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ABSTRACT

For k=1 positive definite symmetric matrices A;, ..., 4 of -
dimension pxir we define the function &(4,, ..., A4
Ty, ..., M) = 'H1 [det(diagAi)]n‘/[det(Ai-)]n‘, where n; are positive

i=
constants, as a measure of simultaneous deviation of 4,, ..., 4

from diagonality. We give an iterative algorithm, called FG-
algorithm, to find an orthogonal pXxp-matrix F such that
&BTAB,..., BTA,B; n,,..., m) is minimum. The matrix B is
said to transform A,, ..., 4 simultaneously to nearly diagonal
form. Conditions for the uniqueness of the solution are given.

The FG-algorithm can be used to find the maximum likelihood
estimates of common principal components in k groups (Flury
1983b). For k=1, the FG-algorithm computes the characteristic
vectors of the single positive definite symmetric matrix 4;.

Keywords: diagonalization, principal components, eigenvectors



1. THE PROBLEM

It is well known (see, e.g., Basilevsky (1983), Section 5.3) that if 4 is a posi-
tive definite symmetric (p.d.s.) matrix of dimension pxp, then there exists a
real orthogonal matrix B such that

BTAB = A=diag (A, . ... Ap). (1.1)
where the A; are all positive. For k>1 p.d.s. matrices Ay, .. ., 4 the associated
orthogonal matrices are in general different. We call 4;, ..., 4 simultaneously

diagonalizable if there exists an orthogonal matrix B such that
BTAB = A, (diagonal) for i =1, ...,k . (1.2)

Conditions equivalent to (1.2) have been given by Flury (1983a).

Now suppose that 4,, ..., 4, are not simultaneously diagonalizable, but we
wish to find an orthogonal matrix B which makes them simultaneously "as diago-
nal as possible” in a sense to be defined. As a simple measure of "deviation from -
diagonality” of a p.d.s. matrix ' we can take '

p(F) = |diag F'|/ |F]|, (1.3)

where |-| is the determinant and diag ' is the diagonal matrix having the same
diagonal elements as F. The fact.that ¢ is a reasonable measure of deviation
from diagonality can be seen from Hadamard’s inequality (Noble and Daniel
(1977), exercise 11.51):

|F| < |diag F'| (1.4)

with equality exactblr if F' is diagonal. Therefore, ¢ (F) = 1 holds, with equality
exactly when F is diagonal. Actually, ¢(G) increases monotonically as G is con- -
tinuously "inflated" from diagF to F. This can be seen from the following.
lemma.

Lemma 1; If F = (fij) is @ p.d.s. matriz of dimension pXp, then
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[fu afig - a.flp‘
afar faz ' afgp

dia): =det | - ' . - (1.5)
‘afpl a-fpz fpp J

is' @ decreasing function of a for a€[0,1]. If F is not diagonal, d(a) is strictly
decreasing.

Proof: The case F' = diag (£, . . . +fop) is trivial; assume therefore that F
is not diagonal. Write

d{a) = |aF + (1—-a)diag F'|

|diag F | |a(diag F) #F(diag F) % + (1=a)lp | (1.6)

and note that d(a)>0 for all a€[0,1], since both F and diagF are p.d.s. Let
R = (diag F)™#F(diag F)™ . R is p.d.s. with 1’s on the main diagonal. Let
di(a) = |aR + (1—a)l, |. Then d,(0) =1 and d,(1) < 1 by Hadamard’s inequality.
It remains to show that di(a) is strictly decreasing in (0,1). Let
P1=pz= - 2p, >0 denote the eigenvalues of K. The eigenvalues of
ol + (1-o)l, are

vi =ap; +i-a (j=1,...,p), (1.7)
and therefore
p p
dy(e) = I 95 = fI (1+alpy=1). (1.8)

Taking the first derivative gives

od )
'50%= (pr—1) .1:[1 [1+a(p;~1)]
h=1 T2 ‘
pj—1 '
=dq{a) - —_—— 1.9
(@) 3 Tt -9

where all denominators are positive because of p;>0 and a < 1. Letting
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_& el
da(a) = ,-21 1+aj(p,.—1) \ (1.10)

we note that d(0) = fj (p;—1) = tr R —p=0 and

Jj=1

8ds _ _ (pi—1)? |
o ng (1+ap; —1))? <0. (1.11)
ad,

<0Ofor 0 < =<1, This proves the.

Therefore, dz(a)<0 on {(0,1], implying that .

lemma.

The reader may notice a similarity to ridge regression: Hoerl and Kennard
(1970, Theorems 4.1 and 4.2) have given monotonicity properties of some func-
tions related to the trace of the matrix (F + al,)™! for a>0.

Let us now consider k p.d.s. matrices Fy, ..., F, and positive weights
n,, ...,n. Then we define the simultaneous deviation from diagonality of the
matrices Fy, . .., Fp with given weightsn,, ..., n; as
k ng
B(Fy.. . Feina, .. om) = T Tp (FOTY. (1.12)
Let now F, = BTAB (i=1, ... ,k) for a given orthogonal matrix B. Then we can
take
BlAy, .. A ) Jmin 8 BTAB, ... ,BTABn,, ... .m)(1.13)

where O(p) is the group of orthogonal pxp-matrices, as a measure of simultane-.
ous diagonalizability of 4,, . . ., 4. Clearly, §:=1 holds, with equality if and only
if (1.2) is satisfied,

It can be shown (Flury 1983b) that if the minimum &g is attained for a

matrix By = (b1, . . . , bp) € O(p), then the following system of equations holds:
k A —Ais
o | N my 224 ;=0 (Lg=l,....p;Ll#F) (1.14) -
iz Mady
where
App = bTAL,  (i=1,....kih=1,...,p). (1.15)

In this paper we give an algorithm for finding Be.
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" V12, THE FG-ALGORITHM
The FG-algorithm consists of two algorithms, called F and G respectively,

which minimize @ by iteration on two levels:

- On the outer level (F-level), every pair (b;,b;) of column vectors of the
current approximation B to the solution By is rotated such that the
corresponding equation in (1.14) is satisfied. One iteration step of the F-
algorithm consists of rotations of all p(p—1)/2 pairs of vectors of B. The
F-algorithm is similar to algorithms used in factor analysis to perform vari-
max and other rotations (see, e.g., Weber (1974)).

- On the inner level (G-level), an orthogonal 2x2-matrix € which solves a two-
dimensional analog of {1.14) is found by iteration. This matrix defines the
rotation of a pair of vectors currently being used on the F-level.

‘' The F-algorithm
Let

&(B) = 8(BTAB, ... ,BTAB, n, ....7) (2.1)

denote the simultaneous deviation of BTA,F, ..., BTA. B from diagonality as a
function of B, the A; and n; being considered as fixed. The F-algorithm yields a .

converging sequence of orthogonal matrices B®, BM, . | such that
(BT < $(BU).

The algorithm proceeds as follows:

step Fo: Define B =(by,...,bp) € O(p) as an initial approximation to the.
orthogonal matrix minimizing @, e.g. B<«I,. Put f «0.

step F';: Put BU)eB and f «f +1
step F;: Repeat steps Fla; to Flp, for all pairs (1,7), 1=<I<j<p:
step Fp;: Put H(pxR) « (b;,b;) and

blAb,  bAb;
T;(2x2) « (i=1,....k).
bfAb, bIAD;

‘The T; are p.d.s.
step Fay: Perform the G-algorithm on (74, . . ., T ) to get an orthogonal




cosa —sino ]

2x2—-matrix @ = sin o cosa

step Fpy: Put H*(px2) = (b%.b%) « HQ. (This corresponds to an orthogo-
nal rotation of the two columns of H by an angle a).

step Fay In the matrix B, replace columns b, and b; by b% and &%,
respectively, and call the new matrix again 5.

step Fy: If, for some small £z>0, (BY 1) — 8(B) < &p holds, stop. Otherwise,
start the next iteration step at #,.

The G-algorithm
This algorithm sclves the equation

8,0 810
Tln, 2L 7 4. . 4q, 2L _* p =0, 55
qai 1 611612 1 k 6[‘:16];2 |92 ( )
" where Ty, . .., T, are fixed p.d.s. Bx2-matrices, n;>0 are fixed constants,
8 =qfTig; (4=1,....k:j=1.R), (2.3)

and @ = (g,,92) is an orthogonal 2x2-matrix. The iteration of the algorithm
yields a sequence of orthogonal matrices (9, @, . . ., converging to a solution
of (R.2).

The algorithm proceeds as follows:

step Gg: Define @ (2x2) as an initial approximation to the solution of (2.2), e.g.
@Iz Put g «0.

- step G;: Put @9eq and geg+1.

step Gz: Compute the §;; (2.3), using the current @.

011—012 Or1— 0Oz
Put 7 (xR ¢ ny ———T1 4+ + ¢« + + Np ——me
TexR) em 5 g 11 ¥ or1002

step Ga: Compute the (normalized) eigenvectors of T. In @ = (g,.q92). put g«
first eigenvector of T, g« second eigenvector of 7.

Ty .

step Gy If ||QYW™D — @|| < e¢ (where | ||| denotes a matrix norm and £¢>0 is
a small positive constant), stop. Otherwise, start the next iteration

%, step at G;. Note that, since the order of eigenvectors is arbitrary, as

, -, well as their signs, it may be necessary to exchange g, and gy and/or

‘ 4 to multiply one or both columns of @ by —1 before comparing & with
e eglann), v



-7-

' The motivation for the two algorithms and their connection with the basic

" system of equations (1.14) is as follows. Suppose that the (,j)-th equation of

(1.14) is to be solved. With H = (b;:b;) denoting the current I-th and j-th

columns of B, and Ay, being defined as in (1.15), &, and b; are the desired solu-
tion if and only if the 2x2-matrix

k A~y
n, ——— 1 2.4
2 Adk‘u % ( )
is diagonal, where
T,=HTAH (i=1,....k). (2.5)

Assume now that b, and b; do not solve the (1,7)-th equation, but b % = Hg, and
b¥ = Hq, do, where @ = (g:qe) is an orthogonal 2x2 matrix. Then

A% —A ¥
b [ 1™ Kane, 4107 =0 (2.8)
t=1 il ]
where
A% =B ALY (i=1,....k: h=Lj). (2.7)

‘Putting H* = (b*:b%) = HQ, (2.6) holds precisely if

k A% —AY;
2™ Ry, AT A (2:8)

i=1

'is diagonal. Now we note that

T A H* = (H)T A (HQ)

=Q'T; @ | (2.9)
A%y = (H‘h)T A; (Hgy)
=gqf g, (i=1,..k) (2.10)
and
A%y =qf Tige (i=1..k). (2.11) .

Thus the problem'of‘rotating the I-th and j-th columns of B so as to satisfy



;":';" exists.
: The problem of solving (2.12) is itself nontrivial., Although (2.12) can be.

o ‘;"-. s Wt
RARIRARRA A -8-
4 . ".

E . .
el | X m 55, 9270 Ry, ©
11942 o -

i

67.1"'51.2
i=1 i

where 8;; and ;3 have been writterrin place of A% and A %;, respectively.

: Since (2.12) is a R-dimensional analog of (1.14), and since the group of ,;' _ |
orthogonal 2x2-matrices is compact, it follows that a solution of (2.12) always - ;-

_written in terms of a rotation angle ¢, solving for o would involve solving a poly-
‘nomial equation of degree 4k in cos a and sin &, which seems rather tedious. A

more elegant solution is provided by the G-algorithm, which is based on the -

" observation that the vectors gq,, gg satisfying (2.1%) are eigenvectors of the
" matrix in brackets. Since the latter, however, depends:also on ¢;, g, an itera-

tive procedure is required.

' 3. CONVERGENCE OF THE. FG-ALGORITHM

3.1 Convergence of the F-algorithm

We show that the F-algorithm, in theory (i.e. if ep=g¢=0), does not stop - e
unless the equations (1.14) are satisfied for the current B, and that, if B does

" not satisfy (1.14), an iteration step of the F-algorithm will decrease &.

Suppose that the current orthogonal matrix B = (b, ... .0 ) does not

satisfy the (I,7)-th equation of (1.14). For notational sunphmty we can take {=1 |

‘and j=2 without loss of generality. Let us write B = (B(I)B(z)) where

. algorithm. The G-algorithm gives back an orthogonal 2x2 matrix & (step Fgg).

I

.+« (Note that @ is not necessarily unique, depending upon the conventions used. in

the G-algorithm. We will consider every matrix & obtained from & by inter-

changing the ceclumns of @ and/or multiplying one or both columns by —1 as . -

i »
equivalent to §). Steps Fag and F'p, correspond to the transformation

@ 0
B*=1R [o [p_z] = (B g:pR)Y (3.1)

\9 "B+ is orthogonal, since it is the product of two orthogonal matrices. Now we
have

o " (1.14) can be reduced completely to the problem of finding an orthogonal 2%2-- - S
... ,matrix @ = {g,:qz) such that

.- vBM) = (b,,by). In step Fa;, the matrices T; = BWT4,BM are passed to the G- -
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Sy | ke
Wi @(B¥)= 1 [|diag BTAB|/ | BT 4B

[ldiag @"BW 4 BWQ |- |diag BO 48D/ |4 T4 . (3.2)

]
u,':la-

It will be shown in section 3.2 that if, as assumed, (1.14) is not satisfied for =1
and j =2, then

k k
Il |diag QTBW 4, g |™ < 11 |diag BW 4, 5™ (3.3)
= =

It (1.14) is satisfled, @ will be equivalent to I, and hence (3.3) holds with equal-
1ty Therefore, each iteration step of the F-algorithm decreases ®, and the algo-
rithm will stop only if (1.14) is satisfied.

3.2 Convergence of the G-algorithm

The G-algorithm starts with k p.d.s. 2x2-matrices Ty, . .., T} and & weights
.1 >0. Let QU) denote the orthogonal 2x2 matrix after the g-th itera-
tion. We will show that

'nl...

k. k
Il [diag Q@*)" 7,QU*V|™ < Il |diag QUY7,Q@)|™, (3.4)
1= i=

and that the sequence @) converges to an orthogonal matrix which solves (2.2).

Suppose now that the (g+1)-st iteration of the G-algorithm is being per-
formed. It is sornewhat simpler to prove the convergence if we introduce the fol-
lowing notation: Let @ = (g,,95) contain the current approximation to the solu-
tion of (2.2) and 8;; be defined as in (2.3). Then we put

_ 643=0;2

P 'Pr;!{‘ a’i - 6116,‘2 (1.,=1, .k) ' (3'5)
g k
T=3 mol:, (3.6)
i=1
and
_r uff wfy
Ui=@Ti@=,0 .0 (3.7)

The U; are p.d.s., and clearly -

e

PPN
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k
T=3 ngQU; QT (3.8)
i=1
and
041 = uﬁ)- Oi2 = ué’é’ . (3-9)

In step Gg the characteristic vectors of T are:.computed. Denote the solution by
@*, so that

Q*TTQ* = A (3.10)

is diagonal. From (3.8) it follows that

k
¥ 7o @ QUQTR* = A (3.11)

i=1

The characteristic vectors of the symmetric matrix

k .
j= E n;a; U‘l: (3.12)

i=1
are therefore given by the orthogonal matrix
P=gQTq*, - (3.13)

-and @¥ can therefore be:obtained by
Q@*=QF. (3.14)

Note that U = @7 7Q is diagonal if and only if @ = (g.932) is a solution of (2.2).
From (3.9) and (3.1R) it follows that

b uf)uf) [uw u@] | .

U=2m o onm (ufd uld

i=1

Let
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1 iful® > ufy
< ol

9, ={-1 if uff) < ufp (3.16)
0 if uf) = uld.
a'y = %ay, (3.17)
and
sf) sfy
S, = [S&) s;s"g)] = e, U; (i=1,....k). (3.18)

~S; is p.d.s., unless ¥;=0. With this notation, we have

k
U= msS; . (3.19)
i=1

Now let k'sk denote the number of ®;’s which are not zero. Without loss of gen-
erality assume that the k—k' matrices S; which are zero have the indices
k'+1,....k. Therefore the sum (3.19) extends only up to k', and we are going
to show that

k' k

I |diag PTs,P|™M< 1 (s Ds ™, (3.20)
= 1

with equality if and only if U is diagonal. Assuming for the moment that (3.20)
holds true, the proof of (3.4) can be completed by noting that (3.20) implies

k k ) )
Il (of0F|diag PTUP )™ = 1T (afofufuli)™ (8.21)
1= 1= .
'. : and therefore-
: k k' . '
I |diag QTR ™ = Il |diag QTT.Q|™. (3.22)
= i=
For the remaining k—%' matrices U; (i=k'+1,....%k) we have uf) =uff, and .

therefore, as is easily verified,

|diag BT U, B | = |diag U;] . (3.23)

for any B € 0(R),, with equality exactly if B is equivalent to I; or u{8) =0. This
"holds, in particular, for B=P. Putting (3.22) and (3.23) together gives now the
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desired result (3.4). It remains to show (3.20).

e
Let P=(p,,ps) denote the eigenvectors of U = ), %n;S;, with p, being asso-

i=1
. ciated with the algebraically larger root. Since U is symmetric, P is orthogonal
(or can be so chosen if the two roots are identical), and both characteristic
roots are real. Assume that U is not diagonal, and let & (i=1,...,k'") be
~ defined by

s{+0,¢
sfh -0, ) (3.24)

PTS,P =
~ From (3.5), (3.9) and (3.16) to (3.18) we have

s{isfd) =9, (sf—sfl)), or 1= —17)—— —117 (i=1,...,k"), (3.29)
Sg2a 5%1

which implies that either s{{ or s{¥ is smaller than 1. It then follows that &;<1
"(i=1,....,k'). Indeed, if ®;=1, then sf¥<1 by (3.25), and the positivity of
5§ —e, implies g;<1. If®; = —1, then s{{ <1, and s{¥ ~¢;>0 implies again &;<1.
The product of the diagonal elements of PTS; P is
|diag PTS;P| = (s {{ +0,8,)(s 88 —0;¢;)
= s{{sfl) —e;0:(s ) —s 1P )—ef
= (1-&)sf{sfp) —e?

= (1-g8)s{sf8)  (i=1,... k). ' (3.26) |

" Thus,

k' n k' n k' n, :
~;H1 |diag PTS;P|™ = 14 (1—g;)™ 1 Idiag S;|™ |, (3.27)
- 1= = S

L ‘and (3.20) holds if we can prove that

k'’ 7 .
iI_Il (1—-g;) <1, - (3.28)

To demonstrate this, we note that, since U is assumed not diagonal,

piUpy > uy,, (3.29)
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or equivalently,

k' k' N
Y %nplSip, > ) wymys{P
i=1 1=1
. _ (3.30) -
Y oni(plsipi—s{)>0. :
i=1
Since plS;p;—s{¥ = 8;¢; (=1, ... ,k"), this implies
k' .
2 ne; > 0, (331)
i=1 .

so that not all &; can be zero. On the other hand, if U is diagonal, then P is
equivalent to /p, and all &; are zero. Therefore the g vanish simultaneously. if
and only if U is diagonal. Now we need the following lemma.

K k' k'
Lemma 2: If z;>0, n;>0 (i=1, ... .k )Y and ), n;z; < 3 ny, then _l'I1 zt <1
: i=1 v=

i=1

k' : k'
Proof: Maximize the function _II1 z;* under the restriction Y, mqzy =g (>0),
ve i=1
using a Lagrange multiplier. The maximum has the value (g/n)* and is
e

attained for z,=- - =z,.=g/n, where n = ), n;. Noting that g=n completes
_ i=1
the proof.
k'
Since £;<1 (i=1, ... ,k') and ), n;&;>0, we can use Lemma 2 with z;=1—¢;

i=1
and get (3.2B). Note that equality in (3.28) holds exactly if all &; are zero. This
- completes the proof of convergence of the G-algorithm.

4. CONDITIONS FOR UNIQUENESS OF THE SOLUTION

‘ In Section 3 we have shown that the FG-algorithm converges to a minimum * -
:fce.-»:"_of (2.1), unless the initial approximation of the orthogonal matrix B is (badly)

“chosen as a stationary point of & However, we do not know whether & has a
"‘V"-"unique minimum. We are now going to show that in some "extreme' cases there
exist more than one local minimum, and we give approximate conditions when
this will happen. Throughout this section (unless otherwise stated) we will only
" consider the case k=2 and p=2.

. Let the p.d.s. matrix S, have the characteristic roots ,>I, (the case I,=l, '
" ‘being trivial), and assume, for simplicity, that
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I, 0
sl=[0 12]- (4.1)

. From (3.5) it can be seen that the solutions of (2.2) are unaffected by propor-

tionality, i.e., we can assume (see also (3.25))

ll - lg = lllz (42)

. -without loss of generality. Consider now an orthogonal matrix

cosp —sing

B = B((P) = [simp cose |}’ (4'3)

The product of the diagonal elements of BY S5 is

|diag (B7S1B)| = [le+(l,—Ig)cos*p][l,—(L;,~Lz)cos %p]
= 1,lg + (I;—1g)*cos?p sin®p
= 1,l5[1 + I;lac0s?p sin®p]
=r,[1 + r,cos?p sin®p], (4.4)
where

ry=11, (4.5)

" denotes the product of the characteristic roots of S;. Let the excentricity d, of - '

S| be defined as the ratio of the larger to the smaller root of Sy,
dy=1,/1z, (4.8) -

which is also the Euclidean condition number of S,. From (4.2) it follows that

wlg=1y/(l;+1), and therefore d; = I;+1. Similarly, d; = 1/ (1-1p), and therefore

ll = dl—l y
lp= (d1-1)/dy . (4.7)

- Multiplying these two equations gives

T, = (dl;l)z/ d, . (4.8)
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- : * i Note that d, does not depend on the absolute size of S, (every matrix propor-
b ... tional to S, has the same excentricity), and so the same is true for r,.

For a second p.d.s. matrix Sp, let d; denote its excentricity, and
IO To = (dp=1)%/dy . o (4.9)

cosgg —singg

Let Bg = ] denote the orthogonal matrix which diagonalizes Sj.

singg COS Pg
Then, in analogy to (4.4), we get

| diag (BTSeB)| = ra[1+rscos¥(p—00) sin?(p—po)] . (4.10)
The function ¢ to be minimized is
®(p) = [1+7 c08?p sin?p]™ [1+7zcos*(p—9pq) sin®(p—gpg)]"2. (4.11)

Let us now assume that n;=np, so that it remains to minimize

G(p) = [1+ i—rlsin2(2¢)][1+ Al:—rzsinz(é(¢—¢o))] . (4.1R)

@' G(p) is w/ 2-periodic, and from (4.12) it becomes clear that for pg#0, G(p) may
have more than one local minimum in one period, depending on 7,, 73 and ¢g
(and, in the general situation, on n; and ny). Note that ¢g is the minimum angle

" between two characteristic vectors of S; and S,.

Let us first look at the extreme situation go=n/4. From a Taylor expansion
it can be seen that in a neighborhoed of 0,

G(p) =1 +-i:-'rz + (ry—rg + %}—7‘17‘2) p* + 0(p*) . - (4.18)
The function G{¢) has therefore a stationary point at =0, whichis a

mimmum. lf 7'1"‘7'2 + :11:—7‘17'2 > 0 ]

. 1 (4.14)
maximum, if -7y + Z—'rlrg <0.

L Note that for 71=4.9r r)=73 this is always a minimum.
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Similarly, at ¢ = 7/ 4, we get a

minimum , if 7a—7; + ;}:—'r e > 0,
(4.15)

. . 1
maximum, if 7rp—7, + Z—'rl'rg <0,

" For r,=4 or r,=T, this is always a minimurm.

Since r; and 7y are both positive, there cannot be a maximum at 0 and w/ 4
simultaneously. Local minima at both points, however, are obtained e.g. if both
- r,and 7y are larger than 4, or if =7, (even if r,=7; is very close to zero!). Thus
the case of equal excentricity of both matrices seems most "dangerous” in
terms of multiple local minima.

Using the relation r; = (d;—1)%/ d; (4.8, 4.9), the conditions (4.14) and (4.15)
can be transformed to conditions on the excentricities d; (i=1,2). Figure 1
shows a partition of [1, «)x[1, ») into three areas in which a minimum is
attained at 0 only, at @/ 4 only, or at both points, depending on the values of d;
and d». Note that for d,>5.828427 (d2>5.82B427) there is always a minimum at
¢=0 (p=u/ 4), and if d,=dg, there are always two minima.

Figure 1. Conditions for minima and mazima if n,=ng, Qo=u/ 4.

The case po=w/ 4 treated so far is of course the "worst possible” case, since
the minimum angle between two characteristic vectors of 5, and S cannot
"exceed m/ 4. For the application in common principal component analysis
(Flury 1983b), however, we expect ¢q rather close to zero, if the null hypothesis

3 . of identical principal components in the populatmns holds. Therefore we look
1 Pnow at the situation where ¢, is close to zero. Without loss of generality we can
‘\ assume @o>0. Again, for simplicity, we take n,=n,=1.
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o - Approximating the trigonometric functions in the two factors of G by Taylor
: series at p=0 (first factor) and at ¢=¢g (second factor), and taking the first
" derivative of  with respect to ¢ yields

G'(p) = 2r [p+ 0(p)) [ 1472((p—po)® + Olp—po)*)]

+ 2ra(p—po) + O(p=po)®l[1+71(p*+0(p*)] . (4.18)

-

v o o is close to zero, sufficient accuracy can be had for 0 < ¢ < g if we ignore all
i vterms of order higher than 2. An approximation to the solution(s) of G'(¢) =0
within [0, @o] is therefore given by the solution(s) of

r19[1+r2(p—9po)?] + Talp—po)[1+719?]=0. - (4.17)

This equation has either one or three real roots, depending on 7y, 7z and ¢g. For
T, =75 =7, (4.17) can be written as

P(1+7(p—90)?) + (p—po)(1+7 %)
=2(¢—%—) (rg? ~rpge+1) =0. (4.1B)

Thus ¢=¢¢/ 2 is a solution of (4.18) (and also of (4.18) if r,=7j). If, approxi-
_mately,

o | -14'—> ¢02. (4.-.19)

" G(p) takes a minimum at ¢o/ 2. Under the same condition (4.19), the polyno- -
mial

T 9% =7 pop+l (4.20)
© " has no real root, and the minimum at ¢¢/ g is unique.

If, always approximately for small ¢q, 4/ 1'<go§. we get a maximum at go/ 2,
and two minima at

L (9o = Vpg—4/T7). (4.21)

2
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In terms of the excentricity parameters d,=d,=d, condition (4.19) becomes

4d 2

> o6 (4.22)

which shows that two minima are to be ekpected only if the excentricity is high.
For large d, (4.22) is approximately the same as

_2— .
d < .(<Po )2, (4.23)

For example, if @o=.2 (¥ 11.5 degrees), a single minimum can be expected

. approximately if d <100,

Figure 2 shows the typical behavior of the function G{p) for ¢¢=.2 and
=160 (d=161.99). The two minima are approximately at .039 and .161. If

- different values are chosen for 7, and 73, the two minima are in general not

identical, but the shape of the graph is similar, with one "valley" being less deep
than the other.

Figure 2. Graph of G(p) for ¢o=.2, n1=np=1 and d;=d,=162.

‘Although these results are only approximate, they give a general idea about
the.conditions for uniqueness of the minimum. For k>2 matrices, the relations

43" are of course more complicated, but still we can expect a unique minimum
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unless some of the matrices are highly excentric.

For dimension p>2, the minimum is certainly unique if all the p(p-1)/?

equations (1.14) have a unique minimizing solution. (By a minimizing solution
| .we mean a solution which corresponds to a local minimum of G, or, in the p-
dimensional case, of the function ®.) On the other hand, if some of the equations
have more than one minimizing solution, this does not necessarily imply that the
whole system (1.14) has more than one minimizing solution.

A solution given by the FG-algorithm does of course not prove its unique-

ness. However, Figure 2 suggests the following: If we start the FG-algorithm with

10
B(O)=[01

while B (pq) = [

as an initial approximation, it will converge to the left minimum,

cos¢@g —singg

. initi i i convergence
singg  cos g ] as an initial approximation leads to g

to the right minimum. (This is indicated by the arrows in Figure 2). Minimizing
solutions can always be expected to be somehow "close" to the characteristic
vectors of one of the matrices. Therefore, if there is doubt about the uniqueness -
of the solution, it is recommended that one run the FG-algorithm & times, using
the k& sets of characteristic vectors of Sy, ..., S, as initial approximations. If
all £ solutions found are equal, it is reasonable to assume that there is a unique
global minimum.

100 © 96.0143 19.4603
As a numerical example, let S, = 0 1] 8nd Sz =1 194603 29857 | S°

., -that d,;=dp=100 and ¢=.202 (® 11.57 degrees), which is a borderline case
according to approximation (4.22). G(¢) assumes two minima at .08 and .12,
approximately. If we reduce the excentricity to 90 (leaving ¢q unchanged), we

get the matrices S, ='[O 1

90 0 _ B6.4168 17.4946
an 2= 17,4946 4.5831 |- For these two

matrices, there is a unique minimum at ¢g/ 2. The bound (4.22) for d is in gen-
eral too high, but the approximation becomes better when ¢q gets smaller.

- 5. REMARKS

L

B )

The proof of convergence of the G-algorithm makes strong use of the
assumption that the matrices T; are positive definite. If one or several of
the matrices A; are close to singularity, this could cause numerical prob-
lems, because the a; {3.5) might become very large.

Since the stopping rule given in step F'5 depends on the absolute size of the
matrices 4;, it may be better to replace it by a criterion similar to the one
used in the G-algorithm:

Fg:1f ||BYD-B|| < ef for some small £7>0, stop. Otherwise,
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start the next iteration step at 7.

If the current version of B in the F-algorithm is a stationary point of ¢, and
I, is taken as an initial approximation of & in the G-algorithm, FG will not
change B, since (1.14) is satisfied. This occurs, e.g., if the diagonal ele-
ments of the A4-matrices are identical for each A4;, that is, diag
A;=diag(c;, . . . ct) for some ¢;>0 (=1, ... ,k), and J, is taken as an initial
approximation of B. An important special case of this are correlation
matrices, where the diagonal elements are all 1. If the first iteration of the
F-algorithm does not change B, it might therefore be helpful to try FG with
another initial approximation.

On the F-level, a better initial approximation than I, might be to take the

eigenvectors of one of the 4; (e.g. the one with the largest n;), or the eigen-
k

vectors of Y, n;4;. On the G-level, /3 is a good initial approximation for @,
i=1

when the current B on the F-level is already close to the correct solution.

In step F'as, the I-th and j-th column of B are adjusted using the matrix @

given by the G-algorithm. Since these two celumns will undergo changes in

subsequent executions of steps Fa; to Fyg,, it is not necessary to iteraie on

the G-level until full convergence is reached. In most cases the first itera-

tion steps of the G-algorithm will decrease ®(F) much more than the later

iterations. If k=1, only one iteration step is required in each execution of

the G-algorithm.

In order to avoid permutations of the columns of 5 and multiplications by
—1, it is convenient to order the columns of & such that

cosa —sina
sina coso

(5.1)

» where —nw/2<a<ln/ 2.

If k=1, the FG-algorithm computes the characteristic vectors of the single
p.-d.s. matrix A=A;. Nothing is known, however, about the efficiency of the
FG-algorithm compared with the usual algorithms used to compute charac-
teristic vectors of a p.d.s. matrix.

The listing of a FORTRAN-program performing the FG-algomthm can be
obtained from the first author upon request.
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