, =k =1

converges, it is easy to see that (4.11) can be satisfied.for a suitably-

chosen k.. Hence Theorem 4.5 applies here.

4.3, Continuous Hn'

Two cases for Hn = {h: h > 0} will be considered; namely, the ridge
regression and the smoothing splines. In fact, the results for smoothing
splines follow immediately from those for ridge regression. Hence we first

look at
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4.3.a. Ridge regression.

Consider the Steinized ridge regression estimate ﬁn(h) associated with

S

Bn(h) of (1.7). Here En(O) is defined by 'Jimo En(h) (# ¥, unless all A one

i=1,...,n, are equal) and simitlarly for SUREn(O). Again in advocating gn(h),

we implicitly assume that the model (1.6) is imperfect if its rank is less

p
n
than n. The true model may be u} = Z xijsj + 8 with 51'5 being nuisance
J=1

parameters. This is the approximate linear model of Sacks and Ylvisaker
although we do not specify a bound for Gils‘ If (1.6) is completely appro-
priate, we may proceed differently; see Section 7.

Since we shall work with the transformed data gn (recall the definition

from the 1ine following (1.9)) and the independence for the components of 9n
is .desired, we shall impose the following:

(A.1'1) ei's are 1.1.d. N(0,0%).
Under (A.1''), we see that 21, the 1£h-component of yn, satisfied
Yi = Hy T ey
. - - - ! - . .. 2 . .
with ( u],...,un)' =y, = §} Mps and e;'s being i.i.d. N(0,¢") again. Since
EucTidean norm is invariant under orthogonal transforMation, we rewrite all

the relevant quantities in terms of Yo in and én = (E],...,En)’. Put

1 -1)

(4.12) M (h)

0 Diag (A](A]*h) s

,...,xn(xn+h)

and

il
—
1
=]
—
=
~—

A, (h)

Here we abbreviate Ay for_xi n- then, we have
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(4.13) in(h) = U5 (h) = R (h)7
z ) ) - 7 cz.trfﬂh(h) h
h) = U =y - | R
Bn En ‘Zn ! lﬁn(h)}:'n! IZ n Xn
B a2
g (tr.A_(h))
SURE, (h) = o° - (i")z ,
| n[|A (h)F ||
and

[ () = g [1% = (1, (h) - 3

Therefore thinking of the transformed data y

n @S ¥,» our ridge regression

problem reduces to establishing (4.5) for the special case that ﬁn(h) = Mn(h)y

with Mn(h) taking the diagonal form of (4.12).

Lemma 4.2. Assume that Mn(h) takes the diagonal form (4.12) for h > 0.
Then under (A.1) and (A.2), (4.5) holds.

Based on this Temma, we immediately obtain

Theorem 4.6. Under (A.1''), for the ridge regression problem with ridge

estimate (1.7), SUREn(ﬁ) with h chosen by G.C.V. is uniformly consistent.
In addition, if given'{En} there exists a sequence of positivé numbers

A

{hn} such that ﬁn(hn) is. consistent, then ﬁn(h) is consistent.

Our work here seems to be the first general asymptotic study in the
ridge regression literature. The appealing features are (i) there is no
need fo specify how to build up the sequence of models for different sample
sizes; (ii) no explicit assumptions are made about the asymptotic behavior

of Hn s (iii) P, may be taken as « providing that the associated summations
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converge.

4.3.b. ‘Smoothing splines.

Consider Example 4. ‘It is well-known that %h is a natural polynomial

spline of degree 2k - 1 with knots at xi's. Specifically, let

k 2k=-2

S, = (f: fecC [0,1], f is a polynomial of degree 2k - 1 on

(x1.,x1.+ 1), i=1,...,n-1, and f(k) = 0 on [0,x1] and [xn,1] }. Consider

the basis for §

=~

n introduced by Demmler and Reinsch (1975) (see also,

Speckman 1981 a, b; 1982) consisting of eigen functions {¢jn}2=1 along

with eigenvalues {pkn}E=1 satisfying

1 f -
(4.14) - 121 b5 (%3) 051p(x4) = 8515
f]¢(k) (x) ¢(k) (x) dx = p. 6;.
o Jn i'n jn 33t 7’
for 1 < j,j' <n, with

< <p

0= Py = s " Py “Prag,n 2o Py -

Here 6jj' is the Kronecker delta. Using this basis, (1.11) is equivalent

to

n n
-y Cjn—]/zq;j(x.))2 +h ) c2 p.

(4.15) min ; st 3 Pan

(y;
Cer" i

1§

HI~135

Here C = (C],Cz...,Cn)'. Let U, denote the n x n matrix with the ijEﬂ

element n j

Then (4.15) reduces to

-1/2 : A - L
¢:(x;). From (4.14), it follows that U U =1 . Puty =Uy

n
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min ||y -
cern "¢ j=

* N .
The solution C of this minimization problem can be obtained easily by

standard calculus. It turns out that

* - - - -1 - -1-
C = (Fys¥poee¥ps (#hDy Ly )77 Ypyqsee e (hp, )y )
= = = = o = —-I T = 7
Put A=Ay T e Ay and A p1.’n for i = k+1,...,n. We see that

* .
C takes the form (h) of (4.13) when the first k diagonal elements in the

(3=
3

matrix ﬁh(h) of (4.12) are interpreted as ones. Hence in terms of Qn’ our .
problem is exactly the same as that of the ridge regfession. Therefore
applying Lemma 4.2, we obtain the following

~

Theorem 4.7. Under (A.1''), for the smoothing splines, the SURE_ (h) with

h chosen by G.C.V. is uniformly consistent in estimating the true loss. 1In
addition, if given the true Hos there exists a sequence of nonnegative num-
bers {h } such that the corresponding smoothing spline solution of (1.11)

is consistent, then the G-cross-validated Steinized smoothing spline esti-

A

mate ﬂn(h) is consistent.

Speckman (1982) derived an interesting variant of smoothing splines.

It is conceivable that similar results may hold for his procedure.

5. Confidence sets for model selection.

(4.3) guarantees that for large n we may obtain a valid confidence
set based on GCVSE and GCVSURE. Let p(n,s) denote the left hand side
of (4ﬁ3). Then to construct a confidence set of y with the coverage pro-
bability at least 1 - o , we may choose & = Gn(a) with p(n,s {a)) < @
to form the n-dimensional ball {yu : n ||u -, ]] < SURE_ (h)+s NCY
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(4.3) guarantees that we may have Gn(a) ~0as n->« . In fact, for
all cases where Section 4 has studied, we can always obtain Gn(a) by the
bounds used in the proofs of (4.5) (see Section 8). But these bounds are
too crude. This section will demonstrate by one case that sometimes with
a more careful evaluation of the probabilities involved we may obtain a
better an(a). Note that in view of the discussion given at the end of
Section 3,the convergent rate of Gn(a) is unlikely to be faster than n-]/z.
The an(a) obtained in the case studied here achieves this rate.

We shall consider the model selection problem of Example 2. To simplify
a little bit the computation, we assume that P, 2 g-. We remind the readers
again that imp]icitly_we think that none of these models are completely
appropriate; otherwise we should proceed differently (seé Section 7). We
assume further that ei'S are i.i.d. N(O,oz).

Now, since the models are nested, by standard methods we may transform
the problem into the canonical form that the Py columns of the matrix X are

mutually orthogonal. Furthermore, the normality assumption allows us to

transform Y, SO that the relevant estimates take the following simple form:

for each heHn = { 1,2,...,pn}, Bn(h) = (y],...,yh,O,...,O)‘ .

R T RN S R P T ol PRI s T [ .S s U T
“n i=h+] i=ht T
n
and SURE. (h) = o% - o (n-h)%n"" { ) At
f i=h+1 7

We have the following theorem to find Gn(a).

Theorem 5.1. With the definitions of én(h), SUREn(h) given above, we have
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1)~ 2
(5.1) p {;gﬁ | SURE, (h) -+ Tu, (h) -y [17] > 6}

<8078 61+ (20767933 - p )T

We now use this theorem to get a 5n(a) with the convergent rate ﬁ"‘fﬁ

First, supposing that /?"02 > § , then one can get a simpler bound:

4

8¢ n_]é-z

+ 1024 046_2(n-pn)']. Then we may let Gn(a) = a_]/2(8n-] +

1024("-Pn)_])]/202 < 322 o 12 orz(n-pn)-]/2 . Now since P < n/2,

§ (o) is of order n"1/2

n as desired. 7Hawevergiw1 order that

V2 02 > 6n(u) we need n - P, to be large, i.e., n - Py 3_1024a_].
With o« = 10% and P = n/2, we need at least 20,000 observations to make -

this 8, work! ‘In addition, the right hand side of (5.1) is at least as

1

large as 64(n - pn)f]. Thus for o < 64(n - pn)_ , this method breaks down

completely. Hence i% seems necessary to obtain a better evaluation of the
left hand side of (5.1) for small n. Another possibility (a very challenging

job!) may be to directly evalute the probability that
” 1 ~ 0 2 . . .
ISUREn(h) -4 'an(h) - Hnj] | > 6 . Finally, the heuristics of Sec-

tion 8 of Stein 1981 may provide better insights for our problem.

6. Unknown variance of sampling error.

Three options will be discussed below when 02 is unknown.

6.1. Estimating 02.

As mentioned before G.C.V. does not require 02. Consequently, we may
still use it to select ﬁ. After ﬁ being chosen, we may estimate iy by the

Stein estimate ﬂn(ﬁ) with the unknown 02 substituted by a good estimate ;2.
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We denote such an estimate by gn(‘ﬁ,éh). To assess the performance of

VN ~

gn(h,on) we use SUREn(h,;n) defined to be the SUREn(ﬁ) with o substituted

by o, - The consistency and uniform consistency properties are preserved

. 2 . 3 .
if o, is consistent. More precisely, we have

Theorem 6.1. Assume that ;ﬁ is a consistent estjmate of 02. Then

A A

ﬁn(h,on) and SUREn(ﬁ,;n) are consistent whenever given 02, gn(ﬁ) and SUREn(ﬁ)

are consistent respectively. Moreover, if the distribution of SE does

not depend on B theh SUREn(ﬁ,Sn) is uniformly consistent, whenever given
02, SUREn(H) is uniformly consistent.

Perhaps the most natural case to have a 8§.whose distribution does not

depend on Hy is when ‘there are.replications.of the»dataﬂyhgz Another
common situation is in ridge regression or model selection where one may

have a completely appropriate model available and the residual sum of squares
for the least squares estimates under this true model can be used to con-
struct éﬁ (in this case, a modification of G.C.V. is needed; see Section 7)).
However, sometimes we may get ;ﬁ that may depend on My For example, in

~p .1 N2
Example 1, we may take o, - n 121 (y21_] - Yy

1.)2 for n even. Supposing

that as n increases, the x values get dense in [0,1], it is easy to see that
;ﬁ > 02 if f is continuous. This method of constructing ;ﬁ extends naturally
to higher dimension cases. The pairs of differences Yoi-1 = Yoq may be

so formed that the corresponding explanatory variables take values as close
to each other as possible. Rice (1983) had considered such variance esti-
mates in a study of utilizing the C_ procedure to select the bandwidth of a
kernel nen-parametric regression in R]. He even suggested the use of higher

order differences in replacement of the first order difference Yoii1 = Yoi
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to reduce the bias of Sﬁ.

6.2. Returning to the original Tinear estimates.

After G.C.V., the common practice is to return to the original linear
estimates, namely ﬂn(ﬁ). We shall discuss the consistency problem of
Bn(h) below.

To begin with, we have the following
Lemma 6.1  Assume that

(6.2.1) both gn(ﬁ) and SUREn(ﬁ) are consistent.

A

Then Bn(ﬁ) is consistent if and only if

(6.2.2) n"ler A, (R) > 1, in probability.

A technical step to establish (6.2.2) is to obtain the following state-

ment:
. 2
LA, (h)y, ]
(6.2.3) 1im ——> 5 >—>— <1-261}=0, for
nae AR (2 + o e AZ(R)
any & > 0.
From (6.2.7) and (6.2.3), we get that for any §;,8, >0
. 2
9 n[[A,(h)y, ]
1= Timp{o > - 8y ) (by 6.2.1))
n->o (tr An(h))
1A (h)y || no? tr A2 (1)
. 2 n' ’“n . n
= 1imp{o > PR AT v AR
n-o llAn(h)Bnll +o"tr An (h) (tr An(h))

9 no2 tr Aﬁ(ﬂ) :
limp{o® > (1-%,) - - 6y}

n-—»>w (tY‘ An(ﬁ))z

| A
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o 2
LA (h)y]]
+ 1lim p { < T~ 85 }
Nn->w o 2, 2 2,0
> 1A (h):ia 1[5+ tr AC(h)
o1 n tr As(ﬁ) ‘

< limp {(1+c /8 (1 - 62) > 5~} (by (6.2.3)).

n>w (tr A (h))

Therefore, for any s > 0,
n tr A2 (h)

1=Timp {(1+3) > — }

n-+w (tr An(h))

A

Since ntr Aﬁ(h) is-a]wayé no less than (tr An(ﬁ))z, it follows that

| n tr A (h)
(6.2.4) ~—— 1 1in probability.
(tr A, (A))°

In many cases, we shall see that (6.2.4) implies (6.2.2) and hence the

consistency of gn(ﬁ). The simplest case is the model selection where all

An(h) are projection matrices i.e., Ai (h) = An(h). In this case (6.2.4)

and (6.2.2) are identical. Next, consider the case of nearest neighbor

non-parametric regression (Section 4.2.a) where n_] tr Aﬁ (ﬁ) =

h ) |
(- w 5(1))2 ) wﬁ’ﬁ(i) and tr A () = n(1 - w +(1)). (6.2.4) implies

A

n

that 0 = plim [ J wi 170 -w £(0)% > plim (-1)71 (by Cauchy-
. n -+ i=2 ’ n->o
Schwartz and (4.7)). Therefore ho>wo asnos>w. Now assume that the

weight functions satisfy the fo]]oWing regularity condition:
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(6.2.5)  for any sequence {hn} such that hn > o, We have Wo (1) > 0
>’n
as n > o ,

Then "h + » " implies "W (1) > 0" which in turn implies (6.2.2).

The cases of ridge regression and smoothing spline are a little bit

complicated. We need the following condition on the eigenvalues Ai n

(6.2.6) there exist p and q, 0 < p < q < 1, such that

i Arenton / Mpngon <!

n - w

where [x] denotes the greatest integer < x.

Lemma 6.2  Assume (6.2.6) holds. Then (6.2.4) implies (6.2.2).
Condition (6.2.6) means that the asymptotic distribution of eigen-
values should not concentrate at on]yvone point. Violating this condition,

we might get inconsistency. This is demonstrated by the following

[ o

Examp]e 6. Consider the canonical case wﬁtH Xnﬁ diag (2,1,...,1). Here

‘x1;n =4, Az’n=...=xn,n=1'ajd G.C.V. chooses h by minimizing

-2 2 2

2 oo
)] ) Ty
=

[(h+4)™" + (n-1) (h+1)71]

over h > 0. Straightforwardly, we inspect the derivative of the last

expression with respect to h and conclude that

I

h= w,ifr>1 ,

(4r-1) (1 -r)71 L if1/b<r<1 ,

= 0 ,if0<r<1/4 ,
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: n
where the random variable r is defined by (n-])_] ) y? / y? .
i=2

Now suppose u_ = 0 and ¢.'s are i.i.d N(O,oz). Clearly, 1limp {ﬁ = 0}
~N 1 . nN-o>w

= Tmp {r<1/81= Timp {4 < 2}~ 0.05.

n-o

1

Since n~ ' tr An(O = 0, (6.2.2) does not hold. However, by Theorem 4.6.,

)
gn'(ﬁ) and SUREn(ﬁ) are consistent when b, = 0.

This example and the condition (6.2.6) indicate that the common practice
of G.C.V. does not perform well if the problem is not il1-posed. This
observation was implicit in Craven and Wahba. However it is important to
note that the inconsistency occurs only becauée of the insistence on
returning to the original linear estimates. The methods of Sections 6.1
and 6.3 (as we shall see) do not have this problem.

To completely establish the consistency ofén(ﬁ), it remains to verify
(6.2.3). However sometimes we may need further conditions. Case by case,

we state our conclusions in the following.

Theorem 6.2. For the nearest neighbor non-parametric regression problem,

assume (A.1'), (4.7) ~ (4.10), and (6.2.4). Then ﬁn(ﬁ) is consistent.

Theorem 6.3.  For the model selection problem, under- the same assumptions

as those in Theorem 4.5, én(ﬂ) is consistent whenéver given T there
exists a sequence of mode]s'{hHEPﬂ]} such that the least squares estimate

~

En(hn) is cons1steht.

Theorem 6.4.  For the ridge regression problem, under (A.1'"), (6.2.6)

and that
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n
(6.2.7) (Y a7 ) — ©, a5 N —
én(ﬁ) is consistent whenever given u,» there exists a sequence of hn such

that ﬂ,(h ) is consistent.
hhn

Since as was shown before spline smoothing of Example 4 is a special
case of ridge regression, we can use Theorem 6.4 to obtain the desired
consistency results. A]] we need is to check (6.2.7). For instance, if

xi's are equi-spaced, then Craven and Wahba's result showed that (6.2.7)

holds. Roughly we have Ao © ci_Zk for some constant ¢ and hence
n n 1
(L T 2 = L @5 e e
i= 2 3 i=

Finally, in the model selection problem, besides cp, there are other
procedures closely related with G.C.V. . Hocking (1976) firstly proposed
a criterion called Sp, which select h by minimizing (n-1) (n-h)'](n-h-1)'].
IIXn - én(h)||2 . Compared with (1.5), we see that their difference is
only marginal. In fact in the proof of Theorem 6.3 (Section 8.12), we
shall see that the consistency of E;(ﬁ) and SUREn(H) implies that n-h > e
(see (8.12.1)). Therefore Sp and G.C.V. are asymptotically equivalent under
such circumstances. Sp was further studied by Thompson (1978) and Breiman
and Freedman (1983). Breiman and Freedman established an asymptotic opti-

mality for Sp in the setup of Example 2 under the assumptions that Pp = >

Hn ={1,2,...,n/2 }, all explanatory variables and random errors are

Jointly normal and that there are infinitely many non-zero gj's. Shibata (1981)



39
used a different criterion: minimizing n_l(n+2h)]|)~/n - u (h)H2 . Clearly,
if for all heH , h <<n in the sense that -% -~ 0, then this criterion
is asymptotically equivalent to the G.C.V. . Otherwise they might be quite
different. Shibata obtained an asymptotic optimality for his criterion
(again in the setup of Example 2 with P, = = ) but the underlying assump-
tion about Hn (i.e., max Hn =0(n)) makes this selection procedure not
completely driven by the data (the same criticism applys. to the work of

Breiman and Freedman but less seriously).

6.3. . Utilizing NTLE.

If we accept the first viewpoint of G.C.V., then it seems reasonable to
use gn(ﬂ) to estimate T where h is again the minimizer of (1.3). The
consistency problem of gn(ﬁ) will be discussed below.

First, observe that if we replace An(h) =1 - Mn(h) in (3.1) and (3.2)
by I, - (-al + (1+a)M_(h)), then we get the same ;n(h) and SURE_(h). ’This
means that the simplified versions of Stein's unbiased estimate and un-
biased risk estimate corresponding to NTLE, Qn(h),are the same as those
corresponding to the original én(h). Thus we may pretend that gn(h) is
indeed constructed from ﬁn(h). Now Lemma 6.1 amounts to saying say under

- (6.2.1), gn(ﬁ) is consistent if and only if
(6.3.1) 0! tr(I-(-al_+ (1+a)M (R))) > 1 in probability.
However, (6.3.1) always holds (in fact " > " is really " = ") because of

the definition of NTLE. We state our conclusion in the following:

Theorem 6.3.1. Under (6.2.1), En(ﬂ) is consistent.
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Therefore we have seen that from the consistency point of view, gn(ﬁ)

~

is more favorable than pn(h) because no extra conditions are needed for

A

Qn(h) . But for sample size not too large we have to be careful since as
mentioned before, the motivation of NTLE may be shaky. Another important

problem remains, i.e., how to obtain an assessment for the performance of

ﬁn(ﬁ) or én(ﬁ) that may have desirable properties 1ike uniform consistency?
It seems that one may use n_]llyn - gn(ﬂ)llz - 02 (0nﬁequivalént]y,”the,quantities

of (1.3) —02)'as the error assessment for,gh(ﬂ) (and for ﬁn(ﬁ)?) {(of course, ¢

should be estimated). But the-properties of this estimate still awaits further

investigation.

7. A variant of G.C.V.

Suppose that Hy is known to be in a proper linear subspace Sn of R"
with dimension S and.that ﬁn(h) takes values only in Sn. Then one should
not use_gn(h) or ﬁn(h) since they may take values outside Sn' Natural ways
to proceed in such circumstances seem to replace the raw data Yn by it's
projection on Sn, denoted by X; 5 namely X: = Ean where En denote the

n x n projection matrix from R" to Sn. The simplified version of Stein

estimate (3.1) should be changed to

2

ok (n) * o) tr(Pn - Mn(h)) ( * ~ (h)
Un 'n I v, - En(h)llz In ~ En
s oPls -tr M (h)) . .
- In T ] 2 (Y = up(h)).
TERCT

Similarly, SUREn(h) of (3.2) becomes:
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,  ols - tr M (h)?

Sl 1y - 2y (M)]1°

* . . - %
Here SURE, (h) is estimating-the Toss s™'[|u - i (h)]|2.

Therefore in choosing h, one should minimize

1, * -

_ s |y, - u
(7.1) 6eY (h) =0 ,
-1 2
(1 - s, tr Mn(h))
instead of (1.3).
- _%* * %
On the other hand, En(h) should be changed to Hn(h) =-ay +

*

~ * -%*
(T+a )En(h)’ with o = tr Mn(h) / (sn-tr Mn(h)). Applying €, to En(h)

amounts to minimizing
S I A FRNTY AL N P 2 _
o 1y = B 112 = (=227 1y - 5,112 = (7.0).
In the problem of ridge regression or model selection, we thus have
two options of G.C.V. to choose h: (i) the original one (minimizing
(1.3)) which assumes that no model with rank less than n is completely
appropriate, i.e. Bnelf]; (i1) the modified one (minimizing (7.1)) which

assumes some model with rank sn < n is correct, i.e., “nesn(: Rn. How-

ever in the case of replication, it seems that one should use (7.1);

*
here Yn is just the sample average of replicated observations.

8. Proofs.

8.1. Proof of Theorem 2.1.

N -1, .~ ' 2
) = a7 = 7 () -y 1P <

Observe that ”-]llﬁn(hn 0

n

2, -1/, 2, -1 % 2 i
o (n [ (h ) = g [[7 +n ) e; ). On the other hand, (2.1) -implies

n
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that the variance part 02 n—] tr MA (hn) M (hn) converges to 0. This in

n

1 2 -1

- . -1 '
turn shows that n ' tr Mn(h) +~ 0 since (n 'tr Mn(hn)) <n  tr Mn(hn)Mn(hn)'

Now since o = n 'tr Mn(hn) / (1 - n"lir Mn(hh))’ it is clear that
)||2 + 0 and hence that (2.2) holds. Other statements

015, (h ) - g (h

follow by similar arguments. O

n"n

8.2. Proof of Theorem 3.1.

In view of (3.4), it suffices to show that for any 812 65 > 0, there

exists an integer N such that when n > N,

2
Ltr A I |<e Ae > -0 trA l
(8.2.1) p { 7 S n~n2 n > 81 <8,
n [[AY]]
and
ltY‘ A I I<€ JA u,_> I
(8.2.2) p{ n___ .= "””2 51} < 8,
n 1A Y]]

The following two lemmas will be useful. Recall that A‘(An) denotes the

maximum singular value of An‘

Lemma 8.2.1. Assume that A'(An) 1. Then under (A.1) we have

2 2,
Var < e o A u > = o [[A ]

n-~n

Var < € A g, > < M tr Ah Ap

n

and

, 2 . 2 2
Var (1A, gl 1 < amtr A A+ 8% [A |12

Lemma 8.2.2. Suppose for any n, ¢ is a vector in R" with l]gnll = 1.
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Then under (A.2) for any sequence of nonnegative numbers'{an} converging

to 0, and any sequence of real numbers'{bn}, we have

Tim p {|cle. +b | <a } =0.
o e n=n ~ n' = °n

Assuming the validity of these lemmas, we proceed with the proof of

Theorem 3.1. Without loss of generalty, we assume A'(An) = 1. (8.2.1) and

(8.2.2) will hold if there exists a positive number a, such that

(8.2.3) ot 1Ay 2 <a ([[Ay |2+ oPtr a &)} < 2
oo ntil =9 n¥n nn/t 7
8.2.4 [tr Ayl A 2
(8.2.4) p {———::——— -] o< eh €, > - O -tr An] > 8y,
(1A 12+ o® tr AA )Y 2
n&n nn’'’ — 2 °

and

ltr Anl ' > 7 ) s,
(8.2.5) pli—y— | < gn,AnEn > | > cS.Ian(IIAnunll +o tr AnAn)} < 5

Using Chebychev inequality, the left hand side of (8.2.4) is no greater
than
tr A \2
n 2.2 2 2 ' 2
(Ton ) ver < by > 1 el eyl 17+ o or B
tr An 5 trA'An

Now by Lemma 8.2.1. and the fact that <__ﬁ—_—> < ———ﬁﬂ—— .
the above term does not exceed n-]ar']2 . mc'zd;z

Take ¢ = (2m 0'25;2551)1/2 . MWe see that (8.2.4) holds if
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> cn_”2

(8.2.6) a >

By a similar argument, we can show that (8.2.5) holds if

(8.2.7) a »c nl/E
with ¢' = (2 5{2 551 )1/2 . Now to get (8.2.3), we first set
(8.2.8) a < 1/2 .

Then by Chebychev inequality again, the left hand side of (8.2.3) does not

2 2 . 2
nEnII + o tr AnAn) .

exceed var ]|Any||2 / (1-an)2(||A We can bound this

2 tr AtA )" after utilizing
' -2

quantity by (8m o %+ 32)_([|Angnl|2 to

Lemma 8.2.1 and some simple computation; Put c¢'' = (16m ¢ = + 64) GE] .

Then (8.2.3) holds if

(8.2.9) A 15+ 0% tr AL A > cit
It remains to take care of those n such that (8.2.9) does not hold. Let
{n'} denote the subsequence of {n} such that (8.2ﬁ9) fails.  Suppose
{ni} is a finite sequence. Then for n large enough,(8.2.9) holds and so
do (8.2.6) ~ (8.2.8) with, say, a, = %ﬂ. Consequently (8.2.1) and (8.2.2)
are proved and Theorem 3.1 follows. Thus it remains to consider the case
that n' is infinite.

Recall that we have assumed X(An) =1, It follows that AhAn > cc
in the nonnegative definite sense where o is an eigenvector with eigenvalue 1

for AhAn and ||Cn|| = 1. Therefore, with n = n', the left hand side of

(8.2.3) does not exceed
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: : ' 1/2 2 2 . 1/2
p { Ign|§n| +Sn|1~1n|| ian| (||An|};ln||| t 0 tr AnlAnl) }
<P L leieg * Cpingl 5_al{2 ¢'' .

Now by Lemma 8.2.2., this last quantity can be made arbitrary small for n'

Targe enough providing that we have set

(8.2.10) a, 0.

Hence with (8.2.10) and (8.2.8) we have shown that (8.2.3) holds for n large
enough. Finally observe that there exists {an} such that (8.2.6) ~ (8.2.8)
and (8.2.10) hold for n large enough. This completes the proofs of (8.2.3) ~

(8.2.5). Theorem 3.1 is established. O

Proof of Lemma 8.2.1. This is straightforward. One may have to use the
2
)

inequality that (Ah A f_A;An which is implied by the assumption that

n

x%An) = 1. The details will be omitted.

Proof of Lemma 8.2.2.

Write Ch © (c1 s-..>C__)'. Without loss of generality, assume that

n nn

Cip = . max c.o . Given § > 0, we want to show that for large n, the
<i<n ' '

probability of the event

(8.2.11) {196 e, t an.i a,}

is no greater than s. Rewrite (8.2.11) as

n
-1
.22 Cin € * Pl < apcq

-1
ey + o ()

and consider the conditional probability that this event will happen

given €95 €350+05 €

0 By (A.2) we see that this conditional probablity
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does not exceed k a Cqp- Hence the unconditional probability of event

(8.2.11) is no greater than k a C1pt Therefore if for any n, we have
(8.2.12) Cip 2 k as

then the probability of event (8.2.11) does not exceed §, as desired. Now,
consider the subsequence {n'} of {n} for which (8.2.12) fails. Along this
sequence, Cint 0 because a, > 0. Then it can be shown that 9;; €n is
asymptotically normal with mean 0 and variance 1 by checking that-the Linderberg-
Feller condition is satisfied. Now it becomes trivial to show that for large n'
the probability of event (8.2.11) (with n setting to n') does not exceed s.

This completes the proof of Lemma 8.2.2. a

8.3. Proof of Theorem 4.3.

We shall use the following lemma whose proof is detered.

Lemma 8.3.1. Assume (A.1') holds. Then there exist constants c¢' and c¢''

(depending on M only) such that

(8.3.1) E(<goh g, > -0 tr A < c'(tr A'A)Z,
4 4
(8.3.2) E(< ¢ Ay, > )" < m] A ||
and
(8.3.3) ECLIAy, |17 - J1Au, 112 - o“tr A MY < et 8 () o (tr A p)?
4
+ [ [Au [17]

for any n x n matrix A and any gnERn.

To prove Theorem 4.3, first in view of (3.4), (8.2.3) ~ (8.2.5), it

suffices to show that
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v e, T DA ()IY [er AL (h) A (0)]72

(8.3.4) c
1 heH n

is no less than

202
n

| tr A (h) Lol < e LA (h)e >

(8.3.5) p { for some heH : €n2ip\nle,

2 2

Pt A (h) | o> S (A () [1°+ o8 tr (B (M)A ()}

202

i a

| tr A (M) + < g bA (h)y

p { for some hEHn: ensAn (M,

B (HAn(h)gnH2 + ot tr(A (M)A (h)} +
p { for some heH : ||An(h)3~/n||2 5_1/2 (IIAn(h)EnIIZ +
2

o tr(Aé(h) An(h)) }.

Clearly, the above expression does not exceed

Tope PO (tr A (M))* (< g A ()

8
s 7 e B (e (M) (< g A

n
hEHn n

n

(LA (Mg, [17+ 6% tr(al (A (M)* )

VR LAy 112 = (1A (g |12+ 6% e (A (0)T* > 5 -

n -
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(LA (g, 117+ o tr(at (A ()

Now, using Chebychev inequality and Lemma 8.3.1, we can bound the above

expression by

16° o° 57" n"H(tr A ()% (trA! (h) A TN OMIE

n.
hEHn

of tr(Al()A _(h)))"*

+ 7 016% 60 s e A () G*1A (h
hGHn

4 2
(), 1141 1A () 1]

. 4 c 4, 2
¥ héHn 16 c¢''[x (An(h))] Lo (tr A (h)A (h))

1A () 1177+ (1A (0w 117+ 02 tr(al (M)A ()™

Deleting llAn(h)Enllz from the first summation term and utilizing the

2

inequality n”“(tr A (h)) tr A (h)A (h), we see that the first

summation is no greater than 163 6_4c'n'2#Hn. A similar argument applying

-4 -2
n

to the second summation yields the bound 163 08 S #Hn' Finally, it is

clear that the third term does not exceed 16C"o-4 Y [A(An(h))]4
heH
- n

and C. = 16¢'' o~ % to

-2 3 -4
( 2

i _ 8
(trAn (h)An(h)) . Now put C] = 167 s )

c' +o

get (8.3.4), the desired upper bound. The proof of Theorem 4.3 is complete.

a
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Proof of Lemma 8.3.1.

A+A' )2

Proof of (8.3.1). Since tr ( 5

tr A'A, we may replace. A by

(A+A')/2 when A is asymmetric. Thus without loss of generality we may
assume A is symmetric. In addition, we may assume x'(A) = 1 because

dividing both sides of (8.3.1) by a constant (A'(A))4 does not change the

inequality. Let A = (aij)' Then E (< EnAgn > - oztr A)4 = E(.;' 33 84€; +
173

4 3 2::2 4

Tagf -t = e+t = et v ger®n v eer?n? + ger 13 + e,
-i .

Ee. . . €.
1

The term EI4 is the sum of items of the form a. .
! 191 12 92

- PR W J
191 T2d2 1333 14
€i.€5.€4 €j with i # I 1 # J,s 14 # iy and iy # Jg- Since Eei =0,

393 494
some of these items vanish automatically. Let o, 8, vy, & denote four dif-

ferent integers between 1 and n. Then what reamin in EI4 are items with

label {{ 1],j1}, {12;j2}, {13,33}, {14,j4} } taking one of the following
forms or their permutation versions:

(-i {{QSB}’{Q’B}S{’Y’a}»){Y’S}} ’
(-i-i {{G-’B},{Bs‘Y},{‘Y,(S},{(S3a}} 5

{{a,R},{0,B},{asy}, {a, vy}
{{a,8},{c,8},{c,8},{a,B}} .

)
(i) {{a,B},{a,8},(B,v},{v,0}}
(iv)

)

(v

The sum of items of form (i) does not exceed M( ) afB ) () ai s ), which

o,B Y596
. . 2.2 2 _ 3 _
in turn is no greater than M(tr A®)“. Denote A® = (bij) , A” = (cij) and
A4 = (d..). The sum of items of form (ii) does not exceed

1]
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Mzaaaa=MEaa a a =-a _.a. -
0sBay,s OB BY Y8 oo . af “By “ya ya “ax  “yB “Bo

aYYaYa) - M azsaaﬂ[(cﬁa_ aBabaa B aBBbBa) B (bBa " Agalan ~ aBBaBa)aaa_

(b - a -

2
T T Now ]

)aBa] - M) I B L aascsa

asB,yY

- 4 2,2 24,1/2
y d - I a C. = trA" - g a_ c . does not exceed (tr A%)“ + (g a’ ) /

o163
(5 222 < (e 192+ (2 1)V 2(er (B2)V2 < (tr a2)2 4 tr A (the Tast
o

inequality is due to the assumption that X(A) =1 which implies that A6 E_AZ).

Now since "X(A) = 1" again implies "tr X > 1, we conclude that § 3,6Caq
a,p

< 2(tr A2)2. Similar arguments can be applied to all other summations
including those involved in the sum of forms (ii) ~ (v) and those in the

evaluation of E1311, EIZIIZ, etc. The details are omitted.

Proof of (8.3.2). This is straightforward.

Proof of (8.3.3). Observe that E(|[A y [1% - ||Ay |[% - o% tr A'R)"

= E(< e ,A'Ae. > -oltr A'A + 2 < e ,A'Au > )% < B{E(< e A'Ac > -c%tr A'A)Y
-n? ~n <n’ ~n — ~n*""'<n

+ 16 E < €ns A'Agnf> 4} . Now by (8.3.1) and (8.3.2) the last expression

does not exceed 8{c'(tr(A'A)2)2 + 16m||A'AEn|[4} which in turn does not

exceed 8[x(A'A)]%(c! (tr A'A)% + T6m |[Ay 1% 3. Finally, since A(A'A) =

4

(A'(A))Z, we may take c'' = 8 max{c' o ', 16m} to conclude (8.3.3).
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8.4. Proof of Lemma 4.1.
Ob that ||M _(h) H2 E (E (J) )2 rZ] E
serve tha Y = W J)y < W
PR yn yn i) i=1 451 ™
D DT e () (11
= w J Yigsy = wo o (3) -w  (G+1)) Yiroy)s where
j=1 MR TiE) g2 b n.h ki1 =7 1(K) |
wo o (h+1) is set to be 0. For 1< £<n,2<J<n, let.%(£,j) denote
| oo
the cardinal number of the set y {i: i(k) = £}. It is clear that
k=2
J n n J n n n
2 2 2 2 2
oL Ys = 1oy o+ Ioys = L oyi+ L ondy, .
k=1 asn TR s T gz T s Ty ¢

Now Lemma 2.2 of Li (1982) showed that there exists a universal constant A

(depending only on the dimension p) such that. % (£,3) 5_15(j-]) for any

5

h
. , 2 . . .
n, £, j. Therefore we see that Ian(ﬁ)¥n|| E-jz](wn,h(J) - wn’h(3+]))353.
L no2 . ,
(Kzl yz) = A 121 Yo - This means that A(Mn(h)Mn(h)) < Age Hence
' 1/2 . _ . 1/2 .
A(M(h)) < A %, Taking A = ag’" , the proof of Lemma 4.1 is complete.

8.5. Proof of Theorem 4.5.

First, applying Theorem 4.2, we see that

Tim sup p{ sup
n->w E'ﬁ€Rn h EHYI]

|SURE, (h) - T{[5 ()= [12] > 263

O
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Next, (4.6) implies that

lim sup  p{ sup | SURE (h) - %—I]ﬁn(h) - unllz|3_26}
nre p RN he -H! - -

Combining these two statements, we have

Tim sup p{ sup | SURE (h) - 1 ||g (h) - u |17] > 25)
n->e €RN hed

Finally, we may take e - 0 to complete the proof of Theorem 4.5.

8.6 Proof of Lemma 4.2.

| A
™

A
™

Proceeding as in the beginning of the proof of Theorem 3.1, it suffices

to show that for any 6], 62 > 0, there exists a, = 0, such that for n large,

L 2 -2
z (Ui + Ei) (h + xi) S
£8.6.1) p Jinf i=1 c2
h>0 no, 5 P = a0 2 7 o
n n
o o Lth+a)™ Y (h+ a7 - o)
(8.6.2) p {sup i=1 i=1 s s
h20 L 2,2, 2 =n
n T (h+ )72 2+ P
i=]
n -1 n -
e a )™ e ) (h+a) ues |
(8.6.3) p {sup i=1 1 i=1 1 1 as
20 s 2,2, 2 n'l
n ,Z] (h +2;)7 (5 + o)
1:

Note that (8.6.1) ~ (8.6.3) correspond to (8.2.3) ~ (8.2.5) respectively.

Proof of (8.6.1). First observe that as a special case of Lemma 8.2.1,
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(8.6.4) var(ui + ei)2 g_c(u§ + 02)

for ¢ = max {802, 2m/c2 1.

n, 2. 2
Define G _(h) = ) (us + o")(h+ 1)
n j2p n

G _(h) is a continuous increasing function of h. Let L be a large number-to

2 / (h+ Ai)z . Obviously,

n

o L
be chosen later. Let Kn be the largest integer such that 2 L < Gn(O),

k
and kn be the largest integer such that 2N L 5_Gn(w). For 1, Kn + 1

: . (n) _ a-T,51 (n) _ (n) ..
< i 5-kn’ define hi Gn (2'L). Take hzn 0 and hkn+1 .

First, consider the case that Kn > 1. MWrite the left hand side of (8.6.1)

g 2 2 2
p )inf 1Z] (ui ¥ Ei) (h + An) /[ (h+ A1') ..
0 6, (h) -y
which does not exceed
n
n I (upre) 2 )2/ )2
p inf i=1 <
J” h(n)<h§h§2% G (h) -
n
K 6 (h(M) .Z](u1+ei)2(h§n)+x )2/ (h{M e
= _2 p nJ L < a,
9™ Gn(h§2%) en(hgn))
;n E](we 20§+ 3 )2 7 (0§ 5)?
< i=
= Ly P | o) =1 > | 1-2a | ;.
J Gn(th ) n

Here by the fact that Gn(h§n>)/Gn(h§2%) 5_2'1 , the Tast inequality holds

for n large so that 2an < 1. Now by the definition of Gn(h) and the Chebychev
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inequality, the last expression does not exceed

n ) ) )
(1-2 )-2 zn 1Z](ui+€i).(h§h?+ An) /(h§n)+li)
-ca var .
n Ly
J n Gn(h\gn))
K B2 2y (n), 4, (n), 4
< (-2a)2cy R R )/ (5" )
- (n),2 by (8.6.4))
n Gn(h§n))
Kn
< (1-2an) 2 CJ‘ZZ Gn(h‘gn))-] (since (h(;n)_}_}\h)(h('n)_‘_xi‘)—] <1
n
Kn
= (1-2a )_2 . C L_] .Z Z'J
n ibp
n
< (1-2an)'2 c L]

Now, since a, > 0, one can easily set L suitably (e.g. L = 4c 651) so ‘that

the Tast expression does not exceed 62/2 for n large enough. Hence (8.6.1)
follows.
We turn to the case that Kn < 0. The left hand side of (8.6.1) is no

greater than

n
T Gugrep) ¥t )%/ (hea) 2

p inf i=1
O<h<h(n) =3
— =1 L
n
“n L (uyre)2(hen )% ()2
+ 7 p 1?f i=1 < s
J=1 (n (n) - “n
hj fhfhj+] Gn(h)

We have shown that the second term is no greater than (]-2a)_2 cL7T:
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On the other hand cliearly the first term does not exceed

A <a} =pilu

) 1/2L1/2} f_kL]/zan]/z.

+ +
PL (upte, ntenl <3

Here the Tast inequality is due to (A.2). Now set L suitably so that for
targe n, kL'/%al/% + 2cL™! < 5,/2 (e.q. take L = 8cs;'). This establishes
(8.6.1). ‘ O

Before turning to the proof of (8.6.2), we state a useful lemma.

Lemma 8.6.1. Assume that wi,i=1,...,n are independent random variables

having means 0 and finite second moments. Then for any & > 0,

Ew?.

| -2
1 1

(8.6.5) p { sup | > 38} < 8

05915925,..5pn5] i

C:W,
L
1

HE~13
ne~133

If in addition wi's have finite fourth moments, then for any § > 0,

(8.6.6) p { sup | ) c.w, | > 8} <6

Ofp]fpzf,..fpnfj i=

This lemma follows immediately from Kolomogorov's inequality and 1its

extension (see, e.g. Chung (1974), page ), after observing that

nNe-13

w.|.. (8.6.5) had been used in

sup | c.w.| = sup | ;

O<Cy<...<c sl i1 11 t<j<n =]

Speckman (1981a,1982).

Proof of (8.6.2).

(h+A ) 2)1/2 (this follows
1

IIL\/]3

Using the inequality that Z h+x ].i /n (
i=1 i

from Cauchy-Schwartz inequality), we bound the left hand side of (8.6.2) by
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n

' | 2 (85 - 02)/(h + 5]
p )sup i=1 a8 2
h>0 172 , B ~2,1/2 = “n"1°
nt% (T (h+ag) ")
i=1
which equals
o2 2
| 2 (e5 = o) (bt )/ (h+r.) ]
(8.6.7) p { sup i=1 . 2
> a 840
h>0 12 " 2 2,1/2 nl
WL )% )
'l:
L 2 2
Define Fn(h) = ) (h+xn) /(h+x1) . Then Fn(h) is increasing with

i=1

Fn(w) = n, and Fn(O)_z 1. Let bn be a positive number to be suitably chosen

later. Now (8.6.7) is no greater than

. i
(8.6.8) p ;gg i=] > an6102
= 1/2 1/2
n!/2(F_(h))
no2 2

| 2 (e5 = o")(h+a )/ (h+a,) |
+p sup i=1 P 2
%mﬂn Z %%°

n2(r, ()

Observe that (h+xn/(h+xi) <1 and (h+An)/(h+x1) 5_(h+xn)/(h+xi+]) .

Hence the first term of (8.6.8) does not exceed

C.(e? -oz)l z_n]/zF (b )1/2an6102 ,

n
p - sup | Z (b

0<C,<Ch<...<C i
—1="2="""="n

which by (8.6.5) is no greater than
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m
2
Fn(bn) a

(8.6.9) 7

2
néo

The second term of (8.6.8) is evaluated as follows.

Let An be a small positive number to be suitably chosen Tater. Define

kn to be the largest integer such that 1 5-kn < n and (bn+xn)/(bn+xkn) < b

“n
2 2 2
It follows that Fn(bn) > i=kz+1 (bn+xn) /(bn+xi)- 2_(n-kn) A~ Hence we
n
have
(8.6.10) n-k <F (b )a?
U : n—= n" n°n

Now returning to (8.6.8), since Fn(h)_z 1, the second term does not

exceed K

1
p{ sup /2

a 870°/28 )
Oihﬁbn i

(5 =52) (o )/ (htag)ay | 2

ne-1=

1

n
+p{ sup |) (e? -02)(h+xn)/(h+>\1-)| > n1/2an<s102 }

O<h<b ik +1

Taking c; = (h+xn)/(h+>\1.)An and applying (8.6.5), the first term of

the above expression does not exceed

kn-m-4A2 4A2m
(8.6.11) n < —oie—
na262 4 = 3262 4
n°19 n®1°

Similarly, the second term does not exceed

(n - kn)m
224
n an6'|0'

which by (8.6.10) is no greater than
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(8.6.12)

Combining (8.6.9), (8.6.11), (8.6.12), we see that the left hand side of

(8.6.2) does not exceed

-1 2 -2 -2-24
+ 4p° + Fn(bn)A n 8§ g .

-1
no)m a "8,

(8.6.13) (Fn(bn) f

The minimum of the above expression over A > 0, Fn(bn) > 0 is achieved

n

at
21
_ 16
(8.6.14) : An = gz .
and
1
. 1.3
(8.6.15) Fn(bn) = 7 n" o,
_ _ 1
Suppose that Fn(O) 5_%-n3 . Then b_ is well-defined. With (8.6.14)

& S | -
and (8.6.15), the value of (8.6.13) equals 125{2 om a;Z n 3 which tend to
0 if
(8.6.16) n ag > o,

v 1 -
. ]
On the other hand if Fh(O) > Z—n3 . Then, we may take bn = 0. In
this case, the second term of (8.6.8) vanishes. Hence the left hand side
, 1
of (8.6.2) does not exceed (8.6.9) which does not exceed 4m6{2 0-4 n3a 2,

This quantity also tends to O under (8.6.16). Therefore, we have proven

(8.6.2) under the assumption of (8.6.16).
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Proof of (8.6.3)
Write Ag T and At] © 0 . Proceeding as in the beginning of the

proof of (8.6.2), the Teft hand side of (8.6.3) does not exceed

. n -1
n |_z (h+ki) u.e.l

(8.6.17) T op sup i=1 11
j=0 Asq<h<). 2 3.9
JH1=="
2L () ) V8
i

The numerator can be split into the sum over 1 < i < j and the sum over

IIL\/.IZ

i+ 1 <i<n. Precisely (8.6.17) does not exceed

J -1
n I (h+x.) " u.g.l
(8.6.18) Jp{ sup 121 ! T Das
FUagnshay g2 0 2, 2, 2,172 — 2071
207 ()2 0E))
i=1
o -1
+ p sup 1=J+ LS
=0 <h<x z 7 %%°

n
PTG VE (Y R () P () 2

Since (h+>\1.)_2 js nonincreasing in h, the first term of (8.6.18) does not

exceed

-1

sup li 1
<h<h .

Sy 2172

(hfkj) “isil

1l ~—1Ca.

He~-13
o

! n -2, 2, 2\.\1/2
(1 Oy gV

which in turn is no greater than
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J . -1
(5.6.19) j§1 o] | 1-Z].[(h+:1-) - () ugey o laes
PRI VR Gy 1) 2t “
30 e
n ALEX Us€s
+ jzl p i=1 nJ ! L > %—ana]o
2172 L 0y 2(,24,2))1/2

By Cheybychev inequality, the second term of (8.6.19) does not exceed

L -1 4
n E(E ()\.+A.) u g,)
. ] _4 .i='l . 17 17100
(8.6.20) taso)™t ¥
fonl gm0 2, 2. 2,2
n(y (x +xi) (u1+ ))
i=1
n
. oL OgnTAh?
cdase)? ) 1= (by (8.3.2))
LN B 2,0 22,2 2012
n (z (}\-+)\.i) (p.i‘l'o ))
i=1 Y
which is no greater than 256 6;4 4 m a;4n']

Now the first term of (8.6.19) can be rewritten as

n
-1 -1
| Ona-h) ()™ (ks e
sup 121 J A RN AN T
B G,

(8.6.21)

Ie~13
o

J

ne~-1>3

T ) P (e V8
=1 97

Since (Aj—h)(h+xi)'] is nondecreasing in i and is no greater than T for

- -1 _ -1
Aje1 <N < Ay. we may take c; = (Aj-h)(h ;)7 and wy = (a;+ay) Tuyey and

J+1 J

apply (8.6.6). Thus (8.6.21) does not exceed
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E (

Cesin
-
3]
=
[o%
w—l
Q
o
1
S
ne~13
.—lo
Ne~-13] li~15
"
_—
oo
(@)
nNo
(en]
h g

=1
Therefore we conclude that the first term of (8.6.18) does not exceed

512 6?4 0-4 m a;4 n-l.

The second term of (8.6.18) can be evaluated in a similar way. First

it does not exceed

B h(has) ™

ol
p sup i=j+1 T

He~135

J 1h<rs 4/ 2 172
Ay (1 35 0ga) 2(u2+0%))

because h(h + Ai)_] is nondecreasing in h.. This expression clearly is no

0 <h<h, n Z

greater )
than g 0 sup |i=§+].[?1(h+xi)-1 i, Aj+](kj+1 A ) ]u
j=o Aj13h<s 1/2({21 X§+1(*j+1+ki)-2(u§+oz))]/2
L -1
f 1w | L 2an Oga ™) hiesl _laso
" B N

1
2

Now by Chebychev inequality and (8.3.2), the second term does not exceed

n
2 -2 2,2
oo "G B )
(+ a _840) N J
4 "n-l L

-2, 2, 2\\2
Xj+](lj+]+x1) (Ui+0 ))

an610

Z;f‘anﬁ]O

9
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< 256 6{4 0{4 m a;4 n-] R

while by taking c; = (h-x )(h+x1)_] and w; = As (A

J+

applying (8.6.6), the first term does not exceed

L -1 4
: aon ECE 0t ey)
(g 200) 'Zo 2 i 2 2, 2 . 2\\2
J: -
(L A5 () "y +07))

i=1

which by (8.3.2) again,:is no greater than -

n
D TR PR W b
1 -4 i=3+1 J
( 1 a.8,0) Z
B L B L B
Now observing that x? 5_A§+] for i > j+1, the last expression is again no
greater than 256 6;4 0;4 m a;4 !

Combining the results we have obtained, the left hand side of (8.6.3) does

not exceed 1024 6;4 o4 ma®nl. Hence (8.6.3) holds for n large enough
if aﬁ n >« , which is implied by "an +~ 0" and (8.6.16). This completes the

proof of (8.6.3) and hence Lemma 4.2.

8.7. Proof of Theorem 5.1

We shall use the following lemmas.

Lemma 8.7.1.  Suppose b0 =0 < b1-< seees < bk ,- and X],...,xk are
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independent random variables with means 0 and finite variances. Then for any

e > 0 p { sup I b“-I E X ‘ > g} < 48—2 Ii b'-2 Ex
1<h<k U i=1
-
Proof. Define sy = 0and for 1 < h <k, s = N by™ x Then using
i=1

,h , h b=
R A R L A ilath
i=1 i=1 =]
U s, v |
Now, sup |b X < sup |s + (b,_-b,)" (b, 1-b.) s,
1<h<k h 121 i 1<h<k h h ™1 i+1 i i
<2 sup [shl
T<h<k
-1 h
Therefore p{ sup [b, Loxs |2 e}
1<h<k i=1
<p{ sup s | 2 e/2}
1<h<k
Now by Kolomogorov's theorem, the proof of Lemma 8.7.1 is complete. ]

Lemma 8.7.2. Suppose 0 < b1 < ves < bk' Then

Proof. Define a = 0 and a, = (ai_] + 1)2/4 for 1> 1.
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Clearly a; < 1. We shall use mathematical induction to show that

Suppose the above statement holds for k < n. Consider the case k = n + 1.

SO R ACTWNE JEN I
Observe that b, - b:" b. , = ( b.,. - b.%.b.) +
j=2 ! SEVE i-1 j=2 3+ j=2 J+1d

-1 -2 -1 -1 -2
- b, b]) <a b,” + b, - b,

n-1 2 b,.  Here we have used the induction

hypothesis. Now,it is easy to check that (an b, < (an_]+1)2/4b] =

a b-] )

n D1 This completes the proof. 0

We begin to prove Theorem 5.1. As we have argued several times, the

left hand side of (5.1) does not exceed

(8.7.1) p {]n—]||en||2 - ozl > %—6} +p supI
o)

—_

T2y, v 2 2
>5(1-8)sy+p o sup [(F y)/( ] wi+ (n-h)o™)-1]
heH ~— i=ht] i=h+1 !

for 0 < A < 1. Note fhat here we essentially use (3.4) with the last two

terms on the right hand side combined together before taking absolute values.

To evaluate the second term of (8.7.1) by Lemma 8.7.1, we first delete
the factor "2(n-h)" in the numerator and the factor “n" in the denominator,

’ n
and then put x; = Y (e.y.—oz), X; =

Y3 - o far 2 <i<p
3=p,*1

8bn'ﬁ+2ypn-1’+2
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n
by = ) (ug + 02) for 1 <i<p » k=pand €= 0'2(1—A])(T¥A2)6;
jepyre-i

Pn .
The bound obtained is 1604(1-A)_26_2 ) b2 Ex? . Using the normality of

. 2 2
€5 s, we see that Ex? =g “p _ﬁ+2_+ 204 5_202 (ug ~i+2 + 02)

2 -
= 20°(b,-b; )
n i Ti-1%~

? < 20%b

for 2 < i < p_ and similarly Ex] < 20D, .

Therefore by Lemma 8.7.2,

b2 Bx? < 40%b]’

1 1

i~ T

5_4(n—p)-1. Thus we conclude that the second term of
-i .
4(]-A)-26-2

(8.7.1) does not exceed 64c /(n-p).

The third term of (8.7.1) can be evaluated in a similar way. Put

n ' ' .
2 2 2 2 2 2 .
X, = ) (yf = w5 - 07)s X, =Y. ..o-u. .,,-0,for2<iz<p,
1 3%p, +1 J J i p -i+2 Py- 142 n
L 2 . 2
b, = ) (ui +0%) for 1 <i<p, k=p,and e=a. Again
jeppre-i Y
Ex = 26% + 46202 ... < 46%(b, - b, ;).  Therefore the third term of
i p,-i+2 = i -1
(8.7.1) does not exceed 32A_2(h-p)_].

Using Chebychev inequality, the first term of (8.7.1) is bounded by

804 n']é—z. Therefore (8.7.1) does not exceed

804 n']s'z + 32(204(1-A)'25'2 + A-z)(n-Pn)-] .

Minimizing this expression over A, 0 <A < | , we obtain the right hand

side of (5.1).
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8.8 Proof of Theorem 6.1.

A A

To establish the consistency of ﬁn(h,cn), it suffies to show that

, ~2
L (R ) - 2 (M)]]% + 0, or equivalently, (& - 1) - * |[5 (R) -
n [Eptoy7 = Uy ’ 9 Ys 2 n 1ty
y ||2 >0 Since 82 is consistent, we need only to check that 11|~ (ﬂ) - ||2
n : n > ntitn I

is bounded in probability. This is done by observing the inequality that
T~ 42 2 -1~ 2 -1 2 .
() =y 117 < 2(n | lun(h) = pp ™+ |le 117)s the first term tends

to 0 because of the consistency of gn(ﬁ) and the second term tends to 02

by Taw of Targe number.
To establish the consistency of SUREn(ﬂ,an), it suffices to verify the
following two convergence statements:
. ~a ~ . . 1 TN ~ (Cyvi142
() |SURE, (h,5,) = SURE (h)| » 05 (i1) & }u (hsop) - g (W)}" ~ 0.
2|

n

A

(i) follows from the observations that |SUREn(h,8n) - SUREn(ﬁ)|_5|8§ -0

+ |on / o* -1]+ (o” - SURE, (h)) and that (o° - SURE, (h)) is bounded above in

probability. Here the Tatter observation holds simp1y because the consistency
of SUREH(H) implies that SUREn(H)-c2 is bounded below by &, for any & « 0,

in probability. On the other hand, to establish (ii), we may proceed as in
the ffrst paragraph of thjs subsection. Since we do not assume that ﬁn(ﬁ) is

consistent, we have to demonstrate that n_]llgn(h) - Enllz is bounded in

probability by a different argument: the consistency of SUREn(ﬁ) implies
that n”'||5 (h) - u ||? is bounded by s + SURE (h) < & + o* in probability

for any § > 0.
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Finally, the uniform consistency of SUREn(ﬂ,Sn) can be established in a

similar way. This completes the proof of Theorem 6.1.

8.9 Proof of Lemma 6.1.

The consistency of n (5) and SURE (ﬂ) implies SURE (H) +~ 0, or
En n n

equivalently,

(8.9.1) n

~

Suppose ﬁn(ﬁ) is consistent. Then %¢lAn(ﬂ)¥n-§n|]2 = %Wiun(ﬁ) - Bn||2 > 0.

Hence %1|An¥n|[2 5 o2, This together with (8.9.1) implies (6.2.1). Conversely,
suppose (6.2.1) holds. Since H[[5 (R) - u |12 < 213 (-3 (M ][5+ |5 (h)
Bt ‘ ni l¥n Bpll = il iEnt " hn n' 'En
;Bhllz), it suffices to show that %Jlﬁn(ﬁ)-gn(ﬂ)|[2 ~ 0, or equivalently,
2 VA

o tr A_(h
(8.9.2) (1 - " Al )2

1 " 2
1A (R)y, |17 il
A_(h)y
n ~N

Now by (8.9.1) and (6.2.1), we see that the quantity in the parentheses

of (8.9.2) tends to 0 and that - [[A (R)y [1® > o2 . Therefore (8.9.2)

holds. The proof is now complete.

8.10 Proof of Lemma 6.2.

Let A denote a random variable uniformly distributed on {A] hotee

An,n }. We shall write kq,n for x[q nl.n and kp,n for A[p nlin’ Clearly,
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ST : NIRRT IO AP ST "112
Eh(h+An) = tr An(h) and Var h(h+An) = tr An(h) - (ﬁ-tr An(h)) ,
where E and Var are with taken with respect to A only (conditional on h).

(6.2.4) and (6.2.2) correspond to

(8.10.1) [Var A(hea )11/ € ER(Ren )7'1% > 0
and
(8.10.2) Eﬂ(ﬁﬂ\n)'1 5 1.

Now, . fixing Xp 0 and xq n for 0 <p<q<1, it is easy to see that

APV -1 i -1
(8.10.3) Eh(h+An) < p h(h +Ap,n) + (q-p)h(h+xq’n)
and
e . B 1,2
(8.10.4) Var h(h+r )™ > p(1-q)(p*+1-q) (h(h+r_ )" - h(htr_ ) ")".
Y - p,sn g,n
Here the equality of (8.10.3) holds when A takes values xp n xq N and 0

with probabilities p, g-p, and 1-9 respectively, while the equality of

(8.10.4) holds when A, takes values Ap n? xq n and a suitable number between

xp N and xq n with probabilities, p, 1-q and g-p respectively. Hence (8.10.1)

implies that

(g )7 = (g )THZ 7 (plhiny )70+ (a-p) (heag )™)% > 0.

A

Multiplying the denominator and the numerator by (h+xq n)zand noting

b

that Ap,n 2 Aq,n’ we see that
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((ﬂ+xq’n)(ﬁ+xp,n)'] 1% / Ip+(a-p)] =+ 0.

Therefore, we have

A 1. ~
. _
(hapn * Aq,n Xp,n) /(M4

1h £ 1) 1.

Now for p, q such that (6.2.6) holds, we then obtain

P ~ -
(8.10.5) h Ap,n >o and h Aq,n

> o ,

On the other hand, it is clear that

> h(h+ Ap)'](q-p) + h(h+ kq)_1(1-Q),

(8.10.6) 15 ER(hta )7

where the second equality holds when Ay takes values Ap’ xq and « with
probabilities q-p, 1-q, and p respectively. Now, (8.10.5) and (8.10.6)

imply that
plim E A(fen )7! > 1-p

n-+w

Finally, taking p -~ 0, we have established (8.10.2). The proof is now

complete.

8.11 Proof of Theorem 6.2.

As discussed in Section 6.2, it suffies to prove (6.2.3), which is in
turn implied by the following

2
1Ay, ]|
(8.11.1) p { inf <1-28}=0.

hHy A (h)u, 1+ o° tr A (M)A ()

Similar to the evaluation of the third term of (8.3.5), #¢he left hand
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side of (8.11.1) does not exceed (1 - 6)_4 C"o_4 ) (X(An(h)))4.

heH
n

(tr Ah(h)A (h))_z, which tends to 0 as was shown in the paragraph following

n

Lemma 4.1.

8.12. Proof of Theorem 6.3.

Again, we shall prove (6.2.3). For ¢ > 0, we have

o 2
[] A (h)y, || |
p{ : <1-261%
~ 2 2 ~
[ An(h)En]] + ¢ tr An(h)
2
. [ ALy, T
< p { inf < 1 -6+
hgH! 2 2 : her!
n N An(h)Bn!] + g° tr An(h) n
min (p{ h = h} ,
2
[ A )y, ||
p { > > <1-61}1).
[ An(h)gn|| + 0 tr An(h)
The first term of the last expression does not exceed (1 - 6)_4 C"c—4

N (n-d(h))'2.§ (1 - 6)-4 c"o'4 €. Thus it remains to show that the
h&Hh
second term tends to 0. Since #Hé < K for any n, we need only to prove that

for any sequence {thHn}

min (p{ﬁ =h 1 (1 - 5)_4 c'' (n-d(hn))'z) >~ 0;

or equivalently, fqr any- positive number k' and any sequence'{hnEHn} such

that n - d<hn).£ k', we shall prove that -
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(8.12.1) p {h = ht > 0.

First observe that by Theorem 4.5, (6.2.1) holds. This implies

2

that ~p{d(h) = n} > O (since SURE(h) = ¢ if d(h) = n) and that (8.9.1)

holds. Hence we may further assume that 0 < n-d(hh) < k'. Now, (8.9.1)

implies that for 81 > 0.

(8.12.2) 1= Tin p (]|A (My 112 < (68 + 67 (n - d(A)?)

n->ow
. . - \ . 2 2 - ] 1 2
< limp thxh}+ Tim p{]lAn(hn)anl < (o +6])n (k")°3.

n->w n->oo

Since n - d(h) > 0, there exists gnERn with |[c [[ =1 such that

{[An(hn)gnllz > (ghxn)z. Now by Lemma 8.8.2, the second term of the last

expression of (8.12.2) tends to 0. Hence, we have 1lim p {ﬁ.k hn} =1,

n->o
which implies (8.12.1) as desired.

8.13 Proof of Theorem 6.4.

We shall prove (8.11.1) by using arguments similar - to those in
the proof of (8.6.1). Let L, A be positive numbers to be chosen later.
With the definition of Gn(h) given there, let Zn be the largest integer

f L
such that (1 + a) "L« Gn(O) and kn be the largest integer such that

K .
(142) "L <6 («). For i, 2#1 <1 <k, define n{0) = e () L),

Take héh) = 0 and hﬁnl] = o . Now (6.2.7) implies that for n large, Kn > 1.
n n

Evaluating the left hand of (8.11.1) in a manner similar to that of the
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evaluation of the left hand side of (8.6.1), we get an upper bound:

. k .
(1-(1+8) (1-6))"2 « ¢ - L] zn (142)73 < (6-)72
i=£n

- C L'] A-] . Here

we require A < &. To make the last expression expression less than e,
2 -1 -1

we may take L > c(8-a)"“ A" & ' . This proves (8.11.1) and hence Theorem 6.4.
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