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ABSTRACT

Let u_ be the empirical probability measure associated with n i.i.d. random
vectors each having a uniform distribution in the unit squé;é S of-the plane.
After ﬁn is known, take the worst partition of the square ipto'k < n rectangles
Ri’ each with its short sideat Teast s times as 1ong_as the Tong side, and Tet
VA nZ]un(Rj) - p(jol. We prove distribution inequa]ities_for Z implying
the right half of ¢ ,(nk)”/? < £zP < Cy 5 (P2, p > 0. (The left half
tollows easily by considering non-random partitions.)’ Sfﬁijér results are

obtained in other dimensions, and for population distributions‘other than uniform,

and our results are related to data based histogram density estimation.



1. Introduction
There are a number of ways to approach the question asked b& the t{fle of
this paper. Ourshas its origins in data based histogram density estimation.
Histogram density estimators should be data based, the partition cells being made
smaller in regions with high concentrations of observationsrrlTH?S-paper investi-
gates how badly such estimators can perform when the population has a bpunded
density in the unit cube Qd in Bﬁjand the cells are controlled in a manner to

be described below.: -We use f l%—f[dxd as our measure of performance of estimators

i
A

f, where Ad is d-dimensional Lebesgue measure. Besides being-natura] this measure
has the desirable quality of being invariant under change of sca]e a property

the sometimes used Id (f- f) dxd does not possess.

We begin by considering the case where the population”distribution is uniform

in the unit cube in Rd. A1l the difficulties we surmount are present here. We

focus on what happens as the sample size and the number of cells approach infinity.

Let X],Xz,...be i.i.d. each uniformly distributed onth;uand,1et; for each

d

Borel set A, (A) be the empirical measure of A based on X.,X.,...X . that is
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#13: 1 < J <n and X; € A}/n.

If ¢ = (n],nz,...,wk) is a partition of Qd into disjoint Borel sets we define

N
—
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We note that Zn(“) = an lfn(n) - 1|dxd, where fn(n) is the histogram density
d

estimator based on Ag and the partion w. To avoid trivialities, we always assume

there are at least two cells in every partition.



Let P (k) be the collection of all partitions of [0,1] into k intervals. We

prove the following theorem for d = 1.

Theorem 1: Given o > 0 there is a constant ro(a) =r, (not depending on n or k)

such that

P( sup Z () > r/hk) < o if r>

re P (k) - 0 -

For d > 2 and § > 0, let P (d,k,8) denote the collection of all partitions

of Qd into k parallelopipéds oriented to the coordinate axeé;‘such that the

3

shortest edge of each parallelopiped is at ]east § times—as Tong as its longest

k4 » Y ( 3 3 )

such that

P( sup Z (1) > r/k) < gr
rePldk,e) NS By

Theorems 1.1 and 1.2 give the right hand sides of

(1.1) ¢ (nk)p/2 < E sup Zn(n)p <C (nk)p/z, p >0, andh )
r€ P (k) P ~
(1.2) ¢ (k)2 < £ sup Z,(1)P < ¢ 4 (kP2 p s 0,
P € P (d,k,s) P>d,

Here the constants do not depend on n or k. The left hand sides of these inequali-

ties follow from the easily proved fact that for a non-random partition quof Qd
into k < n cells each of Aq Measure at least (2k)_] we have P(Zn(é)‘ (nk) ) c
where c is a constant independent of n and k. The proof of this is sketched at
the end of Section 2. 1In terms of density estimation, (1.1) and (1.2) say that

ratio of the worst case performance of our estimators to



the best that can be hoped for, is not affected too much, i.e.,infinitely much:‘
by n and k.

We have three proofs of Theorem 1. One is based on square functions inequali-
ties for BMO martingales. The second was communicated to us by Kenneth Alexander,
who showed us how to use results from his recent paper [ 1 1 to not only prove
Theorem 1, but also get better estimates on the extreme tail of the distribution
of sup P (k)Zn(w) than those given here. We were surprised that Alexander's

™

results were general enough to be applicable here, and somewhat relieved that they

.gapparent]y) do not give Theorem 2 of this paper. The ghird_proof of Theorem 1
is the one we give, since it is the only one‘which extends td'p?ove Theorem 2.

We now discuss the situation where-the popu]ation‘density f has support in
[0,1] but is otherwise arbitrary. If = is a partition, J;t f(m)(x) be the
average density of the m cell containing x, and Tet fn(w) be the usual

histogram density estimator based on n. Note that
f(n) - f i < [ ) - o) S+ [T - ()| da
%dl ntm | ~-]Rd| ntm | R ’

e,

The first term being the randomness error and the second the roughness error.
In dimension T, the usual scaling argument gives that if r(k) is the class

of all k interval partitions of (-w,) then

' = 1
f (w) - f(x)|d
i?r&)&d|”() -

has exactly the distribution of sup ( Zn(n). Thus Theorem 1 instantly
7€ P (k) _

translates to a theorem about the randomness error for data based histogram
density estimators of arbitrary distributions with support in [0,1].
In dimensions higher than one, scaling is not available, However, the proof

of Theorem 2 can be readily altered to yield the following.



Theorem 3. Let f be a density function which vanishes outside Q4 and which is

bounded by the constant C. Given 8 > 0 there is a constant ry = ?O(G,d,é;s)

such that

P(sup [ |F(m) - fn(w)}dxd > rv/nk) < 8" if r > Ty

’ITE]P(d,k,(S)de _?‘

f'wo of us (Chen and Rubin) have given further applications of the results

of this paper to data based density estimation.in [3].

2. Proof of Theorem 1

-

o

In this section, we prove Theorem 1. Without loés 5¥_génerality, we can and

do assume that k < n/2, since for all k sup Zn(") < 2n. Furthermore, we may
x€P (k) -

and do assume that

and

21 cn <o

for integers 10 5_11. In this section we shall use ) to repléte'x1‘, and A, to

1
replace An'
Suppose we Poissonize the sample size n, i.e. we take a sample of size N,
-where N has Poisson distribution with mean n and independent of Xj's. Define

for each set AJN*(A) = #{j: 1 < j < N and Kjelu-, and NE=N* ().
= = i



6
Notice that all of the N¥ - nxn(wi), i=1,2,...,k, have the same sign and’

add up to N-n, so we have

k k
IigllN? - N\ (ﬂ_i)l - )

Inx_(m
i=} "

) = mln)]] < [Nenj.

3 * = *_ —
Therefore, if 7* | N n(m.) ],

Il ~1)

i=1

Proposition 1 Z (n) = < [N-n| + Z*(xn). -

Because of Propoesition 1, Theorem 1 is an easy corollary of the following

two propositions.

- . . 3
Proposition 2 For all o > 0 there is a constant r]=r](69 such that

P(IN-n| > r/A) < o for ¢ >y

Proposition 3 For any o > 0 there is a constant r2=r2(d) such that

P( sup Z:(n) > r/K) < o' for r > ro.
€ P (k)
Proof of Proposition 2:

(2.1) P([N-n| > rvi)

< inf e TS E(eSIN-nl)

s>0

inf e-rs/ﬁ'[E(eg(N-n)) + E(e-s(N-n))]

s>0

| A

inf ejrS/ﬁi[exp(n(es—s-l)) + exp(n(e's+s-])]
>0

I A

2 inf exp(- r s/n + n(es-s-1)),
s>0

| A



. ) s -s
since N« Poisson (n) and e -s-1 > e “+s-1 for s > 0.

Let ¢ (s) = -r s/n + n(e®-s-1). Notice that % (s) has its minimum value
(2.2) ¢ (log(1+ r/vn))
= -n[(T+r/vn)1og(1+r/V/n) = r/V/n] -
= -n y(r//m)
where

X
p(x):= (1+x)Tog(T+x)-x = é109(1+y)dy.

X2 for x 5_],.and'it is easily seen

-

-

w|—

Elementary calculations show that (x) >

that P(x)/x + » as x » ». Together with (2.1) and (2?2)_Ehis-giyes Proposition 2.
Before proving Proposition 3, we need the following notations and results.

Define

T(u) = #(3: 0 < X; 2u, 1< J <N -nu for0<ucl.

It is well-known that

Proposition 4. T(u) has stationary independent increments and is a martingale.

For B an interval with endpoints a < b we define

S(B) = sup |T(u) - T(V)],

u,veB

SO(B) = sup |T(u) - T(a)|, and
ueB

Sy(B) = max(O,So(B)_f'an/k);

It is easy to see S(B) 5_250(8).‘

Proposition 5. If B = (a,b), then

Ele © ') <4 g(e SIT(D)-T(a)]y
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Proof: The process Z(x) = exp(s]T(x) - T(a)l/Z)TS, for each positive s, a convex
function of the martingale T(x), and so is a submartingale. An inequality of
Doob ([4], p. 317) says that if M]""’Mn is a nonnegative submartingale then

- E max, Mp < (-ET- My p>T. -

—

The continuous time version of this inequality follows immediately, and applying

it to the situation at hand we get

| oo
(2.3) E(e ) o
= Ellexp(sup 5 [T(x)-T(a)]))?) S
o x€B o -
2
< (5 E(exp ; |T(b)-T(a)])?)
= 4 E(e s|T(b l)

Remark: By using Doob's inequality for exp (As|T(x)=T(a)|), » + 0, we can

replace 4 with e,

Proposition 6, If B = (a,b], and y > 0, then

E(e > S.‘/(B)) <1+4¢S y/n/k E(eSIT(b)‘T(a)]) ) o

s max(O,SO(B)-y/ﬁ7F7)

Proof: E(e
5(S, (B)-y/h/K)
<1+ E(e )
s S.(B)

= ]+ e—sy/n/k E(e 0 .

Proposition 6 now follows from Proposition 5.



In the following, we denote [0,27'7 by Lo and put

1, = @7E-0,27140, 370,
and
i<y 3= L20n2

(1 0 =

oii)= lyye i

For each partition =€ P(k), if no internal division pointsﬂbf the partition = are
binary rationals, (we may and do make this assumption without Toss of generality),

we associate dyadichntervals Iij in 8 (io,i]) with cells in P (k) in this way:

-
I. If cell =, satisfies ln | >2 O, associate to m, each-dyadic interval of
% . ' '
length 2 © which has non-empty intersection with ﬁgr \
1. 1f 279 « £ 5_2'J+] for some 3, ¥; > J > (i,+1), associate to v, each

dyadic interval of length 2~J which has non-empty intersection with T
-1 ~ -1
ITI. If lqll <2 ', associate to m, each dyadic interval of length 2 1 which

has non-empty intersection with T

" We note that each cell m is covered by the dyadic intervals associated with it.
Furthermore the collection of all those intervals associated with some cell of

the partition has the following properties, e
-1
(P1) Each dyadic interval of length exceeding 2 1 is used at most twice.

(P2) At most 3k dyadic intervals are used.

‘Proposition 7. Let w > 24. “Then

.i

1

sup  ZF(m) < 7w /nk + 4}
’lTEIPk . i=1_J
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Proof: We observe that,for each n € P (k}, z:(n) is bounded by.thg_sum of all =~

N (g DI..) - nx(w2r111j)_ where only terms with m, associated with_lij are

[ N
used. If i < i, only ‘two m, can be associated with Iii’ and this term is
bounded by S(Iij) < ow/n/k +25w(11j)' Ifis= i], we use the crude bound

* 0 .
N (ngrllij) +vnx(ngf111j). Then for each Iij used, the sqmj0ver»§1l the T,

associated with Ii' is bounded by

J

x -1 -1
V(L) #ne2 T es(L) + 20 -2

. < Sw(Iij) + w/n/k + 4.

We get the result by using the bounds from (P1) and (P2) on.the number of terms

of the form w/n7k(+4), and by including all the S(Ii.j),':g.e..d.
We are ready to prove Proposition 3.

Proof: Using Proposition 7, for r 3;24 we have

(2.4) P(sup Z:Uf)i 16vvnk)
;1 21
< P( S.(I..) > r/nk/4)
i=] jZ] ot s
0
o2
< )y P S ({I.. )
‘1'%1 (jzl tig) 2 ¢ v/k)
0
I
for any sequence C; such that ) C; < 1/4. We shall use
o 1=,
(10—1)/4 T2
C; =&€2-7 ©  withg= (1-27%)/4,

Now



11 -

2 .
(2.5) PC ) S (I..) > c; r/ik) | _

. . (I..
= inf exp (-s c. r/ik + 2! Tog E(e rou ), -
$>0 1

because T(x) is an additive process.

: sS (I,.
Let ¢ (s) = s c;rvnk + 27 log E(e r( IJ)

) .
For s > 0 we have
sS (I..)
log E(e " 1 ) -
S (I..)
< Tog [14e™S"/M7k £ 70" 4 ]
< log [1+4e~S" /K¢ es]T(2'1j) - T(Z-](J-]))l]
(using Proposition 5)
< e Tk £ s|T(27T5) - 127N (j-1))) . ST
Thus
i a7k s TR - 1
(2.6) T(s) < -s c;r/k + 21 . ge~S T K G-1)]

S-S ik + 8-2]e'sr n/k exp[n(e®-s-1)/21],

this last step holding since, if 7 is a Poisson random var1ab1e having mean u and

sX

if X=12-4, then for positive s, Eeslx, < EeSX + Ee” sX < 2ké
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Let A(r,s) = n(es—s-lv?1—sr/n7k be the exponent in the last part of (2.6). Then
if h is a positive number, which will be considered fixed for awhile, we have, since

2! < n, that there is a constant Ch depending only on h such that if r Z.Ch then

A(r,hv2'/n) < & -h-T-rhv2’/k < -v2' k.
Thus, plugging this estimate into (2.6), and putting A = 21/53fwe;get

i -
qi(h/Z]/n) < -grkha ® + 8xke YA

1
< ka® (-grh+5)

1
~ghrky /2

IA

1
<

)

= —ehrk(21/K)

3

/25 ’ - ’
if grh > 10. " |
1
Now if hr > 2log 2/£(2* -1), we have-

. 1 . a
ehrk(2'T1/K) % /2 5 ~ehrk(2'/k) % /2 - 10g 2, so that

i
1 ——
y exp(cpi(h/Z]/n)) < 2 exp(ehrk/2),

i=j o
0

i
recalling that 2 © = k. Plugging this into (2.4) and using the definition of >

we get

P(sup Z: (m) <16rvnk) < 2 exp(-ghrk/2)
_= 2 exp(-ghk/2))"
< 2(exp(-gh/2))" ,

so that given o > 0 there is an h = h(e) such that if r > Ch(e) and r > 10/zh(e)

* < r . . . . ..
we have P(sup Zn(n)z_]sr/nE) _ 29 , which is readily seen to imply Proposition 3. g.e.d.

Of course, better bounds in the above could theoretically be gotten by using the value

for s which minimizes A(r,s) in place of h/21/n. This value is log(1 +721r//nk5.

It is difficult to work with.
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Now the Teft hand inequality in (1.1) will be proved. The proof of.the
left hand inequality in (1.2) is almost identical. Suppose X has a binomial
distribution with parameters m and p. There is an absolute constant c > 0

such that -
(2.7) P(|X-mp| > c/p) > ¢, if 1/2 < mp < m/2.

To see this let Y = X-mp. Routine calculations give the existence of a

- 1
2

1
- constant y such that, if 1/2 < mp < m/2, (EY4)4 5_y(EY2) . This implies there

2 2 |

is positive constant ¢ such that P(Y® > eEY®) > ¢, yie]ﬂing (2.7). Now divide

[0,1] into k intervals T each having length at Teast (2E)ijand at most 1/2.
Since A (m.) is binomial for each i, if we put Y. = |An(ni)—x(w1)| inequality

(2.7) yields P(Y1 > ¢/n/k) > c. This'iﬁp11es the existence of a postive
constant  such that
k ——
P( ) Y. > gvnk) > g,
i=1
ged.
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3. Proof of Theorem 2.

Now we indicate how to adapt the argument of the last section to proveﬁTheorem 2.

Each of the dimensions greater than one can be handled the same way, so we just treat

the case d=2.
In this settion » Will stand for Lebesgue measure on thé unit'square
[0,12x[0,1] = g, Xi,Xz,...wil1 be a sequence of iid random vectors uniformly

distributed in Q, and N will be a Poisson random variable, having mean n, which

is independent of the sequence X]’XZ"" - For each measurable Set AcQ we put

r(A) = (#3:X,€A, 1 < § < N} -na(A),

and define r(s,t) = r([0,sJx[0,t]). By a dyadic squafe we”mean the product

of the two dyédic intervals of equal lengths.

The proof of Theorem 2 in the d=2 case parallels the proof of Theorem 1, with
2i
0

dyadic squares used in place of dyadic intervals. We assume that k = 2 for

_ 2(14+1) 21, .
integer io’ and define iy by2 >n >2 . Poissonization works exactly

as before, and we cover our partition rectangles with dyadic squares in the

following way:
- :
If the partition rectangle , has smallest side length exceeding 2 0, we

- -
associate to T, all dyadic squares of side length 2 © which intersect Ty and

continue the association algorithm in exact analogy to the one dimensional case,
where now the smallest side length replaces the interval length we used in one

dimension.
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The properties (P1) and (P2) are now replaced with _ 3 .-
(P1)* Each dyadic square of side length exceeding 2 ! is used at most
K](a) times.

(P2)" The total number of dyadic squares used is at most Kz(s)k,

-’
——

Here K](s) and'Kz(a) depend only on §.

Once the covering argument had been made in the last ;ectibn, it was
necessary to get a bound on the variation of the process T over = in terms of

its variation over the dyadic cover. The key for this was the inequality

<

-

(3.1) E sup,_ ol F(T(W)) -F(T())|P

< CEIF(T(b)) -F(T(@NIP, p > 1,

whenever f is positive, increasing, and convex. This was needed since the inter-
section of a dyadic interval with a partition interval is an interval contained in
the dyadic interval. Inequality (3.1) followed from the special case of Doob's

inequality

P P

(3.2) £ sup, p FTW)-FT(N]P < (B EIF(T(O))-2(TLa))|

Now, returning to the plane, let f remain a positive, convex increasing
function, and define the variation of r over the rectangle R=(a,b)x(c,d) in the

usual manner,

Vo(r) = r(b,d) + r(a,c) - r{a,d) - r(b,d).
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The following holds. .

Proposition 8. There is a constant Cp such that if G is a square with sides

oriented to the coordinate axes and. if Ris the collection of all oriented

subrectangles of G, then

P

EF(Ve(r)) iCpEf(VG(F))p.

SUPEe R

This proposition is an immediate consequence of a two parameter martingale
“theorem of Cairoli ([2]). We will state the needed corollary of Cairoli's theorem

and, for completeness, give a brief sketch of the proof.,

i

Proposition 9. Using the notation of Proposft{on 8, let B be'the collection of

all oriented subrectangles of G which have one corner.at (a,b). Then

2p

r))P< (GBp) EF(V(r))P.

EF(V 55

SWPre g e

Proof. Define D(s,t) = f(v(a,b)x(s,t)) .

Put L(s) = SUPp .t <q D(s,t). Then L(s), a<s<c, is a submartingale with respect

to the g-fields G, = o(D(x,t), a<x<s, b<t<d). Very roughly, here is why. Let

a <S, <S8, <bandputs>0.

0
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Let T = inf {t>b:D(s_,t) > L(s_ )-8}, and note T is O measurab]el Now, given C. -,
= 0 ~ 0 Sy -t So

7

D(s],T) - D(sO,T) is conditionally independent of D(sO,T), and has conditional

mean 0, ,Thus E(D(sj,T)ICE ) = D(sO,T) a.s., so that
, o :

E(L(s])ICZO) = E(suptD(s],t)|CEo) > D(s,T) > L(s,) = 6 a5, giving

,E(L(s])lcz ) z_L(sofa.s. Since L(s) is a submartingale, use Doob's inequality
0

to get

p .
(3.3) Esup  L{s)P< (GPp) E L(c)P.
a<s<c P

It is also true that D(c,t), b<t<d, is a submartingale. Again using Doob's

inequality, we obtain

P
E L) = E supy y g D(c,t)? < (Bry) ED(e,d)

and putting this together with (3.3) we get

.

2p
. . P
D(s,t)” = E sup, o o L(s)P< (5y) € Dle,d)?,

E supa<S<C

b<t<d

as was to be shown. -
The proof of Theorem 2 can now be completed in exact parallel to the proof

of Theorem 1.
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