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1. Introduction.

Consider N independent and identically conducted Bernoulli trials resulting in £; suc-
cesses and {3 = N — ¢ failures. The random variables €1 and &3 are completely dependent
as long as N is nonrandom. On the other hand if N is random, depending upon its dis-
tribution, the random variables £; and £€2 may even become mutually independent. This
happens to be the case when N has a Poisson distribution. In fact this is the only distribu-
tion enjoying such a property. The same characterizing property for Poisson distribution
for N holds when N multinomial trials. are conducted in an independent and identical
manner resulting into &y, &;,..., € as the numbers of various types of ‘successes’, with
§1+...+ & = N. In fact here the mutual independence for any two &;’s forces N to have
a Poisson distribution (see Moran (1952) and Patil and Seshadri (1964)). The continuous
time analog of the above observation is given in theorem 1 below, where {A(t), ¢ > 0} with
A(0) = 0,A(t) < o0,V ¢t > 0, a.s. and referred to as an arrival process, is a separable
point process with right-continuous sample paths having successive unit steps at times
0 <71 < 7g.... In particular {A(t);t > 0} is a Poisson process whenever it has inde-
pendent increments with each increment having a Poisson distribution and it has a finite

nondecreasing mean function E(A(t)) = a(t), which is continuous for ¢ > 0. Consider the
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situation where for such an arrival process, each arrival, independent of everything else,
is allowed to depart instahtly upon arrival to a compartment C; with positive probability
pist =1,2,...,k,k > 2, satisfying p; + ...+ pr = 1. Let D;(t) denote the number of ‘;th
type’ departures i.e. to C; during (0,¢]. The following theorem is due to Fichtner (1975),
which was stated originally in terms of thinnings of a process. Instead we have purposely
preferred here to use the language of departure processes since we are intending to consider

later on the case of departures after positive random service times (see section 3 onwards).

Theorem 1. The arrival process {A(t),t > 0} is Poisson if and only if the departure
processes {D;(t),t > 0}, =1,2,...,k, are mutually independent.

Note that in the above case the processes {D;(t),t > 0}, = 1,2,...k, individually
turn out also to be Poisson processes. Furthermore the independence of any two of these
will force the arrival process {A(t),t > 0} to be a Poisson process. A special case of the
above theorem where the process A(t) was assumed to be time homogeneous is due to
Rényi (1964) (see also Srivastava (1971)). Also the reader may refer to Kimeldorf and
Thall (1983) for a recent generalization of theorem 1. However their results do not cover
the specific generalization in the direction where an allowance is made for the probabilities
pi’s corresponding to a specific arrival time 7j to depend upon this 7;. We deal with such
a generalization in section 2 (see theorem 2(b)). Here some conditions on the functions
pi(-)’s are necessary in order that the result of theorem 1 holds. That the result fails to

hold in general is illustrated through an example.

Again in the case covered by theorem 1, each arrival was allowed upon arrival to
depart instantly to a compartment C; with probability Pt = 1,2,...,k. We now con-
sider the case where each arrival is served, independent of everything else, for a random
length of time with a common cumulative distribution function (c.d.f.) G(). At the
end of this service period each arrival is allowed to depart to compartment C; with the

constant probability p;,¢ = 1,2,...,k, generating this way again k-departure processes
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Di(t),i = 1,2,...,k, over [0,00). Let D(t) = zk: D;(t), be the overall departure process.
An interesting questions is what can one say alz)_—c;lllt the arrival process {A(t),t > 0}, given
that the processes {D;(t),t > 0},i = 1,2,...,k, are mutually independent. Note since
{D:(t),t > 0},7=1,2,...,k, are thinnings of the process D(t), as follows from theorem 1
the mutual independence of these processes would be equivalent to D(t) being a Poisson
process. Thus the above question amounts to characterizing the arrival process A(t), given
that the departure process D(t) is Poisson. For the case where A(t) is assumed to be a
renewal process we give a partial answer to this question in section 3 but under the weaker
condition that D(¢) has a Poisson distribution for every ¢ > 0. In section 4 (theorem 5)
we have a rather interesting related result, namely given that the departure process D(t)
is Poisson and that for every n > 1, conditional on the first n departure epochs, the corre-
sponding n service times are mutually independent, we show that the arrival process has to
be a Poisson process. Moreover, in that case, the service times for the various arrivals have
to be also mutually independent. A converse (theorem 4) of this result is also discussed.
Finally the paper concludes with some remarks and touches some of the open questions
that are still under investigation.

2. Case with time-dependent p,’s.

We return to the model considered in Theorem 1 and allow the probabilities p;(-),7 =
1,2,...,k, to depend upon the arrival time 7 of an arrival, with Ek: pi(r) = 1. The
following theorem is a generalization of Theorem 1. =
Theorem 2. (a) Let {A(t),t > 0} be a Poisson process with EA(t) = a(t) and p;(-)’s be
such that the Lebesgue-Stieltjes integrals fpi(r)a(d"r),i =1,2,...,k, exist for every t > 0.
Then the departure processes D;(t), i :? 1,2,...,k, are mutually independent Poisson

processes with
¢
EDy(t) = / pi(r)a(dr).
0
(b) Conversely, let for two arbitrary nonempty disjoint subsets of {1,2,...k}, say K; and
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Ko, for everye >0 and 0 < t < oo,
(1) Jet = {r: 7 <t, Z pi(r) <eor Z p:(1) < €}.
i€K, i€K,
Let A(J.,:) denote the number of arrivals at time points in Je,t. We assume that the arrival

process A(t) and the probability functions p;(1) are such that for every small enough & > 0

and for everyt > 0, A(J. ) is measurable and satisfies the condition
(2) A(J.z) 250, as €] 0.

Then the mutual independence of the departure processes
> Dit) and > Di(t)
1€EK, €K,

implies that {A(t),t > 0} is a Poisson process.

Proof. Part (a) is well known and can be proved using the order-statistic property of
Poisson processes (see Matis (1973), Puri (1973), Faddy (1979) and Harrison and Lemoine
(1981)). We shall prove part (b) only for the case where K; = {1} and K, = {2}. The

general case follows along similar lines. Thus we have for ¢ > 0,
(3) Jeg ={r: 7<t,p1(r) <€ or ps(r) <e},

and we are given that the departure processes D4(t) and D,(t) are mutually independent.
Also let € < % and
(4) Je=J Je

t>0
We now construct two new point processes {B;(t),t > 0},7 = 1,2, as follows. For each
departure to compartment C;,7 = 1,2, if the corresponding arrival time 7 € J. we let
this departure stay in C;, otherwise we let it go upon z_a,rrival to two new compartments

C; and C}' with probabilities (1 — ¢/p;(r)) and (¢/p;(r)) respectively, for ¢ = 1,2. Note

3
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that the four compartments C! and C/',% = 1,2, are different from the original compart-
ments Cy,Cs,...,Ct. Let B, (t) and By(t) denote the numbers of arrivals entering the
compartments C{’ and CY respectively during (0,¢]. Evidently from the mutual indepen-
dence of the processes D; (t) and D, () follows the mutual independence of the processes

{Bi(¢t),t > 0},i =1,2. Again let
(5) Ha(t) = Alt) - A(J.y), t>0,

which is also an arrival process. From the construction it follows that for each arrival of
the process {H,(t),t > 0}, there is a probability € of entering each of the compartments
C{,i = 1,2, generating the two processes {B;(t),t > 0}, ¢ = 1,2, and the remaining
probability 1 — 2¢ of not entering any of these two compartments C{ and C¥. In view of
Theorem 1 and the remarks following it, the independence of these two processes in turn

implies that the process {H.(t),t > 0} is a Poisson process with expectation, say

(6) EH(t) = a.(t), t>0.

Also

(7) ao(t) = liig ae(t) < oo, t>0,
&

for otherwise if ag(t) = 0o, we would have
(8) P(A(t) > n) > P(H.(t) >n) — 1, Vn,

as € | 0, contradicting thereby the finiteness of A(t). Again the process defined in (5)
being monotone in €, converges a.s., as € | 0, to another arrival process, say {H(t),t > 0}.
Consequently using (7), being the limit of Poisson processes, H(t) must itself be a Poisson

process with

9) EH(t) = aoft), >0,
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and hence in view of (2), the process {A(t),t > 0} must also be a Poisson process with
EA(Y) = ao(t),t > 0. =
The following example illustrates the need of condition such as (2) in order that the

result (b) of the above theorem holds.

Example. Let {A;(t),t > 0} be a homogeneous Poisson process with parameter A > 0
and {Az(t),t > 0} with A2(0) = 0, be another arrival process with unit jumps occurring
only at all integral values of ¢. Also let A(t) = A;(t) + A, (¢),t > 0. Choose two positive
constants p; and p2 with p; + p2 <1 and for 1 = 1,2, and ¢t > 0, let

(10) pit) = {2:, :)ft;fl ;: v:i::)sitive integer,

Then it is easy to see that while the corresponding departure process {D;(t),t > 0}, = 1,2,
are two mutually independent homogeneous Poisson processes with parameters Ap;,t =
1,2, the process {A(t),¢ > 0} is not a Poisson process.

Consider now the case where each arrival of an arrival process {A(t),t > 0} departs
to a compartment C upon arrival with probability p(r), independently of everything else,
where 7 is its arrival epoch. Let D(t) denote the number of departures to C during
(0,t]. For the special case where the function p(u) = p is a positive constant, it can be
easily shown and must be known in literature that {A(t),t > 0} is Poisson if and only if
{D(t),t > 0} is. For the case with time dependent p(-), the result that {A(t),t > 0} is
Poisson implies that {D(t),z > 0} is also Poisson, has already been covered by Theorem

2(a). The following corollary to Theorem 2(b) covers its converse.

Corollary 1. For the given arrival process {A(t),t > 0} and the probability function (),

define for everye > 0 and ¢t > 0,

(11) el,t ={r: 7 <t,p(r) < e}
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Let A(J{,) denote the number of arrivals at the time points in J, ;. We assume that for

every small enough & > 0 and for every ¢ > 0, A(J] ;) is measurable and satisfies
(12) | AWJL) oo, aselo.

Finally let the corresponding departure process {D(t),t > 0} be Poisson. Then the arrival

process {A(t),t > 0} must also be Poisson.

Proof. Let each departure of the process {D(t),t > 0} be allowed to pass through
compartments C’ or C” each with probability 1. Let D’(t) and D"(t) denote the numbers
passing through C’ and C” respectively during (0,t]. Since {D(t),t > 0} is a Poisson
process, it follows from Theorem 1 that the process {D'(t),t > 0} and {D"(t),t > 0} are
mutually independent. Since these processes could have alternatively and yet equivalently
been constructed directly by allowing each arrival of the process {A(t),t¢ > 0} to pass
through either compartment C’ or C”, each with probability %p('r), the corollary easily
follows from Theorem 2(b). m|

3. The case of GI/G /oo queues.

Consider the situation where the ‘customers’ arrive according to a renewal process
{A(t),t > 0}. Upon arrival each customer is served immediately with the service times of
various customers being i.i.d. r.v.’s with c.d.f. G(:), satisfying G(0) < 1. Also the service
times are assumed to be independent of the arrival process A(t). Let D(t) and N(t) denote
the number of departures during (0,%] and the number of customers being served at time
t respectively. Then given that the random variable D(t) has a Poisson distribution for
every t > 0, we shall show (see theorem 3) under some minor conditions that {A(t),t > 0}
must be a homogeneous Poisson process. We shall need the following lemma to establish

this assertion.

Lemma 1. Let {A(t),t > 0} be a renewal process with interarrival time c.d.f. F(z) =

P(Xy < z),k = 1,2,..., where {Xi,k > 1} are the times between successive arrivals.
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Then {A(t),t > O} is a homogeneous Poisson process with parameter b > 0, i.e. F(-) is
exponential with parameter b, if and only if either

(i) P(D(t) =0) = exp{—bB(t)}, for t >0, or

(ii) P(N(t) = 0) = exp{—b(t — B(t))}, for t >0,

where

(13) B(t) = /0 \ Glu)du, 30,

Proof. The rest being either analogous or straightforward, we shall prove only that
a renewal process with property (i) must be a Poisson process with parameter b. Let
L(t) = P(D(t) = 0). Using a standard renewal argument it is easy to establish

t

(14) Mﬂ:l—F@yhA(1—G@—z»L@—@dF@y

In view of (i), substituting L(t) = exp(—bB(t)) in (14) and taking Laplace transforms

of both sides with respect to £, we obtain for § > 0, the relation

(15) £(0) = 071 (1 — F*(8)) + F*(0)[(1 + b-10) £(6) — b1,
where

(16) F0)= [ ew(-00 ar()

and

(17) §0) = [ exp(-00 - 5B} ar

Finally solving (15) for F*(0) yields
(18) F*6)=b(b+6)"", 0>0,

which in turn implies that F is exponential with parameter b. O
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We may note that we did not impose the condition F(0) = 0 in the lemma to begin
with, so that the process {A(t),t > 0} was not strictly an arrival process since the jumps
were not necessarily of unit sizes. And yet the conditions (i), (ii} forced F(0) = 0 to hold.

The same remark applies to the following theorem.

Theorem 3. Let {A(t),t > 0} be a renewal process as tn Lemma 1, and for every t,D(t)

have a Poisson distribution with ED(t) = A(t) and A(0) = 0. Furthermore let

(*) A(t) be continuously differentiable V t > 0, with its derivative A(t) =0,V0<t < a

and A(t) >0,V t > a, for some constant a > 0. Then

(i) G(-) s continuous,
(ii) A(t) = bB(¢), for some b> 0, where B(t) is as defined in (13), and

(iii) {A(t),t > O} ¢s a homogeneous Poisson process with parameter b.

Proof. Note that condition (*) implies that A(t) =0V 0<¢<aand A(t) >0, Vit>a.
Let

(19) R(s;t) = E(sP®), 0<s<1,
then as given
(20) R(s;t) = exp{—A(t)(1 - s)}, 0<s<1, t>0.
As in (14), using a renewal argument we obtain
¢

(21) R(s;t) = 1— F(8) + / 1 (1 &)G(t — )| B(s;t — z)dF(x).

0
Taking Laplace transforms of both sides with respect to ¢, we obtain for > 0,

(22) L(R(s;)) = 0711 — F*(8)) + F*(6) L([1— (1 - s)G()|R(s;1)),
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where L(%(t)) denotes the Laplace transform of a function t(t) and F* is as defined in
(16). Solving (22) for F* we obtain

0= — L(R(s;t))
—L([1-(1-s)G()]R(s;t))

(23) F'(0) = 5=

Again since the left side of (23) is independent of s, the derivatives of all orders with

respect to s of its right side are all equal to zero. This implies that for 0 < s < 1, and

i>1,

L(A'(t)B(s;1))

(24) PO = rwGommen + MOU - G- 9CON

In particular, by letting s T 1 and using the fact that

A(t) =ED(t) < EA(t) <61t + 62, V>0,
for some constants 6; and 6, (see Feller (1971), page 359), so that the transforms such as
L(A*(t)) exist, V i > 1, and 8 > 0, we have

) LA HING)

LGE) + L(A(R)  LEATTEGE) + L(A(2)°

~ for + > 1, or equivalently
(26) L(G)L(A' () = L(AQR) LEAT'@R)GQ); 21,

which in turn is equivalent to
t

(27) /0 C Gt — A (u)du £ /0 Nl — WGt — wA()dy; §> 1.

Integrating the left side of (27) by parts while using the fact that A(0) = 0, yields the

expression

(28) i /0 B(t — w)A(w) A~ (u) du.
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Thus we rewrite as

(27)
(29) /0 [B(t — w)A(u) — G)A(t — u)|Ai(w)du 20, i3 0.

Again using the fact that A(t) = 0 for 0 < ¢ < a, we have from (27) with ¢ = 2 and ¢ = 2a,

(30) /020 G(2a — u)A®*(u)du = 2 /Oza G(2a — w)A(2a — v)A(u)du = 0.

Here the second equality follows from the fact that A(u)A(2a — u) = 0 for 0 < u < 2a.
Furthermore, the first integral of (30) being zero and the fact that A(u) > 0 for u > a,
imply that G(u) and hence B(u) must be equal to zero V 0 < u < a. Consequently,

V't > 2a, (29) can be rewritten as
(31) / Bt - WA@) — G)AE — WA (w)du =0, >0,

Since A(u) is strictly increasing for u > @, introducing a change of variable from u to z in
(31), where
z=A(u)/A(t — a),

(31) can be shown to be of the form

1 -
(32) / z*P(z;t) dz =0, >0,
0

for an appropriate function ¢(-;t),which belongs to L;(0,1) for every ¢ > 2a. Using
Corollary 6.1b of Widder (1946, p. 61) in (32), it follows that ¢(z;t) = O for almost every
z € (0,1) and for every fixed ¢ > 2a. This in turn implies (see (31)) that for every fixed

t > 2a,
(33) B(t — u)A(u) — G(u)A(t —v) =0,

for almost every v € (a,t — a). However since the functions involved are all continuous
from the right, equation (33) must hold Vv € (a,t — a) and ¢t > 2a. Finally taking
u =t/2 in (33), it follows that

(34) M=ﬂ Vit>a,

A(®)  B()’
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which after integrating both sides yields the result (ii) keeping in mind that A(t) = B(t) =0
for 0 <t < a. The continuity of G(-) also follows from (34) and the assumption of

continuity of A(-). Result (iii) now follows from (ii) and Lemma 1. a

Remark. Note the condition (%) of the above theorem is neither restrictive nor unrealistic
though it may look that way at a first glance. In particular the condition (*) does in fact
imply that min (7 +zy, 72+23,...) > a holds with probability one, where 7;’s are the epochs
of arrivals. Moreover our results (i) and (ii) of theorem 3 show, under the conditions of
the theorem and in particular condition (%), that A(t) = 8G(¢t) for 0 < ¢t < a and hence
G(t) =0,V 0 <t < a, so that the service times X;’s must satisfy P(X > a) = 1. Thus the
condition (#) covers the more general case than the one with a = 0 where P(X > 0) = 1.
Finally the result of theorem 3 is interesting in that it only requires that D(t) have a
Poisson distribution for every ¢, a much weaker condition compared to requiring it to be
a Poisson process. Indeed there are plenty of proccesses which are not Poisson but have

Poisson distribution for every ¢.

4. Case of an infinite servers queue with nonidentically distributed service
times.

Consider an infinite servers queueing system where the customers arrive at epochs
0 <1 <7 <...,of an arrival process {A(t),t > 0}. Each customer upon arrival is served
for a (finite) random length V of time with c.d.f. G(-|r), which depends upon its arrival
epoch 7. The various service times Vy,Vs,..., given 7; < 75..., are otherwise mutually
independent. The function G(v|r) is assumed to be jointly Borel-measurable with respect
to its two arguments. The customers depart at the end of their service periods. Let D(t)
denote the number of departures occurring during (0,t]. Thus looking from the ‘arrival
end’ of the ‘service box’, the process is completely defined by the sequence {(7;,V;)} with
0<7 <7y <.... On the other hand looking from the ‘departure end’ of the service box,

let 0 < U; < U; <... denote the successive departure epochs for the departure process
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{D(t),t > 0}. Also let W; denote the length of service time that corresponds to the ith
departuré at calendar time U;,7 =1,2,....

The next theorem 4 deals with the distribution problem concerning the sequence
{(Ui,W;)} at the departure end and describes it in terms of functions G(-|r) and the
mean M (t) = EA(t) of the arrival process {A(t),t > 0}, which is assumed to be Poisson.
Conversely in theorem 5, distributions concerning the sequence {r;,V;)} at the arrival end
are described in terms of H(w|u), the c.d.f. of W given U and ED(t) of the departure
process {D(t),t > 0}, which is now assumed to be Poisson. Together these theorems

exhibit a ‘reversibility’ flavor between the two processes {A(t),t > 0} and {D(t),t > 0}.

Theorem 4. Let {A(t),t > 0} be a Poisson process with EA(t) = M(t), which is assumed

to be absolutely continuous with respect to Lebesgue measure with density function m(t), so
t

that M(t) = [ m(u)du,t > 0. Let for every r, the conditional service time c.d.f. G(v|7)
0
be absolutely continuous with probability density function (p.d.f.) g(v|r), which is assumed

to be jointly Borel-measurable with respect to the arguments v and 7. Let the integral
w

(35) I(w]u) E/ m(u — v)g(v|u — v)dv,
0

be finite, VO < w < u < oo. Then

(i) {D(t),t > 0} is a Poisson process with
t

(36) ED() = / m(r)G(t - rlr)dr, ¢ > 0.

(ii) The random variables {U;,W;),7 = 1,2,...,n} admit a joint p.d.f. given by

13



(37) fur,UnsWs ooy (Ut - s U W, - - o, W)

_ {ﬁ m(uk — we)g(welux — wk)} . exp {_ /0“" G(up — rlr)m(r)dr} ,

k=1
forO <ui <uz <...<up and 0 < wg < ug,k = 1,2,...,n, and ¢s equal to zero
otherwise.
(iii) For any n > 1 and arbitrary 0 < uy < ... < u, < oo with I(uglug) > O,V k =

1,2,...,n,

n
(38) PW;<wt=1,2,...,n|U; =u;, 1=1,2,...,n)= H H(wg|ug),
k=1

where for u > 0,

0, w <0,
(39) H(wlu) = { I(wlu)/I(ulu), 0<w< u,
1, w > u.

Proof. Result (i) is well known and can be proved by using the order statistic property
of Poisson process (see Marasol (1963), Kendall (1964) and Daley (1976)). We outline the

proof of (ii) as follows. Note that for n > 1,
(40) Up <u= A(u) >n.
Thusfor 0 <u; <us <...<u, <oo,and 0 <w; <u;y2=1,2,...,n, we may express

PU; <uy,W; <wii=1,2,...,n)

(41) = Z PU; < u;, W; < w3t =1,2,...,n|A(u,) = £)P(A(u,) = £).
l=n

The probability (41) is zero if M(u,) = 0. Let M(u,) > 0. Using the order statistic

property of the Poisson arrival process {A(t),t > 0}, given A(u,) = £,£ > n, the joint
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distribution of the arrival epochs 0 < 13 < 73 < ... < 74 is same as that of the order

statistic based on a random sample TY,... T}, of size £ from a common distribution with

p.d.f.

_ Jm(u)/M(u,), for 0<u< uy,,
(42) r(u) = {0, otherwise.

Given T} =1},i=1,2,...,¢, let X{,..., X} be mutually independent r.v.’s, with p.d.f of
X} being g(z*(t}),7 = 1,2,...,L. Let U} = T + X},i = 1,2,...,£ Note that (U, X})

are i.i.d. pairs, for 1 =1,2,...,¢, with common joint p.d.f. given by

m(uv* — z*)

(43) g(u*,z*) = M{uy)

g(x*lu* _ 2‘:=|=),

for 0 < z* < u* < wu, + z*. Let U(*1) < U&) <...<Z U(*e) be the order statistic based on

Uf,v=1,2,...,L Also let

(44) Wi=X;, fUS =Uf, i=12,...,L

Thus in view of (40) and the above mentioned order statistic property of the process

{A(¢),t > 0} (see also Karlin (1975), p. 128-131), it is easily seen that

(45) P(U; < ui, W <wis1=1,2,...,n|A(u,) = ?)

= P(U(*i) <up, W <w;i=1,2,...,n)

This last probability can be obtained using (43). In fact using (43) the joint p.d.f. of

Uln,Wr,i=1,2,...,n) can be easily shown to be
(¥)

[/ /u/\un un)yly)d du]
1j { ”(—’)’”—) o(wilu —w:)}

subject to 0 < uz‘l) < '“"(kz) <...< u’{n) < up and 0 < w; < uZ‘i),i =1,2,...,n. Finally

—n

(46)

this when used in (45) and the fact that A(u,) has a Poisson distribution with mean
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M(un), yield the expresion for (41) as a 2n-fold integral of the function given by (37)
over appropriate limits for the integrals, thereby establishing the validity of (ii). The
unnecessary lengthy computational details are omitted. The result (iii) now follows from
(ii). O

The next theorem is a converse to the above theorem.

Theorem 5. Let the departure process {D(t),t > 0} be a Poisson process with ED(t) =

A(t), which is assumed to be absolutely continuous with respect to Lebesgue measure with
t

density function A(t), so that A(t) = [ A(u)du,t > 0. Furthermore, for any n > 1 and
0

arbitrary 0 < uy < ... < uy, < 00, let the relation
n
(47) PW; < wi,i =1,2,...,0U; = u;,i = 1,2,...,n) = [] H(wi|u;)
1=1

hold (whenever the left side is defined), for some jointly Borel-measurable function H(wlu),
which for every u > 0 is a c.d.f. over the interval [0,u|. In addition let for every u > 0,

the c.d.f. H(w|u) be absolutely continuous in w with p.d.f. h(w|u). Also let

(48) /0 t /0 " A + 5)h(o]o + y)dvdy

be finite, V t > 0. Finally let

(49) J(ult) = /Ou A(v + t)h(v|v + t)dv, u>0,t> 0,
and

(50) J(oo|t) = uli—{%o J(ult).

Then

(i) {A(t),t > 0} is a Poisson process with

(51) EA(t) = / " J(ooly)dy, t3>0.
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(ii) The random variables {(r;,V;), =1,2,...,n} admit a joint p.d.f. given by

(52) TriperaiVi, Vo (15« o En; V1, .. . Uy)

= { ﬁ Aty + ve)h(vilts + 'Uk)} exp{—EA(tn)},
k=1

JorO<t;<ta<...<t, andvy >0,k =1,2,...,n, and is equal to zero elsewhere.

(iii) For anyn > 1 and arbitrary0 < t; <ty <...<t, withJ(oolt;) >0,Vk=1,2,...,n,

n
(53) P(Vi<wii=1,2,...,nn =t;, i=1,2,...,n) = [[ G(uilts),

=1

where

(54) G(vt) = {OJ /e, glixh:r:) ’

Proof. Once (ii) is proven, it can be easily shown that the joint p.d.f. of (7y,...,7,) is

given by

(55) Fror (ty e eestn) = LIi[l J(oo[tk)} -exp{— /O " J(ooly) dy},

for 0 <t; <...<t,, and is zero elsewhere. From this and (52), (iii) easily follows. Also
from (55) it can be shown that {A(t),t > 0} is a Poisson process with mean given by (51).

We omit these details here. Again to prove (ii) it is sufficient to show that the probability
(56) P(r; <, V; < v, 1=1,2,...,n),

for arbitrary 0 < ¢; <ty <...<t, and v; >0, =1,2,...,n, is equal to the integral of

the function given by (52). To compute (56) we need first to define the random vector

(57) (T (8,w)s- s Ty (s, w)s Vi (s,w) . .., Vi (s, w)
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for every sample point w belonging to the set [r, < co] and for every s > 0. Let w € [T <
oo]. If D(s,w), the number of departures during (0, 8] is less than n, we define the above

vector as Q. If D(s,w) = £ > n, then let
0 <Uj(s,w) <U;(s,w) < ... <U;(s,w),

be the departure epochs of the £ departures during (0, s], with W (s,w),...,W*(s,w), as

the corresponding service time lengths satisfying 0 < W (s,w) < Uf(s,w),2 =1,2,...,L

Let

(58) Ti (s,w) = Uf (s,w) — Wi (s,w),i =1,2,...,4,
with

(59) 0 < T(y(s,w) < Tiy(sw) <... < T(y(s,w),

as their ordered values. Finally let V*(s,w),s = 1,2,...,£, be the respective service time

lengths assoctated with these ordered values, that is

(60) Vit(s,w) = Wi (s,w), if T(;(s,w) = T} (s, w).

Then as s — oo, since D(s,w) ,/ D(oco,w) > n, a.s., it follows that as s — oo,

(61) (T(*i) (), Vi*(s);t = 1,2,...,0) I}, <o) — (13, Vi i = 1,2,..., n) I, <oo]s @S.

From this it follows that for 0 <t; <t3 <...<t,and v; >0,: =1,2,...,n

]

(62) P(T,;Sti,v.,;Sv,‘, z'=1,2,...,n)
= lim P(T(";-)(s) <ty Vis)<v, 1=1,2,...,n)
8—r00
= lim P(T(;(s) <t:,Vi*(s) < vy, i=1,2,...,n; D(s) > n).
8—00

The last equality follows from the fact that for s > max(¢; + v;,7=1,2,...,n),

(63) [Ty (s) <, Vi*(s) Swis i=1,2,...,n] C [D(s) > n].
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Now to obtain (62), as in (41) and (45), we shall need to compute the conditional proba-

bilities
(64) P(T((s) <ts, V*(s)<wi, i= 1,2,...,n|D(s) = ¢)

for £ > n, which are well defined for large enough s with ED(s) = A(s) > 0. from here
on to compute (64) we can now follow the approach adopted for the proof of theorem 4,
while using the order statistic property of the Poisson process {D(t),t > 0}. We leave the

remaining algebraic computations leading to (ii) via (62) to the reader. |

9. Concluding remarks.

(a) In Theorem 4, if {A(t),t > 0} is assumed to be a mixed Poisson process (see Puri
(1982) for a definition) with E{A(t)|u} = uM(t), where p is a positive random variable
with E(u) = 1, while other conditions remaining unchanged, it turns out that the departure

process {D(t},t > 0} is also a mixed Poisson process with

E{D(t)|u} = u /O m(r)G(t — r|r)dr,

and the relation (38) still holds. Conversely in Theorem 5, if {D(¢),t > 0} is a mixed

Poisson process, a similar result also holds for the arrival process {A(t),¢ > 0}.

(b) In section 1, the question of characterizing the arrival process {A(t),t > 0} was raised
given that (i) the service times of various arrivals are iid. with a common d.f. G(-) and
are independent of everything else and that (ii) the departure process {D(t),t >0} is a
Poisson process. While only assuming that D(t) has a Poisson distribution for every t, this
question was answered in Theorem 3 under the restriction that {A(t),¢ > 0} is a renewal
process. For the general question itself, in an attempt to prove the result namely that under
the above conditions (i) and (ii), the arrival process itself must be a Poisson process, the
authors unfortunately had to impose an additional rather not so natural looking condition
on the arrival process {A(¢t),t > 0}. This and further work, which is in progress in this

direction, will be reported elsewhere.
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(c) Using the lines of proof of Theorem 5, one can construct examples where the departure
process is still a Poisson process, while the condition (47) is somewhat relaxed in the sense
that the conditional service time distributions for the departures not only depend upon
the departure times but also on the order in which these departure times occur. In such a
case the arrival process is no longer Poisson nor does the condition (i) given above for the

service times of various arrivals holds any more (see Huang (1983) for one such example).
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