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Abstract

This paper deals with the problem of selecting all populations which
are close to a control or standard. A general Bayes rule for the above
problem is derived. Empirical Bayes rules are derived when the populations
are assumed to be uniformly distributed. Under some conditions on the
marginal and prior distributions, the rate of convergence of the empirical
Bayes risk to the minimum Bayes risk is investigated. The rate of
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convergence is shown to be n~ for some 8§, 0 < & < 2.
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1. Introduction

Empirical Bayes rules have been considered for multiple decision
problems by Deely (1965), Van Ryzin (1970), Van Ryzin and Susarla (1977),
Singh (1977), and Gupta and Hsiao (1983). Most of the papers are concerned
with the selection of the best population where best is usually defined in
terms of the largest or smallest unknown parameter. Gupta and Hsiao
(1983) considered the problem which is concerned with the selection of
populations better than a control. In some practical applications, one may
be interested in selecting populations which are close to a control. We
will consider such a problem in this paper.

In Section 2, we propose a general Bayes rule for selecting good popula-
tions. In Section 3, assuming that the populations are uniformly distributed,
empirical Bayes rules are derived for both the known control parameter and
the unknown control parameter cases. Under some conditions on the marginal
and prior distributions, the rate of convergence of the empirical Bayes
risk to the minimum Bayes risk is investigated. The rate of convergence is
§/3

shown to be n~ for some 6§, 0 < & < 2.

*This research was supported by the Office of Naval Research Contract
NO0014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



2. A General Bayes Rule for Selecting Good Populations

Let = be (k+1) independent populations which are characterized

LR ERRRRLI
by parameters 02872+« -0> respectively. Assume that T is the control
population with parameter 8 which may be known or unknown. When 9 is
unknown, let o = (90’91""’ek) and X = (XO’X]""’Xk) where Xi is an observa-
tion from Tis i=0,1,...,k. When % is known, no observation from population
0 is taken, and 03 X0 are deleted from g and X, respectively. When there is
no confusion, ¢ and X are used to represent either case. We define population
m; to be a good population if lei-eol < A and a bad population if [ei-eol > A,
where A > 0 is a pre-assigned constant. Our goal is to find a Bayes rule
which selects all good populations and rejects bad ones. We assume that given
055 Xi has a probability density function f(xilei) with respect to a o-finite
measure u, for-i = 0,1,...,k, and © has a priof distribution

G(e) = % Gi(ei) on the parameter space 2. Let G = {s|sc {1,2,...,k}}

i=0
be the action space and let

2.1)  L(e,s) = ] {cq(ey-n-6;
(2.1)  L(e»s) 1%3 ¢1(6g-2 6;)

I{eiieO-A}(ei) '

cp(03-807D) g rnco 3 (P10 * 1%S{C3(61-90+A)I{90—A<61§ﬁ0}(61)

(o,
{60<61<GO+A} i
be the loss function defined on @ x G, where Cs» i=1,2,3,4 are positive

constants and I is the indicator function.

Since the action space is finite, attention can be restricted to the
non-randomized rules for deriving the Bayes rules. For a non-randomized
decision function §: % - G, the corresponding Bayes risk with respect to
G is given by

(2.2) r(G,8) = f éL(9,6(§))f(zlg)de(g)du(x), -
% .

where X is the sample space and f(x|e) = Hf(xilei).
i



In the sequel we consider the special case where Cp=Cc=cC3=¢ is a

constant which can be taken to be unity without loss of generality. If ¢ is

the empty set, (2.1) can be expressed as

(2.3)  L(e,s) = L(6,9) + } {(eO-A—ei)I{e.<eo}(ei) +
i i—

1€S

(ei'eo'A)I{eo<e.}(ei)}'
i

Hence, for any &, we have

(2.4) r(G,s) - r(G,o)

= { -A-0.)f YdG(e) +
¥ ek 40 Flrloyaste

2 f{eo<ei}(ei'eo)f(¥|9)d6(9)}dP(f)'_

From (2.4), it follows that if

(2.5) é(eO-A-ei)f(g|9)dG(9)+zj{eo<ei}(ei-eo)f(§|9)de(§) <0,

then the Bayes rule is 68(5)’ i€ 68(5)'

Let mi(xi) = ff(xilei)dGi(ei) be the marginal distribution of Xi’
Q
"(eilxi) be the posterior distribution of 0 given Xi = X5 and E(eilxi)

be the expected value of 05 given Xi = X;- If mi(xi)

v

0 for all X; s then

(2.5) is equivalent to

A
o

(2.6) (GO_A)_E(eilxi) + Zf{60<61}(ei_60)ﬂ(61|xi)dei
if %) is known, or

(2.7) E(eolxo)-E(ei]xi)-A+2f{eo<ei}(ei—eo)w(ei|xi)n(eolx0)deideo <0
if 90 is unknown.

From the above discussion, we have the following main result:.

Theorem 2.1. Under the Toss function (2.3), the Bayes rule GB(E) with

respect to G is as fo]1ow$:



(a) If 8y 1s known, then i ¢ 68(5) if the inequality (2.6) holds.
(b) If ey is unknown, then i ¢ sg(x) if the inequality (2.7) holds

Example:
Suppose that

-9, X.

_ i " _ . _
(2.8) f(x1|ei) =e 0, /(Xi!)’ X; =0,1,...5 8: >0
and 0 has a prior distribution gi(ei) = G%(ei) which is given by

a.i G_i-] ‘B_ie_i

(2-9) gi(ei) = 51 61. e I(O,m)(ei)/r(ai)’
where Ay > 0 and-si > 0 are known. Then the Bayes rule 63(5) is given by
(a) If % is known, then i € 63(5) if

X.+o . '
T}L-B-;lﬂ-zr(eo(nsi); X;tog 1)} - ep{1-2r(og(1485)5 X +ag)} < o,

where
a xa-] -x
F(a;a)=é-1_|—(&-)—e dX, a_>0, a > 0.

(b) If % is unknown and B: = 8, 1=0,T,...,k, then i € 58(5) if

Xjta, 1
Trg 12155 Xgragsxytay)-13 +
Xo*eg

1. 1,
Tra {1 + ZI(§3 X0+a0,xi+u1)—41(§3 x0+u0+],xi+ui)} < A,
where

z
. - 1 o-1 g-1
I(z; a,B8) = é EYE?ET'X (1-x) dx, o« >0, B >0,

and

B(a,8) = I(a)r(B)/T(at8).



3. Empirical Bayes Rules for Uniform Populations

In this section we will assume that Xi has the probability density function
1 .
f(xi,ei)‘= 6;—1(0’61)(x1), where 6; > 0 is unknown. Suppose that 9 has a

prior distribution G(g) = qGi(ei) on Q and Gi has a continuous positive
; ,

T e e e e e

probability densitywﬁunctioniégi

Let m;(x;) and M(x,) be the marginal =
pdf and cdf of s respectively.

3.1. Known Control Pepulation

When %9 is known, we assume 6, > A and let

1 1

(3.1) AGi(Xi) = (GO'A)m'(Xi)"Z d(;‘.1.(e1.)+2(X w)A(e w)(e.-eo)f(xilei)dGi(ei).
i i? 0°

From (2.5), we have i € sy(x) if 4, (x.;) < 0.
B'= Gi i

We can show that

(3.2) ' A],Gi(xi) = (SO'A'Xi)mi(Xi)+]'2M1(60)+M1(x1)’ if x; < 8-
AGi(Xi) } |

(3.3) AZ,Gi(Xi) = (Xi-eo_A)mi(Xi)+]'M1(Xi)’ if X >'eo.

Therefore

(3:4) og(x) = Ulx; < 0gsdy g (xj) < OWLTIx; > 89056 (x;) < 03.

Remarks :
(1) Ag (xi) is strictly decreasing for 0 < x; < 8p=4» strictly increasing
i
for Bg=h < X; < 8p*a, and strictly decreasing for 0gth < Xi.

(2) 1If X3 > 8g*h, then AGi(xi) > 0. Hence i ¢-6B(§) if X; > 8.
(3) If @ is such that 1-2M. (o) + M.(05-4) > 0, then 8g(x) = ¢.
Otherwise, i € 68(5) if (eO-A)—d] < X; < (o +A)-d2, for some positive

ule of this type is a Bayes

real numbers d1 and d2. Hence a_selection

rule relative to some prior distribution.
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If G is unknown, the Bayes rules are not obtainable. In this case,
we consider a sequence(§1,41), (52,42),..., of independent pairs of random
vectors where ~ each A. is distributed as G on o and X, = (X11,...,X1k) has
conditional density function f(x[g) given A; = g. The empirical Bayes
approach, which was introduced by Robbins (1956), attempts to construct a

decision rule concerning Nt T at stage n+1 based on 51,...,5 The risk

n+l’

at stage ntl by taking action 6n(§; X],...,X ) = Gn(g) is given by

-n
(3.5)  r(G.5.) = %En{' X(X)[f a-05)f(x|e)dG(e) +
[ (es-80)f(x|e)dG(e) I1dx + r(G,9),
(603”) !

where En denotes the expectation with respect to the n independent random

vectors  Xy,...,X each with a common density function

k
m(x) = [f(x|e)dG(g) = T
Q i=

Definition 3.1. The sequence of procedures {an} is said to be asymptotically

optimal (a.o.) relative to G if rn(G,an) - r{G) = o(1) as n > =, where
r(G) = 1gf»r(G,6).

In order to find an a.o. sequence of rules, let
81, p(X) = {i[x; < eO’Al,Gi(Xi) < 0} and 5293(5) = {ilog < x5 < o5*a,
vy G (x ) < 0}. From (3.4) and Remark (2), we have
B(g() = 61,8(5) U 62,8(5)‘ For any i = 1,2,...,k and 2 = 1,2, Tet
Az,i,n(xi) = Az,i(xi; Xqq0eeesX ), n=1,2,... be two sequences of real-
valued measurable functions, and define sn by

(3.6) 8,(x) =87 ((X) U s, (X))

T,n
where

81,n(X) = L]x; < 0gs aq 5 n(x3) < 0} -
and

62,n(5) = {ieg < x5 < 90+A,A2’1’n(x1) < 0}.



Then we have the following theorem:

® . , P
Theorem 3.1, 1If gedGi(e) <o, i=1,2,...,k and A],i,n(xi) > A],Gi(xi)’

P
for almost all X; < 64 and By, i, n(x.) > A2 G (x.), for almost all
By < X; < 60+A where K means convergence 1n probab111ty, then {a (xjff

def1ned by (3.6) is a.o. relative to G.

Proof.  Analogous to the proof of Theorem 2.1 of Gupta and Hsiao (1983),

it can be shown that

0< f'-(Q=5n(§))f(§l§)dG(§)-IL(9,GB(>_<))f(>_<lg)dG(e) < 4e f ( ;; m. (x:))
g z R j;] VA
Hi

with probabi]ity‘near 1, for large n. Hence

[ L(e,s, (x))F(x]e)da(s) 2 > JL(e.55(x)) (x| g)da(e)
Q

for almost X. By Corollary 1 of Robbins (1964), {6n(§)} is a.o0. relative to G.

From Theorem 3.1, our problem is reduced to finding consistent estimators

of Al,Gi(xi) and AZ,Gi(xi)' Let

(3. 7) M (xs) = %

IIM3

]I(_w,x1](XJ1),
then M1n(x ) M (x ) for all X; > 0. Next, let ¢(x) > 0 be a Borel function
sat1sfy1ng the following conditions:

(3.8) (i) sup op(x) < =, (i1) fﬁp(X)dX =1, and (ii1) lim xp(x) =

=~ X<x = X500

Let {h(n)} be a sequence of positive constants satisfying the folTowing
conditions:

(3.9) (i) h(n) >0 as n > « and (i1) nh(n) > » as n » .

If we define

1 n

~Xas
(310) om0 = 1o § oy
in nh{n) 391 h(n)



then min(x) P mi(x) for all x (see Parzen (1962)). For i = 1,2,...,k, Tet

(3.11) 'A],i,n(xi) = (SO'A'Xi)min(xi)+]_2M1n(eo)+M1n(xi)

and
Then
A (x.) P A (x;) for all x; <8
T,i,n*7i ]’Gi i i—="0
and

P .
Az,i,n(xi) > AZ,Gi(Xi) for all 8g < X < op+A-

Thus the sequence of procedures {Gn} defined by

is a.o. relative to G.

3.2. Unknown Control Population

In this subsection we consider the case of the unknown parameter 8, of the
control population - As indicated in Section 2, the notations 6, 2, X, X,
G(e) and f(x|e) should be interpreted accordingly. For example, the
observation at stage n is denoted by x = (XnO’an""’Xnk)' Under the
loss function (2.3), the Bayes rule 68(5) is given as follows:

It can be shown that
(3.13) 85 a0 %y) - m, (x;) (1-My(x)) + (1#M; (x;)Imy (xp) *

o M'i (90)
(xo-xi-A)mi(xi)mO(x0)~2j — dG,(eg)
X9 0
- A],GO,Gi(XO’Xi) (say), if 0 < x; <Xg

and -



be g (Xgaxs) = (1-My (x) g (xg )+ (14 (x)=2My (%) Imy (x;) +

© M.(e )
10 dG,(e,)

(3.14)
' 0°7
(xi'XO'A)mi(Xi)mO(XO)+2M1(Xi)mo(xi)'zf —
X4 0
= AZ,GO,Gi(XO’X1> (say), if 0 < Xy < Xy
Thus
(3. 15) sg(x) = 87 g(x) U 8, g(x)
where
61,8(5) = {1]0 < x5 < Xg> Al,GO,Gi(XO’Xi) < 0}
and
SZ,B(Z() = {1l0 < XO < X.is AZ,GO,G.i(XO’X'i) < 0}.
Similar to Theorem 3.1, we have the following result.

©

Theorem 3.2. If é edGi(e) <o, 1=

p
A],i,n(xo’xi) L A1,GO,G1(XO’X1) for

for

A (XnsXs) P A (X~s%:)
2,i,n'"0°™ Z’GO’Gi 0°%1

Sp(X) = (1% < Xps 89 5 n(Xgo%i) <

is a.o. relative to G.

Now our problem is to find a

i
[ =5

T A0 g6y (ep)
dG (6 for x, < a.
3 0 0*°0 0 =

(x)

Theorem 3.3. Let Min(x) and ms

respectively. Then

? Min(e) M

a e0

P i
dGOn(SO) -

- 8

%

where GOn(eO) = MOn(eO)-eomOn(eO).

0,1,...,k and for all 1 < i < k,
X; £ Xg and
Xg < Xi» the sequence'{an} defined by

ilxg < Xjabg 4 n{Xgox3) < 03

consistent estimator of

be defined by (3.7) and (3.10),

(6g)

dGO(eo) for Xg < @
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w M. (85) = M:(8g)
Proof. |/ _ng—— dGg,(0g) - f——o—— dGy,, (6]
e lM (90 M (o O)l
5—£ % 4Gy (09)
i'% sup |M (x)-M, (x)] <«
—00<L X <00

with probability near 1, for large n, by Glivenko-Cantelli Theorem. Since

Mileg) . p
° is bounded continuous and GOn(eo) > Go(eo), we have
<) M(e ) [ M(e )
i‘vo p ivv 0
——— dG,. (6n) dG.(6n)-
| =55 %on'% I =5, %0%%
Thus
o M; (80) » M.(eq) '
int’0’ ivv0
| = dg (8) - [ —5—— d6p(8g)]
é 6g On'"0 ALY 00
o M. (8n) o M.(8q)
in*’0 i‘v0
i-lé o9 dGgnleg) - £ %0 dGOn(eo)‘ *
o M. (8q) o M.(6,)
i‘’0 0
l£ o dGOn(eO) é dGy(eq) |

< ¢ with probability near 1, for large n.

From Theorem 3.3, if we define
by, 1,n(KgeX;) = Minlxg) (Mg xg)) + gy () (1414 (x3))

(o]

in'%
+ (xgx=mg (% mgq () = 2£o % “on'o)-

and
bg.1.n(%sXs) = Mon(ig) (1M (%)) + mip () (T (xg) -2y (x5)

(o]

4 (x5=xgm8)mg (xg)mg () + 2My (g dmgp (%) - 2£_
1

M..(6,)
in*’0
—_— dGOn(eO),

then we have

P -
b,im%ee%) > 8 g 6, ooxi) s B 7 o2
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Therefore, the sequence of rules {sn} defined by
5n()_() = {1|x_| < XO’A],i,n(XO’Xi) <0}V {'ilxo < Xi’AZ,i,n(XO’xi) < 0},
is a.o. relative to G'berhésrem 3.2.

3.3. Rate of Convergence of the Empirical Bayes Rules

In this section we will consider the rate of convergence of the

empirical Bayes rule derived in Section 3.1.

Definition 3.2. The sequence of procedures {Gn} is said to be asymptotically

optimal of order a relative to G if rn(G,an)-r(G) = O(an) as n - », where

1im a_- = 0.
n->c n

The main result (Theorem 3.8) of this section is based on a series of

Temmas.

;
(3.2), (3.3), (3.11) and (3.12), respectively. Then we have

0 j_rn(G,an)—r(G)

Lemma 3.4. Let A],Gi(xi)’ A2,G1(X1)’ A],i,n(x‘) and AZ,i,n(xi) be defined by

0 1 s
.Z] 6 ‘A]’Gi(xi)l -GElA1,1,n(x1)_A1,Gi(xj)i dxi +

IA

ontA
K0 (x:)|'%E (x:) (x.)|%dx;, 6 > O
D B P R LV e e NP Ll b :
i=] 09 i 1

Proof. The proof is similar to that of Lemma 3 of Van Ryzin and Susarla

(1977) and hence omitted.



Lemma 3.5. Assume that h(n) satisfies the condition (3.9)

satisfies the following;

(i) @(x) = 0 if x ¢ (0,a) for some finite a > 0
(i) ? p(x)dx =1
0
(i)  suplo(x)| < .
X

Then, for min(xi) defined by (3.10), we have
a
|E min(xi) - mi(xi)l f_h(n)fe(xi)élu p(u)|du

for large n where fe(xi) = sup |m%(x1+y)|, € > 0.
O<y<€

Proof. Emin(xi) - mi(Xi)

1 Y4
= 5y ey (I - m; (x;)

w(u)[mi(xi+uh(n))-m1(xi)]du

O

a
- é @(u)[uh(n)m%(xi+nn(xi,u5)]du

where 0 < ”n(xi’u) < uh(n).

For ¢ > 0, let n be large enough so that ah(n) < e, then

' a
|Emin(x1)-m1(x1)| 5_h(n)f€(x1)élu p(u)|du.

Lemma 3.6. Under the assumptionsof Lemma 3.5, we have

a
Var min(x;) < gitay MO o (u)du.

X.=Xs
_ 1 n 1 71
Proof. Var m, (x;) = Var{ﬁﬁYﬁj-jZ]¢(~Tﬂﬁj—0}

a
f_ﬁﬁ%ﬁy épz(u)mi(x1+uh(n))du

12

and that ¢(x)



7 13
' a
i.ﬁﬁ%ﬁy mi(xi)é @2(u)QU, since m;(x;) ~is non-increasing... . . _

Remark: From Lemma 3.5 and Lemma 3.6, we have

.

p .
min(xi) > mi(xi) if fe(xi) < o,

Lemma 3.7. Under the assumptions of Lemma 3.5, we have

(a) Var A],i,n(xi) 5_M(eO-A-xi)Zmi(xi)(nh(n))_] +~%,

(b) var Az,i,n(xi) 5-M(Xi'GO'A)Zmﬁ(Xi)(nh(n))-] + %ﬁu
a 2

where M = 2 [ ¢“(u)du.
0

Proof. Since Var(X+Y) < 2{Var(X) + Var(Y)} for any random variables X and

Y, it follows from Lemma 3.6 that

Var A]’i’n(xi) 5_2{(60-A-X1)2Var min(xi) + Var(Min(xi)_ZMin(GO))}

a
f_2{(60—A-x1)2m1(xi)(nh(n))']é @ (u)du + 303,

which proves (a). Similarly we have the result (b).

Theorem 3.8. Assume the conditions of Lemma 3.5 and the following for

0 <6 <2
°0 %
. 1-8 1-8 8 &8/2
(1) [ 18y ¢ ()] 70 < = and [ g o ()10 ogmamx; | nd 20, ) e, < o,
0 i 0 i
85+ 8+h
.. : 1-8 1-6 8 8/2
(ii) [ lAZ,G.(Xi)I dx; < = and i |A2,G.(X1)| Ixi'GO'AI m.“(x;)dx; < e,
6 i 5 i
0 0
®0

1-6 § 26
(ii1) 6 IA]’Gi(Xi)I l0g-0-x; " F(x)dx; < =
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60+A :

: -8 S 6
0

Then we have

ro(Gss,)-r(8) = O(max{ (i) */%, (h(n)®3) as n » o,

Proof. For 0 <& < 2, by Holder inequality and Lemma 3.4, we have
0 5_rn(G,6n)-r(G)

6

{max(],26_1)[é 18y 6. (x) [0 (Var oy 5 (x4)%/2
2 i LI ]

ne~—1x
ot

<

dx, +
i 1

6

0 1-5 -

g IA],Gi(xi)l |(eO-A_Xi)(Emin(xi)'mi(xi))I dxij} +

" (x,))%/?

Xs T
1 dX1

k )
§-Tyr¢0
iz]{max(l,z )[é 24

|A2 G_(Xi)l]_G(Var A
o

BgTa :
| 22,6, 0 11~ 10y -og0) (B ()= (1)) | .
5/2

since (a+b)%2 < %2 4+ b¥2 for a > 0, b > 0 and 0 < & < 2, it

follows from Lemma 3.7, (i) and (ii) that
0

0 _

1-6 §/2 _ -5/2

6 |A1’Gi(x1)| (var A],i,n(xi)) dx; = 0((nh(n)) )

and
“0* 1-6 §/2 _ -8/2
é IAZ’Gi(X1)| (Var 8y ; n(x;))" “dx; = 0((nh(n)) "7).
0
By Lemma 3.5 (iii) and (iv),

]

0 1-5
é IA],Gi(xi)l I

—a-x 18 1E m (x;)-m (xp) [Pdxg = 0((h(n)®)

%

and
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8ot , . R
[ 18y G_(xi)ll'al(xi-eo-A)(E ms o (%3)-m; (x3)) [ “dx; = 0((h(n))7).
eo >

Hence

r (6y5,)-r(6) = O(max{(nh(n)™*/%, (h(n)*)) as n > .

Corollary 3.9. Assume the conditions of Theorem 3.8. If we take h(n) = n %

0 <o <1, then the optimal choice of o« is 1/3 and rn(G,an)-r(G) = O(n'5/3)

as n - o,

Remark: If the prior distribution Gi is such that both gi(x)/x and mi(x)
are bounded on (0, 60+A+€), it is easy to check that the conditions of

Theorem 3.8 are satisfied for 0 <& < 1.

Acknowledgment: The authors wish to thank Dr. Woo-Chul Kim of Seoul

National UniVersity for a critical reading of this paper and for
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