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ABSTRACT

This paper attempts to fill the gap between some different and conflicting
approaches in survey sampling. Based on a fixed population regression-type
model, a class of optimality criteria similar to those we]]-accepted in the
optimum experimental design theory is introduced. The minimax and the super-
population approaches in survey sampling turn out to correspond to two extreme
criteria of the proposed class. This helps understand.the role.of randomi- .
zation. The strategy of simple random sampling with sample mean and the Rao-
Hartley-Cochran strategy are shown to possess several desirable optimam

properties.

Key words and phrases. Adjusted risk-generating matrix,optimum experimental

design, Rao-Hartley-Cochran strategy, simple random sampling, superpopulation

model.



1. Introduction

In this paper, sbme ideas and results from the theory of optimum
experimental designs will be applied to survey sampling. This is an attempt
to unify and fill the gap between some different and conflicting appfoaches
in sampling theory (such as the minimax and the superpopulation approaches).
A class of optimality criteria is used to interpret and understand the
different viewpoints.

Consider a survey sampling problem where an unknown value Y; is associated

with the ith unit in a finite population of size N. Our objective is to

éstimaté the unknoWn pobulaiion mean Y = Y5 (or equivalently the population
1

=Z|—
He~1=

;
total) based on a sample of size n. The problem is how to select the sample

and how to construct a good estimator. Quite oftén, correlated with each Y5
there may exist a known g-vector X5 = (gi]’xiz,...,xiq)'. The auxiliary informa-
tion provided by these x vectors, when suitably uti]ized,'may greatly improve
the estimation. For this purpose, a superpopulation model (Brewer (1963),
Royall (1970a)) of the form

i=1,2,..., N. (1.1)

Y.

= xlo + €
Ko

; s
is often assumed, where 6 = (6],62,...,eq)' is an unknown g-vector and the E{S
are uncorrelated random variables with mean zero and variances Azgi (gi's are
known; whereas A may or may not be known). Then an optimum strategy may be
defined as one which minimizes the mean squared error of the best linear unbiased
predictor of Y over all the possfb]e samples (when randomization is involved) and
all the possible populations generated by the superpopulation model (1.1). How-
ever, the superpopulation approach often leads to the selection of a purposive

sample; randomization does not play a role here. To bring inrandomization (mostly



because it is thought to provide some robustness for estimation), one may impose
the design-unbiasedness (or its weaker form "consistency" in asymptotic setups)
and define an optimal strategy as one which minimizes the mean squared error
under model (1.1). This approach, however, precludes all non-randomized
strategies. Also, sometimes the payoff for strictly requiring design'unbiasedﬁégs
‘may be quite high (Godambe (1955, 1982), Godambe and Joshi (1965)). |
Cheng and Li (1983) introduced a different approach which can easily be
extended as follows. instead of the superpopulation model (1.1) the following

fixed population model is assumed:

yi = xjo + 28.9% i=1,2,...N (1.2)

where § € @ c:Rq, ﬂi 1s known, A may or may not be known, and § = (61,62,...,6N)'

is assumed to be in some neighborhood of «)pf,...ﬁ)'. For q = 1, Cheng and Li
established some approximately minimax properties of the Rao-Hartley-Cochran
(1962) and Hansen-Hurwitz (1943) strategies. An ear11er related result justifying
probability proportional to size sampling was obtained by Scott and Smith (1975).
The minimax criterion has also been used to justify the use of simple random
sampling and sample mean by many authors (Blackwell and Girshick (1954), Bickel
and Lehmann (1981), Hodges and Lehmann (1981), Stenger (1979), Royall (1970b)).
One crucial assumption made in these works is that x{f(y],yz,,,;;yN)' be in a
permutqtion-invariant subset of RN. This amounts to assuming that,:in (1.2),
X] = X9 = e T Xys g7 T gp = «-. = gy» and ¢ Tes in a permutation-ii .
invariant neighborhood of 0.

The minimax criterion is sometimes criticized as being "too pessimistic"
because it guards against the worst cases. But on the other hand, the super-

population approach seems to be "too optimistic". It is the purpose of this

paper to introduce other criteria to fill the gap between' these two ‘apbroaches. -



Of particular interest is a family of criteria analogous to the ®p-criter1a
in the theory of optimum designs. It turns out that the superpopulation
approach and the minimax criterion correspond to the two special cases p = 1
and p = », respectively. This puts the two approaches in the same framework
and may help to clarify the role of randomization in general.

The paper is organized as follows. Optimality criteria will be defined
in Section 2. The relation of the minimax criterion and the superpopulation
approach to the op—optima]ity criteria is discussed there. Kiefer's (1975)
well-known result on universal optimality is applied to the strategy of simple
random sampling and sample mean in Section 3. Section 4 contains another
application of this powerful optimality tool to the Rao-Hartley-Cochran strategy.

The following notation will be used throughout the paper:

s : a subset of {1,2,...,N} with cardinality n.

S : the set of all samples of size n.

P : a probability distribution on S.

a, = (asl’aSZ""’asN) : an N-vector such that ag; = 0 for all i ¢s.
a = f{a; : s €S},

Here s denotes a sample of size n, P denotes a sampling design, and

N

N agiYy = Z ac;Y; is a linear estimator of the population mean given that
i=1 i€s ‘
sample s is selected. Note that only Tinear estimators will be considered in

this paper and we shall call (P,a) a strategy.

2. Optimality criteria

The mean squared error R(y;P,a) of a strategy (P,a) is

~ ~

N
Y {) (N'] - asi)yi}2 P(s) which, by (1.2), equals
se€S 1i=1



} o P(s) o NTTPRMRNL S ) 6.9.1° (2.1)
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A strategy is said to be representative if

N

(N1 - a ) x; = 0 for all s with P(s) > 0. (2.2)
i1

In view of (2.1), representative strategies are desirable when. ® is unbounded
(since otherwise the risks would also be.unbounded). ‘In the rest of the: paper, we -

will only consider representative strategies.

!
Now let G = diag 91 9%, . ﬁ) Then the mean squared error of a

representative strategy (P,g) can be simplified to

-1

R(y; P, a) = 2%s'G{ ] P(s) (a ) (a - N~

VR 3, - 1'1G6 s,
S

where 1 is the Nx1 vector of ones. This is clearly a quadratic form in 8. We

shall call the matrix R(P

) (ag - N7'1) (2, - N7'1)') 6 the adjusted
- ~ ..,s - ~ < - L LS

risk generating matrix of strategy (P,g). The comparison between two strategies
now reduces to the ¢comparison-between their corresponding adjusted risk
generating matrices; strategy (P],Q]) is at least as good as strategy (P2,§2)
if and only if B(Pzziz)' B(P]i§1)is non-negative definite. This is similar to
the comparison of experimental designs in terms of their information matrices.
It is well known that a design with information matrix M] is at least as good
as another design with information matrix M, if and only if M, - M, is non-
negative definite (see Ehrenfeld (1955)). Of course an adjusted risk generating
matrix here should be thought of as a covariance matrix and therefore corresponds
to the inverse (or generalized-inverse) of an information matrix.

Unfortunately, the comparison in terms of matrix domination introduced above

usually leaves a large class of admissible strategies. Following the theory of



optimal designs, one could introduce some optimality criterion to define the
"hest" strategy. Let ﬂrbe the set of all adjusted risk generating matrices and
¥ be a real-valued function defined on R. Then a strategy (P,g) is called
y_optimal if ¥(R(P,a)) < ¥(R(P',a')) for any (P',a'}).

One important class of criteria in the theory of optimal design is the Qp
criteria defined in terms of the eigenvalues of the information matrices. They
can easily be adapted to our problem. Note that because of (2.2), the dimension
of the null space of any R(P,a) is at least q (here without loss of generality
it is assumed that the rank of the gxN matrix (51’52""’§N) is q). Let
A1) 3_A(2) > .. z-x(N-q) be the N-q largest eigenvalues of B(:P;g)T For any

p » 0, define a function @p on R by

ey 1/p.

For p=1, @1(B(P,g)) = {trace R(P,a)} / (N-q) is simply the trace criterion

(A-criterion). One can also show that Tim @p(B(P,g)) = l(]), the maximum
p—-)co
eigenvalue of B(P,g). Thus ¢_ is a kind of minimax criterion (E-criterion).

In fact, if in (1.2), one assumes that § belongs to an L2-neighborhood

' Giz f_M} for some M > 0 then minimizing @w(B(ﬁ;é)) is the same

Lé(M) = {§ :

n~12

i=1

as minimizing the maximum mean squared error sup R(y;P,a). This is one
s€ L2(M) v~

approach taken by Cheng and Li (1983).

The following theorem establishes an interesting connection between the y-
criterion and the superpopulation approach.
THEOREM 2.1. A strategy (P,a) is optimal under the superpopulation model (1.1)
if and only if 1t.1s ®]-optima1 (A-optimal) under model (1.2).

N
Proof. It is clear that the unbiasedness of ) agiYi is equivalent to the
i=1



representativeness condition (2.2). Write. €= ( € 62 €N "For a

representative strategy, the mean squared error under model (1.1) is

E ) {z (N _as1) 9}

— N 2
£ ) (V- §agyp? pls)

s&S j=1 37 $&S
=E] e -a) (VT1-a ) € P(s)
S €S
=E Z P(s) trace{( "]1_6 ) (N_]1-as)'ee'}
sES ~ ~5 ~ ~s’ T
= 2% trace Y P(s) (N'] -a) (N_]ltg ) G2

S €S ~ S

Az trace B(P,g).

Therefore to minimize the mean squared error is the same as to minimize
Q](R(P,a)). This completes the proof.
Thus we see that the superpopulation approach of (1.1) and the minimax

criterion are two special cases of the ép-criteria with P=1 and », respectively.

Let-Zimbe"the confex hull of R. Then. it is.clear that the extreme points _

of 7.are adjusted risk generating matrices of non-randomized strategies.-

For p <1, Qp:is_a concave function and hence.its minimum usually is

attained at some extreme points of . This explains why a superpopulation model
(p=1) often leads to a non-randomized optimum strategy. On the other hand, for

p > 1, % is strictly convex and its minimum is-often (but not}a1Wéy$),attainéd

at some mixture of extreme points, i.e., a'raﬁdomiie&wstrategy. In partféu]ér, for
P ="=,"one sees why -the minimax approach often-yields a randomized design. “This
providéd a unified'view of the two différent approaches “The ‘difference 1ies in the

criteria used. Wynn (1977 asb) also applied some: theory “Onthe- D~ opt1mum exper1menta]

designs to survey sampling, but his approach is very different from ours. He

assumed superpopulation model (1.1) and was interested in minimizing the maximum



mean squared error of "prediction" over the unsampled units. This different
notian of minimaxity leads to a purposive optimal sampling design. The techniques
he used were mainly the kind usually found in the approximate theory of optimal

design, while our methods are borrowed from the exact theory.

3. Universal optimality of the strategy of simple random sampiing and sample mean

The minimaxity of the strategy (simple random sampling, sample mean) 1is
well-known. In this section, we shall use an important result in optimal design
. theory to show that it is also optimal with respect to a large class of criteria
including all the @p-criteria, p > 1.

Consider the case where X=X . =Xy and 91=9p=---"9y- The representative-

ness condition (2.2) is reduced to
N v
Ya_, =1 for all s with P(s) > 0.
i=1 S?

An important consequence of the above condition is that R(P,g) has zero row and
column sums. Kiefer's (1975) Proposition 1 becomes relevant here.

Suppose ﬁN is the set of all the NxN nonnegative definite symmetric
matrices with zero row and column sums, and C C:ﬁN. Kiefer (1975) showed
that‘if'there exists a matrix C* in C such that

(a) C* is completely symmetric in the sense that C* is of the form aLN

+ bdy, where I, is the identity matrix of order N and J, is the
NxN matrix of ones,
and
(b) C* maximizes tr C over C,

then C* minimizes @(g) for all the real-valued functions ¢ defined on By

satisfying the following three conditions.



(i) ¢ is convex,

(ii) o(bC) is nonincreasing in the scalar b > 0,

(iii) @ is invariant under any simultaneous permutation of rows and

columns (permutation of coordinates).

Such a matrix C* js called "universally optimal". The above result is an important
tool for showing the optimality of balanced incomplete biock designs and many
other symmetric designs such as Latin squares and Youden squares, wherein
each matrix in.Cis an'infqrmation-matrjx<§QmpqrabJ¢Vto a generalized inverse
of an adjusted- risk generating matrix. in the present setting- In.order
to-apply Kiefer's. result to our:problem, one. has to compute the generalized
inverses of adjusted-risk generating matrigesjwwhich.js a formidable
task. One way to get around ;his;inversipn i’ to. use,a: weaker form
of universal optima]ity,vas employed in Kiefer and wynnv(1981). Let Cbe a

subset of &N. The macrices in G can be thought of as the adjusted risk

generating matrices or the generalized inverses of information matrices. It

can be shownthat if there exists a matrix C* in ¢ such that

subset of @ . It can be shown that if there exists a matric C* in C such that
(a') E* is completely symmetric,
and
(b') C* minimizes tr C over C,
then C* minimizes ¥(C) over C for any real-valued function ¥ defined on &
satisfying conditions (i), (ii1) and ..
(ii') y(bC) is nondecreasing in the scalar b > 0.

Such a matrix T* is called weakly universally ootimal by Kiefer and Wynn (1981).

This is a weaker form of optimality because the class of convex decreasing

functionals @ of matrices in EY is more general than the class of convex increasing



functionals v of the generalized inverses of matrices in ﬁN, For examplé,

h i - \1- » ) ,' - - N 7- . . . ol ‘
when ' < 1,vthef¢p criterion.is:-covered by Propositien 1 in Kiefer (1975) but is

a strictiy concave function on the convex hull of & . ilevertheless, ihe class

of criteria satisfying (i), (ii'), and (iii) is still qUite large; e.qg., it

contains all the @p—criteria with p > 1.

Note that condition (b') is simply the ¢o,-optimality. Therefore for a strategy

with completely symmetric adjusted risk-generating matrix, the optimality under

superpopulation model (1.1) implies the optimality under model (1.2) with

respect to a large class of criteria. It is straightforwdrd to see that the

adjusted risk-generating matrix of the strategy d*= (simple random sampling,

sample mean) is aly + ng where a = (N—n)n']N'] (N-])'] and b = -a/N. Furthermore,
it is fairly easy to show that d* is Q]—optima1 (In Fact, any strategy using
the sample mean as an estimator of Y is ®]—optima1). This proves the "weakly
universal optimality" of the strategy of simple random sampling and sample mean;
in particular, it is @p-optima] for all p > 1.

The above argument shows how a well-known theorem in optimal design theory
finds an application in survey sampling. Our result is different from the
various minimax properties proven in the literature. Stenger (1979) considered
general convex loss functions, but he still used a minimax criterion. Further-

more, our proof clearly reveals an interesting connection to design theory: the

strategy of simple random sampling and sample mean plays the same role as a

balanced incomplete block design.

4. More results on universal optimality

The discussion in the Tast section shows that the strategy of simple random:
sampling and sample mean is a balanced strategy; all the nonzero eigenvalues of
the adjusted risk generating matrix are the same. This property is crucial to

its weakly universal optimality. Another example of balanced strategy is the
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Rao-Hartley-Cochran strategy which was shown by Cheng and Lj (1983) to enjoy
some approximately minimax properties,

Now assume that qg =1 and 9; = Xi1 which we shall write as Xs;. Then -
. 5.3 2 .
G = diag (X]E,xza,...,ﬁyz). In this case, the representativeness condition (2.2)

.. .
implies that for any R in R, B(xlz,xzz,...

=

1 .
2 1
N) = Q (see proposition 2.1 of
Cheng and Lj (1983)). Let R (RHC) be the adjusted risk generating matrix of the

| Rao-Hartley-Cochran strategy. Then it was calculated in Cheng and Li (1983) that

B(RHC)_= al, + bGJ, G , (4.1)

N ~~N=Z

21 N 2 -1 .
where a = N™%p u Z X; and b = -N"“p~ » With u being the finite population
i=1

correction (N-n)/(N-1) + k(n-k)/N(N-1) where k = N-n[N/n]. Thus R(RHC) acts as

Unlike in Section 3, now the matrices in ® no longer have Zero row and
column sums. The key step in the proof of Proposition 1 in Kiefer (1975) is to
take the average of an arbitrary matrix in Cwith respect to all the simultaneous
permutations of rows and columns. Such an argument fails here since the set of
matrices orthogonal to (x]%;...,xN%)'is not permutation invariant. Instead one
can take the average with respect to alj the orthogoha] transformations that
. leave the vector (x]%;xzé;...,xNéalinvariant, and prove the following analogue
of Proposition 1' ip Kiefer (1975).

Proposition 4.1 Let qv' be the set of alj the NxN nonnegative definite
symmetric matrices C such that Ca = 0 for some nonzero vector a, and C is a
subset of ﬁN. If there exists a matrix ?* such that all the N-] largest eigen-

values of C* are equal and C* minimizes tr C over T, then C* minimizes ¥(C)

over T for all real-valued functions ¥ defined on ' satisfying conditions (i),
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(ii') in section 3 and
(iii') v (OEO') = w(gvrfor any orthogonal matrix O such that Qa = a

Such a matrix L* is again said to be "weakly universally optimal". (Note

that it is well-known that Proposition 1' in Kiefer (1975) contains an error;

the coﬁditibn of "permutation invariance" should be rep]ated by "orthogonal
invariance". A correct version in fact appeared in an eér]ier paper by Kiefer
(1971)). Condition (iii') implies that ¥ is a function of the eigenvalues.

One may rephrase conditions (i), (ii') and (iii') in terms of the eigenvalues.
Another variation is to define weakly universal optimality in terms of Schur-

- convex functions of the N-1 largest eigenvalues of the adjusted risk generating
matrices. Again, all the ¢p-criteria with p > 1 satisfy the three conditions
(i), (ii'), and (iii').

Although the Rao-Hartley-Cochran strategy is a balanced strategy in the
present setting, it is not "weakly universally optimal" since it ig nothéTrobtﬁma1
(A-optimal). As shown earlier, a ¢,-optimal strategy is the optimal strategy
‘under the superpopulation model which, according to the results of Brewer (1963)
and Royall (1970d),comprises a purposive sampling designrse1ecting the n largest
X-values and the ratio estimator. Let R(BR) be the ®]—optima1 strategy and X(4)

be the ith smallest x-value. Then R(BR) has only one nonzero eigenvalue

N n N N
N"2X Z x(1) . X(j)» where X = 2 (4.1), a1l the N-1 nonzero
: i=N-n+1 =l
eigenvalues‘ of R(RHC) are equal to N'Zn']uX. Obviously tr R(BR) =

2N" | -2 -1

N“X ) x f X(1) < N"%(N-1)n" "uX = tr R(RHC). For p > 1,

i=1 i=N-n+1

-1/p 2 N-n N 2 .1

o (RBR)) = (N-1) N~ LX) X(4) and 8, (R(RHC)) = N"2n7Tix.
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By direct comparison we see that the.Rao-Hart]enyochrah“strétegy.1s @D - better

N
than the 2,-optimal strategy 1f (N-1)" 1/p Z X n~! Loox,.
() = i=N-n+1 (1)
N-n 1 N
In particular, if ) X(5y 20 ) X(§)> then the Rao-Hartley-Cochran
i=1 i=N-n+1

strategy is @W-bettér than the ®]-opt1ma1 strategy.

Although the Rao-Hartley-Cochran strategy is not weakly universally optimal,
by Proposition 4.1 it is weakly universally optimal over the subclass {R : RER
and trace R > trace B(RHC)}. We shall show that this is a quite large class
that contains some commonly used competitors to the Rao-Hartley-Cochran strategy.
More specifically, we have the following
Theorem 4.2  Assume that q = 1 and 9 = Xy i=1,2,:..,N. If n|[N, then
¢(R(RHC)) < ¥(R(P,a)) for any v satisfying (i), (ii'), and (iii'), and any
répresentative strategy with 7§ p(s)/XS_z (nY)'], where X =

SES

1 N
z X; and X =} x..
i=1 i€s

n']N'Z(

Proof  When n|N, u = (N-n)/(N-1) and therefore tr R(RHC) N-n)X. By

proposition 4.1, it is enough to show that if ) p(s)/Xs (nY)"], then

|v

s€S
tr R(P,a) 3_n']N_2(N-n)X. Now for any strategy (P,a), we have
N -1y2
trR(P,a) = § § P(s) (ag )Xy
i=1 s€S
= s){ QF N~ x + (a .-N'])Zx.}. (4.2)
AT i

Recall the representativeness condition ) a_.x. = X. Minimizing ) (a_.-N
i€s i€s
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in (4.2) subject to the constraint ) asXs = X yields ag; = YYXS. ,THUsbif
i€s '

) P(s) /X 3_(nY)'], then

s €S S
trR(P,E) > [ PO T N+ T (Ux - NP

SES - ids i€s

= 3 pls)y YN X; + X /Xs - 2X/N}
SES i=1 :

=} PLS)TE/X - TN
s€eS

z_n—1N—2(N-n)X,

where the last inequality follows from the assumption that ) p(s)/XS 3_(n7)'1.
s€S
This completes the proof. O
Note that the condition in Theorem 4.2 1is mainly on sampling design; no

other assumption is made on the estimator except the condition of representative-

ness. This indeed covers a very large class of strategies which, by the
following proposition, includes the two important sampling designs commonly

used with the ratio estimator: simple random sampling and the scheme of

Lahiri and Midzuno (also known as probability proportional to aggregate size

sampling) in which each sample s is selected with probability proportional to Xs'

Proposition 4.3 Let P be a simple random sampling or a probability proportional

to aggregate size sampling. Then ) P(s)/Xs 3_(n¥)'].
S€S

Proof For probability proportional to aggregate size sampling, one has the

equality "} P(s)/XS = (hY)']. For simple random sampling, the result follows
S€S

from a simple application of the Jensen inequality. O
Thus we see that the Rao-Hartley-Cochran strategy is better than any
representative strategy using simple random sampling or probability proportional

a
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to aggregate size sampling with respect to all the criteria satisfying (i), (ii'),
and (iii') including all the @p-criteria with p > 1. In particular it beats the
strategies of (simple random sampling, ratio estimator),:{probability proportional
to aggregate size sampling, ratio estimator) and many other unbiased ratio-type

estimates with simple random sampling (Cochran 1977, page 174). This extends the

comparison made in Section 4 of Cheng and Li (1983).

This kind of "universal optimality" holdsbecause we have a "balanced"
strategy. The striking result of Kiefer (1975) again finds another powerful

application.
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