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SUMMARY

Existence and uniqueness of solutions is established for
stochastic Volterra integral equations driven by right continuous
semimartingales. This resolves (in the affirmative) a conjecture

of M. Berger and V. Mizel.
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1. Introduction

Stochastic integral equations of Volterra type typically
arise by modelling systems corrupted by noise (cf, e.g. [2]).
The white noise case leads to It8-integrals with Brownian
differentials (e.g., [11, [21, [19]1), and Berger and Mizel [2]
conjectured that general right continuous semimartingale
differentials can be handled. Partial results in this direction,

using continuous McShane differentials, were obtained by Rao

and Padgett [20]. 1In particular, consider the equation:
t i
(1.1) X, = Ht—F._E J £, (t,s; X ,u < s)dz_,
l'—l’r 0

or more typically the linear equations:

t .
_ i
(1.2) X, = Ht-k._Z J K, (t,s)x Az,
i=1l,r ‘0
where 21 are right continuous semimartingales. Several

authors (e.g. [1], [2], [19]) have considered equations such

as (1.1) and (1.2) when Zt = t+ and Zi = Bt (a Brownian
motion). A recent article of Kolodii [12] considers semi-

martingale differentials, but the author's hypotheses eliminate
discontinuous local martingales with paths of infinite variation
on compacts, and thus the theorem for general semimartingale
differentials is not established.

One cannot apply directly the standard techniques used to
study stochastic differential equations driven by semimartingales,

principally because if Z = M+A is a decomposition of Z



(with M a local martingale), the Métivier-Pellaumail-Doob
maximal inequalities cannot be applied to

t

Jof(t,s; Xu,u < s)dMS,
because of the presence of "t" in the integrand.

In Theorem (4.2) we establish the existence and uniqueness
of solutions of equations of the form (1.1) with arbitrary right
continuous semimartingale differentials, thus resolving a
conjecture (in the affirmative) of Berger and Mizel [2, p. 336].
These results include (as a special case) those of Rao and
Padgett [20], since the semimartingale integral extends the
McShane integral. We also show (Corollary (4.11)) that X is
a semimartingale and we give its decomposition.

Our method combines the idea of Berger and Mizel of
establishing a "transformation rule” (Theorem (3.3)) with the
elegant results and methods of a recent article of A. S. Sznitman
[211. In proving the existence and uniqueness of solutions,
we use the idea of "controlling" a semimartingale due to Métivier
and Pellaumail, together with a type of Picard iteration method
developed in [18].

Allowing stochastic Volterra kernels as in equation (1.2)
leads one naturally to consider non-adapted (i.e., anticipating)
integrands. One approach towards handling this might be to
follow the idea of K. It6 [9], which has been systematically
developed primarily by the French (cf, especially T. Jeulin [11]):-

that is, one may expand the underlying filtration in such a way



that the semimartingale differential remains a semimartingale
(although with possibly a different decomposition) and hence
still can be used as a differential in the equation. Unfortunately
these theories are still in their infancy; in Comment (3.6) we
indicate how one might proceed in a particularly simple setting.

I wish to thank C. Stricker for simplifying the proof of
Theorem (3.3), J. Jacod for several suggestions and for pointing
out an error, and the referee for several suggestions and for

calling attention to reference [12].



2. Preliminaries

We assume the reader is familiar with the basic results
of stochastic integration with respect to semimartingales as
presented in any of [10], [161, [5]1, or [l4]. For the reader's
convenience we will recall in this section the basic notations
and definitions we will use, as well as some of the more
recent and less known results that we will need.

We will assume throughout that we have an underlying

filtered probability space (Q,?,(?;) satisfying the

£>0'F)
"usual hypotheses": that F is P-complete, and that ?O
contains all P-null sets, and that (?t) is right continuous.

A right continuous, adapted process Z is called a semimartingale

if Z has a decomposition‘ Z =M+A, where M is a local
martingale and A 1is a right continuous, adapted process with
paths of finite variation on compacts. Such a decomposition is
not unique.

We will say that an increasing process A controls a
semimartingale Z 1if for each bounded, predictable process H

and for each stopping time T we have

t 2 - T~ 2
(2.1) E{sup(J H_dZ ) LS E{AT_J HSdAS}
t<T ‘0 0
where AO = 0, At = max(l,At), AT— = 1im At, and where A
t-»>T
<7

is assumed to be increasing, right continuous and adapted. The following
key result is due to M. Métivier and J. Pellaumail [14, or 8

and 13].



(2.2) THEOREM. If 2 1is a semimartingale, then there exists a

finite-valued increasing process A controlling Z.

We will also need the existence of smooth versions of
stochastic integrals when the integrand depends on a parameter.
The following theorem is a trivial corollary of a general

result due to Sznitman [21, Proposition 5 on p. 53].

(2.3) THEOREM. Let 2 be a semimartingale, k a nonnegative

integer, and H(x,-) a predictable, z-integrable (uniformly

in x) process that is ¥ in x such that the kth derivative

is Lipschitz continuous in x. Then there exists a version

N(x,t) of

k rt ,

d J H(x,s)dz
0 s

that is continuous in x and cadlag in t.

A process X 1is called cadlag if it is adapted and has
paths which are right continuous with left limits. The space
of functions mapping R, to R which are right continuous and
have left limits is denoted D. Given a local martingale N and
an adapted process A with right continuous paths of finite

variation on compacts, we let

j(N,A) = [1\1,1\11010/2 + J laa_| ,
0 S

where [N,N] is the quadratic variation process of the local martingale N.

For a semimartingale 2 the ‘%p norm of 72 1is given by

Il = ing l5aun]



8.

where the infimum is taken over all possible decompositions of
Z. For a local martingale N one can easily see that

1/2

Nl = w272 .
P LP

For a process X, we let

X* = :35 XS 7 “X”,z = ”X*”L2.

In general, our notation is that of p. A. Meyer as established

in [5] or [16], to which we refer the reader for any unexplained

notations or definitions.



3. The Transformation Rule

In this section a transformation rule for stochastic
integrals is established, along with some related results.
This extends the results of Berger and Mizel [1], and is
closely related to the work of Sznitman [21], who considered

more abstract situations.

(3.1) DEFINTIION. Let Et = (Zi,---,Zt) be a vector of

(?E)t>0—semimartingales, and let E(x,s,w) = (Hl,---,Hz) be

a vector of parameterized processes: g : R, xR, X Q >R,
g;’:ffSVG{HJ(x,u,-);Ogu;s;x;u;l;i;“
?S = N 53. (Also write %2 =9).

u>s
Then H is E—acceptable if (1) Zi is a Y-semimartingale
(1 < i £k), and (ii) for each x, (s,w) - Hj(x,s,w) is
Y-predictable for s < x; and (iii) (x,s,w) =~ Hj(x,s,w) is

B®,) ® BMR,) ®J, measurable (1 < J < %).

(3.2) THEOREM. Let Z be a semimartingale, and let H = H(x,s,uw)

be Z-integrable and Z-acceptable. Suppose H,(x,s,0) = %g (x,8,w)

exists, is locally bounded (uniformly in x), and satisfies

|Hl(x,s,w)-Hl(y,s,w)l < Klx-y|, some K > 0, for each fixed

(s,w) (s £ x). Then there exist processes N(x,t) and L(x,t)

such that:
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(1) for each fixed w, =x > N(x,t,w) is ¥ and
x > L(x,t,w) 1is continuous.
(ii) for each fixed x, N and L are versions, respectively
of :
t
N(x,t) = J H(x,s)dz
S
0
t
Lix,t) = J Hl(x,s)dZS

0

Hi

(iii) 2N(x,t) = N (x,t) is a semimartingale, and L(x,t) is

a version of Nl(x,t).

PROOF. Parts (i) and (ii) are immediate consequences of
Theorem (2.3).
For part (iii), we first assume Z is an %2 martingale

and that H; is bounded. Since N(x,t) € %2, each x, we

need to show only that lim %{N(x%—h,t)-—N(x,t)} = L(x,t),
h-o

with convergence being in %%. Note that:

Lin [[EN(x+h,t) -N(x, 8} -Lix,8) ]2
h+o %

t
lim E{J (%{H(X-Fh,s)-H(x,s)}-Hl(x,s))zd[Z,Z] }
h-+o 0 _ ' S

t
lim E{[ {Hl(c(h),s)-Hl(x,s)}zd[Z,Z] }
h-0 0 s

where [Z,Z] denotes the quadratic variation process of the
%2 martingale Z, and where c¢(h) 1is between x and x+h.
Since x -~ Hl(x,s) is continuous and bounded, Lebesgue's dominated

convergence theorem yields the result.
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In the general case, by optional stopping we may assume Hl
is bounded; moreover one can always find a sequence of stopping
n

times TO increasing to <« a.s. such that ZT = MP+ A"

with M" € %2 and A an adapted process with paths of finite

variation on compacts (cf, e.g., [5, p. 463]). The result holds

for A" by Lebesgue-Stieltjes integration theory, and it holds
n

for MV by the preceding; linearity gives the result for ZT ’

and hence for z. 0l

(3.3) THEOREM (Transformation Rule). Let Z be a semimartingale

and let H = H(X,s,w) be Z-integrable and also satisfy the

hypotheses of Theorem (3.2). Let Yt = JZH(t’S)dZs’ Then Y
is a gH semimartingale, and if Z = M+A i§_§_§H—decomposition
of Z, then
t
(3.4) Yt = J H(s,s)dMS +

0

t t s
{JOH(s,s)dAS + J ([ Hl(s,u)dzu)ds}

is a decomposition of Y.

PROOF. Establishing (3.4) will, of course, show that Y 1is a

semimartingale. We have

=
i

t
& JOH(t,s)dZs

t t
j {H(t,s) - H(s,s)}dz -+J H(s,s)dzZ ,
0 S o S
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t
and H(t,s) -H(s,s) = j Hl(u,s)du
s
t
= Jol(séu)Hl(u,s)du,

hence by the Fubini theorem for stochastic integration

(cf, e.g., Jacod [10, p. 181]) we have:

t
J {H(t,s) -H(s,s) }dz
0 s

t ¢t
= JO{JOl(Siu)Hl(u,s)du}dZs

Jt u
{J H, (u,s)dz l}du,
0 ‘o 1 S

and the theorem follows. 0

(3.5) COMMENT. A sufficient condition for H to be Z-integrable
(one of the hypotheses of Theorem (3.3)) is that H be locally
bounded, uniformly in x. With a little extra regularity in

the second variable this is easily verified in practice: let
T(n,x) = inf{s > 0: |H(x,s) | > n}

R_ = sup T(n,x).
n
Xin

Since x -+ H(x,s) 1is assumed continuous, one has

Rn = sup T(n,x) as well, so that Rn is a countable supremum
Xin '
x€Q

of stopping times and hence also a stopping time.
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If one assumes s ~ H(x,s) 1is left continuous, then
]H(x,s/\Rn)| <n. If s~ H(x,s) 1s right continuous, then
the stopping times Rn are predictable (cf, eg, [4, p. 741),
and letting Rn K be an announcing sequence for Rn’ we have

4

|H(x,s/\Rn k)| < n, each k. Letting k, be so large that
, =

P(R < R -l—) < lﬁ, we can choose a sequence of stopping
n,kd n 2n - h
times Q_ = R for each n such that 1lim Q = > a.s.
n n,kO n

and |H(x,sAQ)| 2 n a.s.

(3.6) COMMENT. Recall that the filtration %% is given in

(3.1) as follows:

?2 =3FSVO{Hl(x,u,-); 0 guss; x2u, 1 < i < 2}
5. = Ny =gk
S u

u>s

The question of when an ¥ -semimartingale remains a Y-semimartingale
is a difficult one. If Z = M+A is an F-decomposition of 2,
then A is obviously also Y-adapted with right continuous paths

of finite variation on compacts, and hence Z is a 9 - semi-
martingale as soon as the ¥ -local martingale M is one. That

all #-local martingales be Y-semimartingales is called "hypothesis
H'" in the literature. General - but not very practical for our
situation - conditions for it to hold have been obtained

(cf, eg, [111, [17]1), especially in the important special case

when 2 is a Brownian motion ([9], [11]1, [22]).
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We now give an example of how one might apply this theory.

Let
B =F volri(xu,); 0cugs x20 1<igt)
70
.= NX..
S uws U

Then ?s c gs E‘%s’ and it is well known that if Z is an
#-semimartingale, then it is also a Y -semimartingale. The
following is a trivial consequence of a result of J. Jacod

and P. A. Meyer [11, p. 26].

(3.7) THEOREM. Let (Ai)iEI

A, €F, P(A;) >0, (1€1I), and ofa;; i € I} =4. If

be a partition of @ such that

%s = N @11Vf), each s, then each f-semimartingale is an
u>s
Y-semimartingale.

This indicates a way to adjoin all the "extra" information of
the Volterra coefficient initially in such a way thaf the
differential remains a semimartingale.

Clearly, howevef, this is one of the least interesting
possibilities, and it would be interesting to find a framework

such that one could have more general random Volterra coefficients.
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4. Existence and Uniqueness of Solutions

We begin this section by describing what functions will

be allowed as coefficients.

(4.1) CONDITION. Let £f: Q XZR+ XZR+ xID IR be such that

(i) f is F ® B3R ® 3@®R,) ® B (D)-measurable;
(i) If 95 = nF volet,v,m; 0 <v<u t2uw HEDI,
u>s

.then for any cadlag, ?f—adapted process Y, the process

J (w) = flw,t,s,Y.(w)), (s £ t), i§_§f—predictable.

(iii) £ has the following Lipschitz property

(X, Y gf—adagted and cadlag):

sup]f(u,u,X)-—f(u,u,Y)I
u<s

< K sup|X -Y

l
u<s u'’

(iv) fl exists and has a Lipschitz property:

suplfl(t,u,x.)-fl(t,u,Y.)|
u<s
t>s

<K sup|X
u<s

u-Yu|’

» £

where X, Y are y -adapted and cadlag.

In the above, fl denotes the partial derivative of f in the

first variable.
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(4.2) DEFINITION. Let 27 = (Zl,---,Zk) be a vector of
(2, ?ﬂ?t,P) semimartingales, and suppose that £ = (fl,---,fk)
satisfy Condition (4.1). If 2 remains a semimartingale for

the filtration ?é, then we say that £ is a E—compatible

coefficient.
(4.3) THEOREM. Given semimartingales (Zl,---,Zk) = Z, and
g_g—compatible coefficient £ = (fl,---,fk), we let H be

a ?E—adapted cadlag process. Then there exists a solution,

and only one, of:

t .
J £t (t,s,x.) dz .
0 s S

Before formally beginning the proof, we state and prove two

lemmas we will need.

(4.4) LEMMA. Let H = H(x,t,w) Dbe a bounded, parameterized

process satisfying the hypotheses of Theorem (3.2), and let £

satisfy condition (4.1). Let Z be a semimartingale. Then

there exists an increasing process L controlling 2 in the

following sense:  for any stopping time T bounded a.s. by a

constant a:

t 2
(i) E{sup(J H(t,S)dZS) Iy
t<T ‘0
- [T 2
< 2E{LT_J CH(u,u)“dLn }

0

a T- 2
+ 8a J E{LT_J Hl(s,u) dLu}ds;

0 0

t

where L, = max(l,Lt).
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(ii) for X and Y +two processes with paths in D:

t
E{sup(j f(t,s,X.)s-f(t,s,Y.)SdZs)z}
£t<T ‘0

T

< (2-+8a2)E{fT_J (X. —Y.);ZdLu}.

0

PROOF. First we prove (i). The existence of an L controlling
Z 1is assured by Theorem (2.2), a result of M. M&tivier and

J. Pellaumail. Thus we have that

t 2
E{sup(J H(s,s)dz,) }
s<t ‘0

T

< E{ET_J H(S,S)ZdLS}.

0

Using (a+b)2 < 2a2-+2b2, we need only show there exists

t (s

an L controlling J {J Hl(s,u)dzu}ds. Let Z = M+A be
0°0

a decomposition where M 1is locally square-integrable and

A 1is of finite variation. We have:

t (s 9
E{sup(J [J Hl(s,u)dZu|ds) }
t<T ‘0 ‘0
T (sAT- 2
(4.5) < E{TJ (J Hy (s,u)dz )"ds}
0 -0

A

a SAT- 2
aJOE{(JO Hl(s,u)dZu) dsl.
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SAL
Let Ni = J ‘ Hl(s,u)dMu, which of course is a local martingale
0 S sAt
for each fixed s; and let Bt = J Hl(s,u)dAu; then (4.5)
0
becomes
a
< ZaJ e )2 +EBS ) %ds
= 0 T— T
a S .8 S .8
§8aJ {E(IN®,N7],, +(N°,N°),_ )
= 0 T— T=
SAT— 9
(4.6) + E(|A|T_J Hy (s,u) [dAs|)}ds
a T- 2
< SaJ (E{J Hl(s’u) a(ImM,M]_+(M,M) )}
= 0 0 u u
T~ 2
+ E{[A!T_jo Hy (s,u) |dAS[})ds.
Let C_ = [M,M]_+(M,M) , and let D_ = vy2C_, so that
u u u u u
1 - .
ac = E(Du-kDu_)dDu. Then (4.6) yields:
a T- 2
< SaJ E{DT_J H (s,u)"dD_ +
0 0
T- 2
IA]T_JO Hy (s,u) |dAS|}ds.
Finally, set L, = (|A|u-+Du), and we are done.

PROOF of (ii): Applying part (i), we have:

t
E{sup(J f(t,s,X.)s-f(t,s,Y-)SdZS)z}

£t<T ‘0
~ T- 2
< 2E{LT_J (X. -Y.) 4L }
0
a T=- 2
+ SaJ E{L J (X. -Y.)*4aL_ldas
0 T- 0 u u
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using the Lipschitz hypothesis on £f. Since the second integral

above has an integrand not depending on s, the result follows.

C]

(4.7) LEMMA. Let x? be adapted, cadlag processes. Let Lu

be a strictly increasing, right continuous, adapted process

such that Lu > u a.s., each u > 0. Suppose that for any

bounded stopping time R (R £ a a.s., say) we have:

B{[ (x?1 —XI.I);_]Z}
R- ~1, %2
< C(a)E{J (xB - xPTHy *4ar b,
= 0 S S

Then (Xn)n>l converge locally in 52 to a unique cadlag,

adapted process X.

PROOF. Define 1, = inf{s > 0: L, > t}, the right continuous
inverse of L. Since L is adapted, Te is a stopping time
for each t. Moreover Lt > t implies Te <t a.s. and hence

is bounded for each t. We fix a tO, set a =t and consider

OI

t t

A

0’ writing C for C(to) = C(a). Then
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A
N
3]
~

t_
n n-1, %2
J [(X7 -X )S ]dLS}

a
CE{J 1
0

p CO

(s)(Xn-Xn_l

A

*2
[O,TtI )s dLs}

n n-1,*2
t[(S)l[o,a](S)(X -X ) “ar _}

= CE{ S S

1
JO [OIT
L

e n-1,*2

n
I l[O,Tt[(Ts)l[O,a](Ts)(X -X i ds}

CE{

A

S
f o

n-1, %2
1
. [0,t X ) " “ds}

n
(Tsia)(x - Tg

A

CE{

/

[(s)l

rt
n n-1, *2
CE{| (X" ~-X )TsAal(S<t)ds}

‘0

A

E{(x" -x""H)
0 Tg

A

t - *
CJ n-1 2'}ds.

*
n+l__Xn)T2 }. Then we have established,

Now set un+l(t) = E{(X

£
for t ¢ tO = a, that

t

an+l(t) < CJ an(s)ds.

0
Iteration yields an+l(t) < %% for a finite constant M. Since
3% is the general term of a convergent series, we are done. 0
PROOF of Theorem (4.2): For notational simplicity we consider

only the case k = 1. By the hypotheses on the coefficient £,
using optional stopping if necessary, we may assume without loss

of generality that f and fl are bounded. By Stricker's
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theorem and its refinements ([5]1, no. 63 bis, pp. 271, 2) we can
assume, by changing to an equivalent probability law Q@ if
necessary, that H € 52 and 7 € %2, and hence Z has a
decomposition Z = M+A with M € %2 and J |dAsl € Lz(dQ).

The solution X obtained under Q will alsoobe a solution under

P due to the invariance of the stochastic calculus under changes

to equivalent laws ([5, p. 338}). Thus henceforth we assume
7z € #2.
o
Set: Xt = Ht'
n+l t n
(4.10) Xt = Ht4-JOf(t,s,X.)stS.

Then each X" 6152, and the controlling process L of Lemma (4.4)
can be taken such that E(Lt) < o for t < «, Moreover, by

replacing L with L,+t, L can be taken to be strictly

t t

increasing and such that L_ > t a.s.

t
We now apply Lemma 4.4 (ii), and Lemma (4.7), and the
existence follows trivially.

As for uniqueness, if X and Y are two solutions, then

t
X-Y = J f(t,s,X.)-—f(t,s,Y.)dZS
0 _
(taking k = 1 for notational simplicity). Thus by Lemma (4.4)

there exists a controlling process L such that

t
E{sup(J f(t,s;X.)S-f(t,s,Y.)stS)z}
t<T ‘0

T— 9
< C(a)E{J (X.-Y.)u

dLu}.
0
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Letting 71, = inf{s > 0: L, > t} and proceeding as in the proof

of Lemma (4.7), we have
t

= a(t) £ CJ a(s)ds.
0

*2 }

Tt__

E{(X-7Y)

Gronwall's lemma then implies that o = 0 if it is finite. We
can ensure o 1is finite by changing to an equivalent probability

measure, if necessary, so that X and Y are both in 52.

Also, without loss of generality we can assume that Lt >t a.s.,
and also that L, < » a.s., each t. Thus 1lim 1, = « a.s.
t t
£
Uniqueness then follows. 0

(4.11) COROLLARY. With the same hypotheses of Theorem (4.2), the

solution X of equation (4.3) is a semimartingéle if H is,

and if H = N+C, gzt = mt +at are decompositions of the semi-
martingales H, Zl, then a decomposition of X is given by:
t i i
Xp = N+ y J £ (s,s,X.) aM_}

0

: t . .
+ {c_+ ) J fl(s,s,X.)SdA;
i k

t S . .
+ J y (J £7(s,u,X.) dzl)ds}.
0 i=I,k 40 T uu

PROOF. For notational simplicity, let k = 1. Let X% be the

nth iterate process as defined in equation (4.10) in the proof

of Theorem (4.2). Then X" is a semimartingale by induction,
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and hence by the transformation rule (Theorem (3.3)), we have

that a decomposition of X" is:

t
n _ n-1
X = {Nt+[0f(s,s,x. )SdMS}
t n-1
+ {C -FJ f(s,s,X. 7)_da
t 0 S s

0 ‘0

The result now follows by standard localisation and limit

arguments.

£ s n-1
+ J ([ fl(s,u,X. )udzu)ds}.
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