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I. INTRODUCTION

Let Tis Moserns T be k independent normal populations with unknown means
813 Bos-evs By réspective]y, and a common known variance 12. The population
associated with the largest 0 is called the best population. In the subset
selection approach, we want to select a nonempty subset of the k populations so
that it includes the best population with a minimum guaranteed probability
P*¥(1/k < P* < 1). The basic idea of the subset selection approach is that the
number of populations to be selected should depend upon the evidence supplied
by the data. The size of the selected subset depends on the sample size and

the confidence level P* associated with the claim that a correct selection

(i.e. selection of any subset that contains the best) occurs. It can be said

that subject to the P*-value and the sample size, we cannot make finer distinction
among the populations that are selected in seeking the best. In this case, one
may decide to use the selected populations in equal proportions in the future.

In this sense, the average worth of the selected subset is given by

]The research of this author was supported by the Office of Naval Research contract
NO0O14-75-C-0455 at Purdue University and reproduction for any purpose of the
United States Government is permitted.



(1.1) | M= J ei//// ]I
i'es i€s

where S denotes the set of indices of the selected populations, and Ii =1 or
0 according as s is or is not included in the selected subset. Our interest

is to estimate M, which we call the mean of the selected subset. It is important

to note that M is a random variable.

In this paper, we consider the subset selection rule of Gupta [4], [5],
which has known obtima]ity properties; see Gupta and Panchapakesan [6], and
Berger and Gupta t]]. Let Y], YZ""’ Yk be the sample means based on n
independent observations from each population. The rule R of Gupta [5] is:

"Select =, if and only if Y. > max Y. - dt//n"
1<j<k
where d > 0 is to be determined such that the probability of a correct selection
(PCS) is P*. This value of d is shown to be given by

oo

(1.2) [T (trd) ¢ (t) dt = px,
where (here and in the sequel) ¢ and ¢ denote the standard normal cdf and
density function respectively.

Our present investigations relate to only the case of k = 2. The

following notations hold for the entire paper:
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where IA denotes the indicator function of the set A.



Now, for k = 2, we get -

(@]
1]
L]
1
—
—
o
*
~—
-

(1.4) 01+0

1-11-12) .

=
t

[an]

—

2

When c = 0, the rule R selects the populationthat yields the largest sample
mean and M is the mean of the selected population. Of course, in this case,
the minimum PCS cannot be guaranteed for P* > 1/k unless additional modifications
are made in the formulation of the selection problem. This is the aspect not
considered by those who discussed the estimation of M in this case; these are
Sarkadi [8] and Dahiya [3] for k = 2 and known t; Hsieh [7] for k = 2 and
unknown t; and -Cohen and Sackrowitz [2] for k > 2 and known <.

For any estimator M of M, the bias B(M) = E(T-M) and the mean squared

error MSE(ﬁ) = E(l\A/I-M)2

. It can be shown (Theorem 2.1) that no unbiased estimator
of M, having a finite variance, exists. In Secfion Ivae define the 'natural'
estimator T and three classes of estimatbrs T]x’ T2A and T3A, obtained by making
adjustments for the bias of T. The biases and the MSEs of T]A, TZA and T3A are
discussed in Sections II and III respectively. Numerical comparisons of the

performances of these estimators are made in Section IV.

II. THE ESTIMATORS AND THEIR BIASES

Since Y ~ N(e,dz), it is easy to see that

(2.1) E(M)

61{1-@(0-6)} + 92{1-¢(c+6)} +

516,
5 {o(ct+s)+ o(c-8) -1}

-%f[e*+ so{e(c+s) - o(c-8)1].



Theorem 2.1. No unbiased estimator of M, with finite variance, exists.
Proof. See Appendix Al. O

Let us now consider the 'natural' estimator

max(Y1,Y2) if |Y] < co,
(2.2) T

Y* .
5 otherwise.

Since max(Yq,Y,) = %ﬁY* + |Y]}, we obtain

* 1 7 -9 P ] 0
BT =5 +5 [ |yl < QT(y Ydy +5 [yl - ¢ (59 dy .
Co

By changing the variable of integration by setting t = (y-6)/c and using
(A2.1) in Appendix 2, E(T) simplifies to

(2.3)  E(T) = %* + %‘1 {o(c+s) - o(c-8)} +% {g (cts) + ¢ (c-8)}
= E(M) +% (¢ (cte) + ¢ (c-8)} .
Thus  B(T) = %i{q~(c+6) + ¢ (c-8)7.

2.1 Estimators T1A

Since the bias of T is positive, we define T]A by

(2.4) T h

“=T -Azg{cp»(c+— + cp(C-EY;)} > A >0,



The bias of T]A is

= T fg (cts) + ¢ (c-6)} - 29 ¢ (4 & ¢ (&2
2" ' oz o Y

by using (2.3) and (A2.7). It should be noted that T,. becomes T when

1x
A =0, and that it reduces to MA of Dahiya [3] when ¢ = 0.

2.2 Estimators TZA

To motivate the definition of T2A’ A > 0, consider the following

estimator
R S A Yyy Y
(2.6) U=5 +5[efa(ct)} - efa(c—)1].
For A = 1, U is the maximum likelihood estimator (MLE) of E(M).
*
E(U) = 5 - 3+ EDVera(c+)3] + 5 Evena(d - o)1)

and using (A2.8) this is simplified to

(2.7)  E(U) = %* +% [q,gk(é_‘fc)g . Av(c.-cs);]

N1 N8
b _Oh [(F Als+e)) chx(_a-c_) ]
2/1+22 /1422 Al



We note that the sum of the first two terms in (2.7) tends to E(M) as A + .

Also, it is seen clearly from (A2.7) that the last term in (2.7) is unbiasedly

estimated by %% [q5{A(§-+ c)} +‘q5{k(%-- c)}]. By subtracting this unbiased

estimator from U, we define

(2.8) T, =% +¥ [0t} - sir(c-D)1]

% Lo (e} + ¢ (ile-H30.
The bias of T2X is

(2.9)  B(T,,) = 9[ (6+°)% ro ;L(é—c—) - o (s+c) —@(G—C)] :
’ Y ry

which tends to zero as A tends to infinity. Finally, we note thathZA

corresponds to tC of Dahiya [3] when ¢ = 0; Dahiya's c corresponds to our A.

2.3 Estimators_T3A

Let us first consider T3, the MLE of E(M); this is same as U in (2.6)
with A = 1. Thus, from (2.7) with » =1,

2.10)  E(Ty) = & i[si- E—‘S-]
(210) 1) = 54§ o - 0



Hence the bias of T3 is

(2.11) B(T,) = [¢(6+C) +o(5) - o(s¥c) - @(s-c{]
7z

V2

N @

+ 9 (B82S 4+ ¢ (& ] )
- F(ﬁ) ¢ (=)

Noting that the last term in (2.11) is unbiasedly estimated by
% [¢(g+c) + ¢(Y c)] , we define

a

(2.12)  To =T -AF§®F£+—LJ+®01—-J%-Ml+c)-@dwd
32 3 2 V2 V2 2o /2 o °

+%§¢%+c)+¢%-c&].

The bias of TBA is

2.13 B = B(T.) - 2 [, (8t 8-c.
(2.13) (Ty) = B(T3) 27 [¢(/E)+¢(f2')]

-2E [v o i B L A c)g] .
V2 V2o V2o V2 o ¢

Now, using (A2.8) to evaluate the expectation in (2.13) and carrying out routine

manipulations, we obtain



(2.14)  B(Ty,) = 5[(10) §q>(%—;_) + q><§'/—§_)§ - x; (‘“C) + o )%

- {o(s+c) + @(a-c)}]
i Rl @l

It should be noted that T3A is slightly different from the estimator TA of
Dahiya [3] when ¢ = O because he does not estimate part of B(T3) unbiasedly

as we do in (2.12).

III. MEAN SQUARED ERRORS
We give here the expressions for the MSEs of T and T]A. For TZA and T3A
the derivations become more tedious. For the numerical comparisons of the MSEs

we use numerical integration as will be explained later in this section.

3.1 Mean Squared Error of T

We note that M and T can be written as

_1
M= §-{e* + 6(11-12)} .
(3.1)
'|,
7 {Y* + Y(I]-IZ)} .

—
|

Now, M - T = %—{(Y*—e*) + (Y-e)(I]-Iz)}. Since Y and Y* are independent and

E(Y*-e*) = 0, it is easy to see by direct evaluation that



o g% © 2 o2 -G-8 2 -
(3.2) MSE(T) = 7 +7 ja tte(t)dt+7z [ t7 e(t)dt
c= —o0
2
= ;% {2 4+ (c=8) ¢ (c-8) + (c+8) ¢ (c+8) + o(s-c) - o(s+c)},

using (A2.3).

3.2 Mean Squared Error of T]X

Letting V = ¢ (c + %) + ¢ (c - g), we have

(3.3)  MSE(T E[(T-M) - %g-VJZ

1
MSE(T) + (Ao2/4) E(VZ) - acE[(T-M)V].

By repeated applications of (A2.6),E(V2) can be evaluated in a straightforward

manner to yield

‘ 2,42
2 1 2 2 2 3
(3.4) E(VT) = —,()__ﬂ[tpg\/;(“dg’f ¢ 3v\/§ (s—c)g + 2¢§,/—————(5 5 )g ]

Again, noting that V (which is a function of Y) and Y* are independent, it is

easy to see that

1
2

(3.5)  EL(T-M)V] = % E[(Y-6)I,V] - & E[(Y-8)I,V].

The right-hand side of (3.5) can be written as a sum of four integrals
each of which is either of the form in (A2.4) or in (A2.5). Thus we get
4 E[(T-M)V] = B1 + By + 83 + B4, where
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O

5- [ 3c+s §-C -3c-§
B, = — " + Lo} .
4 o¢<2> q</2_) 7 (/E)]

Now we can obtain MSE (T]A) by using (3.2), (3.4), and (3.6) in (3.3).

Remark 3.1. For i =1, 2,3, T, - M is of the form 4(V*-0%) + g(¥),

where g is some known function. Hence, MSE(TiA) = 02/4 + E[gz(Y)]; the
expectation of the product term is zero. After suitable change of variable,
E[gZ(Y)] can be numerically evaluated using the Gauss-Hermite quadrature
formula. Our results in the next section were obtained by using the 20-point

formula.

IV. COMPARISON OF THE ESTIMATORS
In this section we make some comparisons of the performances of T]A, sz
and T3A based on the values of their biases and the MSEs computed in uhits
of o and 02, respectively, for 8§ = 0 (0.5) 4 (1) 7; ¢ = 1.645, 1.9600, 2.576;
A =0, V2 exp {-c2/4}, 1, v2. These biases and MSEs are given in Tables 1A
through 1C and Tables 2A through 2C respectively. For convenience, v2 exp {—c2/4}

is denoted by Ae in the tables.

Remark 4.1. The choices for values of A are based on the following

considerations. For A = 0, T,. becomes T. The value ) = 1 corresponds to

1



1

using MLEs in constructing the estimators. Further, B(T]A) decreases in A
and if we Tet . to be the value for which B(T]A) =0, A 2 v2. Also, Mg

tends to 0 or /2 exp'{-c2/4} according as & tends to infinity or zero.

Remark 4.2. The c-values chosen here correspond to P* = 0.90, 0.95, 0.99,
the usual values of interest in selection problems. The value of ¢ =0
(P* = 0.50) is not of interest in our selection problems. This is the case

and T

considered by Dahiya [3]. As pointed out earlier, T N in this case

1A 2
coincide with Mx and tc of Dahiya. For T]x’ our choices for values of A are
inc]udéd in Dahiya's tables. For T2x’ X =1 is the only common choice. However,
we do not report our values in this case, as it is not of main interest here.
Finally, Dahiya defines a hybrid estimator HC for his problem; however, HC is
really our T. But his c-values are chosen arbitrarily and they do not correspond
to P*-values of common interest.
Now, considering the biases, we see that TZA performs better than T]x and
To, for small values of & (s < 1 for P* = .90 and § < .5 for P* = .95, .99).
As § increases, TZA becomes increasingly bad without adjustment for bias (i.e. r» = 0);
however, with A increasing the bias of T2x is very much reduced. For large
§ (6 > 5 for P* = .90, & > 6 for P* = .95, .99), T]A performs better than T3y,

and is generally better than TZA as well. For small & (8 < 1 for P* = .90, .95)

| A

A _. For moderate §,

and § < 2 for P* = .99) T]x performs better than Ts, for A c

| A

T3, 1s better than T,, for » <A..

From the point of view of MSE, an overall picture emerges as follows:

For 6§ <1, T,, is the best. For 1.5 < § < 3, T,, is the best. When

2\
3.5<6 <4, T

1A

12 with small X or T3A with large 2 is the best. Finally, for

§ > 5, T3X with ) away from zero is the best.



Table TA. Biases of T]x(top entry), T,, (middle entry),

and T3X(bottom entry) expressed in units of o
P* = ,90; ¢ = 1.645; AC = ,7190

A 0 Ao 1 V2
.1031 ~.0000 -.0403 -.0997
0 0 0 0

.1434 .0379 -.0033 -.0641

. 1236 .0184 -.0227 -.0833

-.0275 .0091 .0086 .0062

. 1549 . .0495 .0083 -.0524

.1680 .0590 .0164 -.0464

-.1277 .0183 .0190 .0142

.1707 .0683 .0284 -.0306

.1988 .0894 .0466 -.0164

~.3311 -.0063 .0034 .0047

.1556 .0648 .0293 -.0230

.1876 .0856 .0458 -.0129

-.6386 -.0732 -.0444 -.0260

.0973 .0292 .0026 -.0367

. 1384 .0526 .0190 -.0304

-1.0046 -.1504 -.0977 ~.0583

.0218 -.0161 -.0309 -.0527

.0797 L0151 -.0101 -.0473

-1.3684 -.1952 -.1227 -.0700

-.0329 -.0410 -.0441 -.0488

.0357 -.0073 -.0242 -.0490

-1.6944 -.1907 -.1105 -.0580

-.0507 -.0371 -.0319 -.0241

.0125 -.0129 -.0228 -.0375

.0 -1.9815 -.1517 -.0774 -.0360

-.0421 -.0185 -.0092 .0044

.0007 -.0054 -.0077 -.0112

-2.4990 -.0619 -.0211 -.0067

-.0126 .0062 L0136 .0245

.0000 -.0009 -.0012 -.0017

.0 -3.0000 -.0165 -.0031 -.0005

-.0019 .0053 .0080 0121

.0000 -.0001 -.0001 ~-.0002

0 -3.5000 -.0031 -.0003 ~.0000
-.0002 .0015 .0021 .0030-




Table 1B. Biases of T]A(top entry), TZA(midd]e entry),

and T3A(bottom entry) expressed in terms of o

P* = .95; ¢ = 1.96; A_ = .5413
A 0 A 1 /7
I C
.0584 .0000 -.0495 .0943
0.0 0 0 0 0
.1080 .0422 .0134 .0637
.0784 .0168 -.0355 .0826
0.5 -.0163 .0144 .0112 .0073
.1250 .0570 -.0007 .0527
.1283 .0597 .0005 .0524
1.0 -.0835 .0387 .0317 .0209
.1595 .0874 .0263 .0289
.1799 .1037 .0391 .0192
1.5 -.2419 .0308 .0321 .0216
.1729 1014 .0408 .0140
.1994 .1216 .0556 .0040
2.0 -.5159 -.0380 -.0072 .0035
.1366 .0755 .0237 .0231
1724 .1009 .0403 .0144
2.5 -.8817 -.1511 -.0719 .0440
.0602 .0192 -.0155 .0469
1162 .0577 .0082 .0365
3.0 -1.2762 -.2553 -.1232 .0731
-.0152 -.0318 -.0459 .0586
.0609 .0187 -.0171 0494
3.5 -1.6419 -.3056 -.1336 .0744
-.0556 -.0510 . -.0471 .0436
.0249 -.0021 -.0250 .0456
4.0 -1.9586 -.2947 -.1078 .0544
-.0580 -.0404 -.0256 .0122
.0020 -.0056 -.0120 .0178
5.0 -2.4970 -.1830 -.0365 .0134
-0.0225 -.0036 .0124 .0268
.0001 -.0012 -.0023 .0033
6.0 -2.9999 -.0818 -.0063 .0014
-.0040 .0044 .0116 .0180
.0000 -.0001 -.0002 .0003
7.0 -3.5000 -.0288 -.0006 -0001
-.0004 .0018 .0036 .0053.~

13



Table 1C. Biases of T]A(top entry), TZA(middle entry),

and T3A(bottom entry) expressed in units of o

P* = .99; ¢ = 2.5765 A = .2692
5 0 A 1 V2
.0145 .0000 .0392 .0615
0.0 0 0 0 0
.0537 .0332 .0225 .0541
.0249 .0084 .0364 .0618
0.5 ~-.0045 .0162 .0096 .0053
.0709 .0479 .0144 .0497
.0579 .0360 .0236 .0574
1.0 -.0287 .0537 .0347 .0200
L1163 .0874 .0090 .0355
L1119 .0828 .0040 .0406
1.5 -.1057 .0782 .0603 .0363
. 1682 . 1333 .0386 L0151
.1690 .1338 .0384 .0157
2.0 -.2823 L0411 .0590 .0367
. 1896 .1527 .0527 .0039
. 1989 .0578 . 1609 .0006
2.5 -.5871 .0109 .0889 .0069
.1519 .0323 L1197 .0172
.1823 . 1460 0474 .0085
3.0 -.9963 -.2909 .0696 .0432
.0653 .0438 .0145 .0476
.1302 .0995 .0162 .0310
3.5 -1.4389 -.4978 .1383 .0832
-.0243 -.0323 .0539 .0662
.0724 .0495 .0126 .0478
4.0 -1.8456 -.6442 . 1595 .0905
-.0746 -.0706 .0596 .0534
.0106 .0018 .0219 .0353
5.0 -2.4808 -.7028 .0890 .0406
-.0565 -.0429 .0058 .0152
.0006 -.0015 .0070 L0101
6.0 -2.9991 -.5980 .0223 .0068
-.0148 -.0060 .0178 .0313
.0000 -.0003 .0010 .0015
7.0 -3.5000 -.4602 .0031 .0005
-.0020 .0010 .0091 .0138.~

14



Table 2A. MSEs of T]X(top entry), TZA(midd1e entry),
and T3k(bottom entry) expressed in units of 02
P* = ,90; ¢ = 1.645; Xc = .7190
A
0 A 1 V2

. 3825 . 3605 .3580 .3606
.2500 .2932 .2925 .2935
.3195 .3704 .3962 .4403
. 3841 .3596 .3564 .3582
.2614 .2917 .2942 .2997
.3196 .3726 .3999 .4466
. 3836 .3566 .3529 .3545
.3288 .2992 .3100 .3273
.3256 .3795 . 4085 .4594
.3778 .3575 .3566 .3625
.5318 .3418 .3622 .3916
.3525 .3952 L4214 .4699
.3783 .3764 .3822 .3973
.9402 .4332 .4570 .4882
L4107 .4265 L4434 .4791
.3983 .4188 .4320 .4568

1.5628 .5508 .5652 .5818
.4878 .4697 .4732 .4891
.4337 L4691 .4865 .5157

2.3499 .6464 .6398 .6310
.5516 .5061 .4974 .4941
.4676 .5051 .5218 .5485

3.2456 .6857 .6552 .6244
.5780 .5198 .5039 L4877
.4885 .5184 .5311 .5509

4,2284 .6710 .6243 .5854
.5697 .5128 .4952 .4738
.4996 .5100 .5142 .5206

6.4994 .5842 .5412 .5187
.5247 .4909 .4789 L4627
.5000 .5019 .5027 .5038

9.2500 .5264 : .5071 .5017
.5042 .4916 .4868 .4800
.5000 .5002 .5003 .5004

12.5002 .5058 .5007 .5001
.5004 .4973 L4961 .4943 -




Table 2B.

and T3A(bottom entry) expressed in units of 02

MSEs of T

1

(top entry), T,, (middle entry),

p* = 95, ¢ = 1.96, AC = 5473
A 0 A 1 V2
C
S
.3147 .3090 .3104 .3166
0.0 .2500 .2802 .2760 .2755
.2975 .3204 .3449 .3709
L3277 .3191 .3187 .3240
0.5 .2545 .2806 .2785 .2798
.3042 .3316 .3609 .3920
.3545 .3396 .3355 .3387
1.0 .2902 .2834 .2882 .2947
.3201 .3574 .3975 . 4405
.3726 .3538 . 3480 . 3509
1.5 4244 .2992 .3148 .3286
.3422 . 3846 .4328 .4859
.3750 .3606 . 3592 .3663
2.0 . 7500 . 3508 .3744 .3920
.3779 4119 .4565 .5092
.3779 .3766 . 3851 .4004
2.5 1.3282 .4510 L4691 .4793
.4358 .4470 4743 .5130
.3983 L4123 .4315 .4547
3.0 2.1404 .5776 .5697 .5605
.5052 .4883 .4915 .5081
L4337 L4572 .4820 .5081
3.5 3.1082 .6822 .6337 .6021
.5585 .5202 .5026 .4983
.4676 .4918 .5149 .5378
4.0 4.1626 .7296 .6415 .5966
.5764 .5298 .5010 .4836
L4972 .5087 .5189 .5285
5.0 6.4941 .6797 .5660 .5061
.5404 .5061 .4807 .4608
.5000 .5026 .5049 .5070
6.0 9.2500 .5904 .5140 .5042
.5087 .4941 L4824 4724
.5000 .5003 .5006 .5009
7.0 12.5002 .5359 .5017 .5002
.5010 .4969 .4935 .4905 ~

16



Table 2C.

and TSA(bottom entry) expressed in units of o

MSEs of T

1X(top entry), T

ZA(

middle entry),

2

P*¥* = ,99; ¢ = 2.576; AC = ,2692
A
0 A 1 V2
.2729 2717 L2723 .2750
.2500 .2637 .2587 .2574
.2687 L2721 .2830 .2902
.2852 . 2829 .2816 .2839
.2514 .2658 .2612 .2600
.2753 .2802 .2960 .3065
.3167 .3114 .3045 .3055
.2667 .2707 .2685 .2688
.2922 L3011 .3305 .3505
.3518 .3423 .3281 .3275
. 3399 .2821 .2853 .2904
.3153 .3287 .3751 .4079
.3722 .3602 L3426 .3424
.5600 .3210 .3272 .3405
. 3482 .3626 .4189 .4618
.3750 .3650 .3546 . 3597
1.0313 L4211 4124 .4312
.4030 4117 .4599 .5033
.3779 .3748 .3825 .3970
1.8026 .b957 .5353 5474
.4836 .4800 .5007 .5322
. 3983 .4039 .4317 .4556
2.8230 .8087 .6536 .6440
.5685 .5509 .5352 .5472
.4337 .4452 .4848 .5128
3.9832 .9916 7167 .6801
6227 .5951 .5492 .b421
.4885 .4986 .5284 .5468
6.4663 1.1131 .6534 .5989
.5989 5711 .5107 .4862
.4996 .5030 .b128 .5186
9.2491 1.0119 .5456 .5197
.5302 5151 .4783 L4602
.5000 .5006 .5023 .5033
12.5001 .8689 .5072 .5016_
.5047 .4994 .4856 4783

17
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Taking the bias and MSE together into account,rthe relative performances
of these estimators can be largely summarized as follows: For § < 2, T2A is

the best. For 2 < &8 < 5, one of T,. and T3x is always better than or as good

1a
as TZA‘ When § > 5, TZA is never the best. However, for § > 2, there is no
clear choice between T]x and T3A because the bias and the MSE pull each in

opposite directions.
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APPENDIX 1 - -

Proof of Theorem 2.1. Since Y* and Y are jointly sufficient

for E (M), we restrlct our’ attentlon to unblased estlmators that
are functions of Y* and Y Let n(Y* Y) be an unblased estimator
of M such that V() < =. Let Z be such that it is 1ndependent of
Y* and Y, and Z.n N(S/b y 1/b ), where'b > 0 is known. Applying
the Neyman Pactorlzatlon Theorem to the joint distribution of Y*,
Y and Z, we see that Y* and W = Z + Y/o are sufficient for e* and .
§. Thus ny < EIn|(Y*;W)] is a fenction of Y* and_W-only; ‘Also,

E(n,) = E(n) and V(n,) S V(n) by Rao-Blackwell Theorem. Now, let
1 o 1+ = O 7

. . 2
n, [XZ— + —Uf { & (bc* + DW) - & (bc* - DW)}]

-ID ¢ {bc* + DW} + D. {bc* - DW}]

= er- RZ,.say,

where bc* =»c'71,+ bz.end D = bz/ V1 + b2. Using-(A2.7) and .
(A2.8), it can be seen that E(nZ) =hE(M). ‘Since»E(ﬁl - nz) =0,
it followshthat ny = Ny with probability 1 by the completeness of
(Y*,W). Thus V(n,) = V(ny) < V(n) < .

To complete the‘proof, we obtain a contradiction by showing
that V(n,) can be increased indefinitely by letting b » «. To see
this, we first mote that V(R ) < « which implies that V(R ) < .

It is also easy to see that 0 < E(RZ) < =,  Hence, E(R ) < wh1ch
implies that E[Dzmz{bc* + DW}] < «. On the other hand, using (A2.7)

and the fact that ¢ (a) w(/?a)//fﬁ, we can see that



4 -

VZb (8 + c*)

20

E[D%2{bc* + DW}] = 1 D _ 1 q,{
L P O S

a quantity which tends to infinity as b » w.

7.
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APPENDIX 2

We state a few results relating to normal distribution. We omit the

proofs, which are straightforward.

b
(A2.1) [t e(t) dt = ¢(a) - ¢(b).
a
(A2.2) T e ta(tr)) ¢(t) dt = —— ¢ “—B—> :
- /ﬁ+a2 ( 1+a?
b
(A2.3) [ t2 ¢(t)dt=a g(a) -b g(b) + a(b) - a(a)
a

(A2.4) 7 t ¢(t) ¢(t+a) d 'g q'(——d [ (V2a +-;: ) + = o(/2a + ) - _g_] _

a 2 2 7z 2
(A2.5) i (t) ¢ (t+a) L) [¢(/Zb- =2 + 2 (-2 /2 b)
. t t t+ta) dt = - &+ — b- &) + -2 (% - /2 b
[ vl 2% g [(F Z oz ] '
(A2.6) ] (t+a) « (t+8) « (t) dt = — ACRET)
. {m ¢ \tta) ¢ t48) ¢ = ;%g ST 3 (¢
Let Y N(e,cz). Then

(A2.7)  E —cpgoc(§ + c)g] =— 3“(—‘3*—°l§ :
A_ fisa?

(A2.8) E-Yipg(x(Y ¥ c)i] s qaletell, oo 32(_61ﬂ§
- Vi V-]+0L2 /-|+OL2
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