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It is well-known that the ordinary least squares (OLS) estimator é of the
slope and intercept parameters 8 in a linear regression model with errors of
measurement for some of the independent variables (predictors) is inconsistent.
However, Gallo (1982) has shown that certain linear combinations of 8 are
consistently estimated by the corresponding linear combinations of é. In
this paper, it is shown that under reasonable regularity conditions such
Tinear combinations are (jointly) asymptotically normally distributed. Some
methodological consequences of our results are given in a companion paper

(Carroll, Gallo and Gleser, 1985).
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1. Introduction. There is a substantial literature concerning linear

regression when some of the predictors (independent variables) are measured
with error. Such models are of importance in econometrics (instrumental
variables models), psychometrics (correction for attenuation, models of change),
and in instrumental calibration studies in medicine and industry. Recent
theoretical work concerning maximum Tikelihood estimation in such models
appears.in Healy (1980), Fuller (1980), and Anderson (1984), while Reilly and
Patino-Leal (1981) take a Bayesian approach.

In an applied context,an investigator may either overlook the measurement
errors in the predictors, or choose the classical ordinary least squares (OLS)
estimator of the parameters because of its familiarity and ease of use. Certainly,
the methodology of classical least squares theory (confidence intervals,
multiple comparisons, tests of hypotheses, residual analysis) is considerably
more developed than the corresponding errors-in-variables methodology, particularly
in samples of moderate size. If the OLS estimator is used, what are the
consequences?

Cochran (1968) has given a general discussion of the consequences of
using the OLS estimator in errors-in-variables contexts. For the special
case of the analysis of covariance (ANCOVA), where the coVariates are measured
with error, detailed investigations have been done by Lord (1960), De Gracie
and Fuller (1972) and Cronbach (1976). It is by now well-known that the OLS
estimator é of the slope and intercept parameters g in such errors-in-variables
modé]s is inconsistent; that is, é does not tend in probability to g as the
sample size n becomes infinitely large. However, in ANCOVA with covariates
measured with error but balanced (1nlterms of means) across the design, the

OLS estimator of the design effects is known to be consistent. This is shown



in the two-treatment case by Cochran (1968) and DeGracie and Fuller (1980).

More generally, Gallo (1982) has shown that for general linear errors-in-
variables regression models, certain linear combinations c'é of the OLS estimator
are consistent estimators of the corresponding linear combinations of g. Gallo's
result is reproduced in Section 2 as Theorem 1.

Let the rows of C be a basis for all linear combinations c'g of B that are
consistently estimated by c'é. In the present paper, it is shown that under

a reasonable extension of the regularity conditions given by Gallo (1982),

Wh=

n (Cé-CB) has a limiting asymptotic multivariate normal distribution (Theorem 2

of Section 2). This result does not require that the random errors (errors of
measurement, residual errors) are normally distributed, but only that these
errors are sampled from a common population with finite second moments. However,
Theorem 2 does assume that all predictors are fixed. In Section 3, Theorem 2

is extended to cases where some of the predictors are random variables.

The nature of the limiting normal distribution of n%'(Cé-CB) depends upon
whether the predictors measured with error are random (structural errors-in-
variables models) or fixed (functional errors-in-variables models). In the
former case, the Timiting normal distribution has a zero mean vector, while in the
latter case the mean Vector need not be zero (and is a function of unknown
parameters). A companion paper (Carroll, Gallo and Gleser, 1985) uses these

results to compare the asymptotic efficiencies of the OLS and maximum likelihood

estimators of Cg when the errors-in-variables model is of the structural kind.

2. Asymptotic Theory. Suppose that a dependent scalar variable ¥; is

related to a vector f]i: px1 of observable predictors and a vector fZi: gx1 .of

latent (unobservable) predictors by the model



(2.1) Yy, = f'.B] + fl.B, + e i=1,2,...,n,

i 11 2172

and that fZi is observed with error by Xis where
(2.2) X: = o,

For fixed (f!

1i° fZi) it is assumed that

%
(2.3) ) » 1 <1<n, are i.i.d.

11 912
T o= . H 222: gxq.

912

To state the model in vector-matrix form, let

Y1 1

Y = . Fo=l o , Fy=
yn f1n
e u3

e = : sU= s B =
é u'

f

5

21

2n



Then

(2.4) Y= Figy +Fo8, te, Xs= F2 + U,
where the rows of E = (e,U) are i.i.d. random vectors with mean vector O and
covariance matrix I.
Note. It is assumed that all design (dummy) variables are included in Fi. This
eliminates the need for separately including an intercept term in the model.
The OLS estimator of g for the model (2.4) is
=1

FiF,  FIX F1Y

(2.5) 8 i

/ X'Fy XX X'y

2.1 Asymptotic Consistency. To give asymptotic results about é, we need

to make some assumptions about the sequence

(2.6) £= ((fL,, f

'l.is 21): 'i='l,2,...}

of fixed predictor values. These are the following.

Assumption 1.

FIF Ay A
I LA L2 R e LR 2 R,
fro= Faf1 Faf M2 22



Assumption 2.

1
s -2 —
Tim n~ 2 max [F],Fz] = 0,

N->oo

where for any matrix A = ((aij))’ max (A) = max laij"

We will make extensive use of the following results.

Lemma 1. Under (2.4) and Assumptions 1 and 2, for all (g+1)-dimensional

~column vectors t,
-3
n = (F],Fz)' (e,U)t > MVN(O,(t'zt)a)

in distribution as nsw. In particular,

vl

' 1
(2.7) nE (f1,F,)" (e-Up,) - MVN(O,[(1,-Bé)Z<_82> ]A):

in distribution as now.

Proof. This is a direct consequence of Corollary 3.2 and the discussion following

in Gleser (1965). O

Lemma 2. Under the assumptions of Lemma 1,

Proof. From the weak law of large numbers,

(2.8) n"1(e,U)' (e,U) = 1 + 0 (1) .,



while from Lemma 1,

From these facts, {2.4) and Assumption 1, the assertion of the lemma directly
follows. O
The following theorem is a restatement of the result of Gallo (1982)

mentioned in Section 1.

Theorem 1 (Gallo, 1982). Under (2.4) and Assumptions 1 and 2,

-1
“Ayq A
. 1T "12
c'B P, c's. e c' =0,
. Iq

where Iq is the g-dimensional identity matrix.

Proof. Note from (2.4) that

] F]Y> FiF,  FiX B4
ﬁ ] - ] ] -
FaY X'Fy o X'X B,

“n

-Fé(e-UBZ) + U'(e-Us,)



However, Lemma 1 implies that

(e-Us,) = 0 (n"9),

while it follows from (2.8) that

1 4 o
FU (e-Usz) = 01p = ZooBy * op(1).

From these facts, (2.5) and Lemma 2 it follows that

- -1
M1 42 0
(2.9)  g=pg+ |, - + 0 (1)
L2 Lo2t 2o 912 “Ipp Bo P
Let
Q= (2,, + A )'] A = A sl ada
22 Y b9y 1) s 22.1 = 222 = M2 8471 492
Then
-1 -1
M1 42 0 A1 A
= Q
Mg Bt Ip - I

and it follows from (2.9) that



.A : \ 11 %12 .
(2.10) c'g 25 gt 1 Q (012—22282).
~q
Thus,
-1
. 51 22
¢'8 2> c'g e ¢ Q(G]'Z'EZZB) =0, all B, &
' I
q
Clearly
-1 -1
21 42 “811 22 |
c =0 = C Q(c12-2226) =0
I I
q q
for all B, £. On the other hand, if
- '] 1 '-l ] '1
By = Ipp 9pp = Zpp (=815 8175 1o)c,
then
-1 -1 -1
M1 82 A1 82 A1 M2
0=¢ Q(O-iZ-ZZZB) = c' Q
I I I
q q q
-1
81 412
= Cl = 03
I
q

since Q > 0. This completes the proof. O



Note that
' - - -1
c 0« c=d [Ip, by A]2]’ some d.
From this fact, it is easily seen that the rows of
C=(1,ata.)
p> 11 12

serve as a basis for the Tinear manifold of all c such that c'g is consistent

for c'B. This motivates consideration of the limiting distribution of

2.2 Asymptotic Normality gf_In. Rather than state our main result

(Theorem 2) at once, we first derive a representation for Tn that leads us to

the extra assumption needed to obtain asymptotic normality of Tn'

Let
-1
( | C[FiF R
L, L =C
S InTen " \XE XX
and
- -1
W Fiy FiF,  FIX SN
Tn i 1 T ' 11 1 g + 11 1é>
wZn n XﬁY X F1 X'X Iq



where

12 Z22 82)
Since
-1
211 A2
C =0,
Iq
it follows from (2.5) that
(2.11) B (L
2.11 T =n% (L, ,L
n 1n’~2n w2n
Lemma 3. Under the assumptions of Lemma 1,
L, =27} 4o (1)
In 11 pt "’
and
- 3
Gn n L1n(w

in distribution as n-sw,

Proof.

The first assertion is a direct consequence of Lemma 2 and the fact
that



11

M M2 W o)
C ! =\AS o s
Arp  Bop t 2y, 1

Note from (2.4) and the definition of W]n that

.I 1 -.I _l_ 1 ]
Wyt FFpFyagg aqp)y = p Filesl) <-(32+Y)> :
The second assertion of the lemma now follows from this representation, Lemma 1,

the first assertion of the lemma and Slutzky's Theorem. O

Lemma 4. Under the assumptions of Lemma 1,

Wzn = [;,ll_ U'(e'U(Bz"'Y)) = Azz;]Y]
(2.12)

_ -l ] '-I ";
L Fa(FamFyaqqagp)-agp 11y + 05(n"%)

and
Loy == FFD T R (F-F, a7l DI040 (DT + 0_(n7)
2n n 11 n 1271 711712 p p )

Proof. Using (2.4) and the definition of w2n, we can write w2n as the sum of

the first two terms on the right-hand side of (2.12) plus

-

1 g BERFVRIAN Eal i

n Fz(e'U(52+Y))' HU(F] st) I . Y .
" P

1
Using Lemma 1, this last term can be shown to be Op(n =), as asserted.
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From facts about inverses of partitioned matrices, the definitions of C
and L2n and (2.4),

.__] 1 ‘1 ]_ ] = ‘] ]_ t
Lon ==( FiFy) " Iy Fi(Fp-Fy aqq a9) +  FUT A,
where
-] _ ] 1 1 1 '] ]

Using Lemma 2, it is easily shown that

-T _ _ -1
An =hpp gt gyt op(]) =Q '+ op(1).

Using Lemma 1,

N R =0 ()
1 p :
Since n~| FIF

11

=6yt o(1) by Assumption 1, the representation for L,, given by
the Temma follows from Slutzky's Theorem.

O
Using (2.8), Assumption 1 and Lemma 4, it is straightforward to show that
on op(1). Let

(2.13)

=n
n

N
|
S

, -1
Fi(Fa-Fy aqy 8q).

It follows from (2.11) and Lemmas 3 and 4 that

(2.14) Tn = Gn s

(837405 (1) Zyy = (8772017, (714 0,117 (0, 1)) + o,(1).
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A careful look at (2.14) shows that for Tn to converge in distribution
for all B8, £ it is necessary that Zn be 0(1). Thus, we are led to make the

following assumption

Assumption 3. For every sequence i defined by (2.6),

1

. - -1
Tim Z = 1im n" 2 F{(F,-F A7-A4,) = Z(f)
o o 12714142 4

where the 1imit Z(i) may depend on f.
That Assumption 3, together with Assumptions 1 and 2, is sufficient for
Tn to have a Timiting multivariate normal distribution is clear from (2.13),

Lemma 3 and Slutzky's Theorem. This is our main result.

Theorem 2. Under Assumptions 1, 2 and 3,

1 - i I -
Tn = n=® (CB-CB) ~ MVN(-A]} ZEE)ys (n'Zn)A]})

el _ 1
in distribution as n»«~, where C = (Ip’A]] ]2)
Y = (222 + AZZ.])-](OiZ - 22282)3 n' = (1s'(52+Y)I)-

3. Discussion and Extensions. Theorems 1 and 2 assume that the seguence

f defined by (2.6) is a sequence of fixed vectors. If elements of the vectors
(fs 19° f' ) in this sequence are random variables, one can think of these results
as being conditional 1limit theorems.

When components of each (fii’féi)’ i=1,2,..., are random, a fairly easy
argument can be used to extend Theorems 1 and 2 to apply unconditionally,
provided that A{} ZY, where Z_ = Zn(i) is defined by (2.13); has an asymptotic

distribution.
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Thus, let s, represent the random part of (fii’féi) and et g = {si,i=1,2,...}.
Distributional assumptions about the S; yield a probability measure u(&) over

the sequences s. Suppose that

- -
A=t5: Vimn H(FLF,) ' (FLFy) =8> 0, limn 2 (Fp,F,) = 0)

N N—>co

satisfies
(3.1) [ du(s) = 1.

In other words, Assumptions 1 and 2 are satisfied with probability one. Then

Theorem 1 shows that for all s in A, all € > 0,

~ A 1
Tim P{[tr(Cs-Cp)' (CB-CB)]% > €|s} = 0.

n->o0

Thus, by the Lebesgue Dominated Convergence Theorem, for all ¢ > 0,

Tim P{[tr(Cé—CB)'(Cé-CB)]%>> e}=0,

oo
and hence Cé converges unconditionally in probability to C8. This shows that
Theorem 1 holds unconditionally (over é).

In a similar fashion, it can be shown that the representation (2.14) for

Tn holds unconditionally, that Gn in that representation has the Timiting
multivariate normal distribution described in Lemma 3, and that Gn and Zn
are asymptotically statistically independent. Consequently, if A{} Zn v has a
limiting distribution, the Timiting distribution of Tn is the convolution of the

s el e s -
Timiting distributions of Gn and 'T$11 Zny.
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Note: The above discussion is only a sketch of the arguments needed, and skips
over such details as measurability. A more extensive discussion in a similar
context can be found in Gleser (1983).

We will now follow the steps of the above analysis for some special cases
of the model (2.4) which are commonly adopted in practice. Recall that if
f21’ i=1,2,..., are random vectors, the model (2.4) is called a structural
linear errors-in-variables regression model, while if the fZi’ i=1,2,..., are
vectors of constants, the model is that of a functional linear errors-in-variables
regression model. Mixes of these cases, where some elements of f21 are fixed
and some elements are random, are also possible. Further, the elements of f]i
(except for the first component, which is always equal to 1 to accomodate an

intercept term) can also be fixed or random. Let

(5,
f.. = -
11 hi

We will consider the following cases:
(a) both hi and fou fixed (functional model),
(b) hi random, f21 fixed (functional model),
(c) hi fixed, f21 random (structural model),
(d)

d) both hi and f21 random (structural model).

3.1 Both h, and f,. fixed. Theorems 1 and 2 already summarize what we

can say about this case. Although Theorem 2 has some technical interest, it is
unfortunately rather useless for statistical applications. Unless we are in
the unlikely case where we either know the Timit Z(i) or can consistently estimate

this quantity, we cannot use Theorem 2 to construct large-sample confidence regions
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for C8. Recall that {f21, i=1,2,...} is a sequence of unknown parameters,
and that the individual vectors f21 in this sequence cannot be consistently
estimated. Thus, very strong assumptions are needed to permit us to consistently

estimate Z(f) (or A7) Z(£)vy).
" 11 f\,

3.2. h; random and f,. fixed. Here, we can assume that the vectors h,

are mutually statistically independent, but muét consider the possibility that
the distribution of hi depends upon fZi’ i=1,2,... . (That is, the hi's

are not identically distributed.) Given the Tlinear form of (2.4), it is natural
to assume that a similar linear model relates hi to f21. Thus, we assume that

(3.2) hi =q +y f t., 1 =1,2,...

.+
21 i

where the ti's are i.i.d. with mean vector 0 and covariance matrix A. We also

assume that

foofhe =

2if2i = 82> 0

L]
f . =]J’ -I-I -
1 21 n;

e~

(3.3) Tim -%
N> 'i

nNr~1>=

1

_1 ) . ,
and that Tim n # f21 = 0, all i. By letting f21 > f21 - u, a> ot Yu,

N>

Bop > Bop = up*ywe can let u = 0 without loss of generality.

The strong law of large numbers shows that

20, liml T t.el=a
L0 n Lo it

N =1

INe~13
+

. 1
Tim ﬁ'

with probability one. Using (3.2), (3.3) and Theorem 3 of Chow (1966),



LIRS SR
im n % t.fl. (= fo.fl. =0
Nosco j21 1 2i'n =1 2323
with probability one. Thus (3.1) holds with
1 al 0
A = o aa'+wA22¢'+A 2y
0 ap Y.
Note that
Al al, = - [ya '+A]_] A
nfz T, VoW ¥a2p
Let 1' = (1,1,...1) and T' = (t],...,t ). Then
n n
- -3 i '1
Zy = n 2 F(FymFragg agp)
-1 ]n
=n = (F2r - Tq)
a]n +wF2+T

where

Ig-v'as o= [wAzzw'+A]']wA22.

=
i]

It is apparent that, in general, extra conditions on both F2 and the higher
order moments of the common distribution of the ti's are needed to permit Zn

to have a Timiting distribution.
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However, consider the special case ¥y = 0. In this case the random parts

hi of f]i are i.i.d. random vectors independent of the f21|s’ and

_ _1 _ .I'F _1 ]IF'Y
G]BF + T'F2 1

2 A T'Fzy
Using Corollary 3.2 and the discussion following in Gleser (1965), it can be

shown that the elements of n~ 2 T'F2y have an asymptotic multivariate normal

distribution:

n

=

T'Foy MVN(O,(Y'AZZY)A).

_1
Although we could impose the condition that n = ]AFZY = 0(1), this is a rather
restrictive condition, and still leaves us the problem of estimating the limit

_1
of n # ]EFZY in statistical applications. Instead, we settle for a more restricted

result:

=

(3.4) nZ (0,1 -)(CB-C8) + MVN(0,@ )

p-1

in distribution as n»«, where

1 ' 1 (oi )A']<0 >
z 5
) | \e(epeny ) TP TI N

()
n

I
=
1
-—
t
— —
w
N
+
<
~—
g}
]
— —
0
nNo
+
-
~—
\—/
+
=<
>
N
N
-2
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1

since A = (O,Ip_l)A{}(O,Ip_])'. In this context (y=0), it is worth noting

that

-1

p_

= (O,Ip_'l ’O)S

so that the result concerns the estimates of the slopes (O,Ip_])B] of the

y; on the hi (the random part of f]i) in (2.4).

3.3 h; fixed and fZi random. In analogy with the discussion in Section

3.2, we assume that

(3.5) f21 =1Pf1i + t

where the ti are i.i.d. with common mean vector 0 and covariance matrix A.
(Here, since the first element of f11 is always 1, there is no need for a
separate intercept term.) Assumption (3.5) is commonly adopted in instrumental
variables approaches to errors in variables models in econometrics, and in
ANCOVA with measurement errors in the covariates.

We also assume that

.10 _
(3.6) Tim ﬁ'-Z f11f11 =87 > 0
N - i=]
-1
and that 1im n = f]i = 0, all 1. Following steps similar to those used in

N0

Section 3.2, we can show that (3.1) holds with



e I P
A =
VB hqqR A
Hence,
a7la =y
11712
Note that
Z =0 EFIF,-FiaTlan,) = nTERIT
n 1V 2771711712 1"

20

where T' = (t1""’tn)' Applying Corollary 3.2 and the following discussion

in Gleser (1965),
D712y > MUN(O,87] (v 1y))
in distribution as ns~. Consequently,
(3.7) n® (Ca-C8)» MIN(0,87] [n'zn + v'iv])

in distribution as n+«. It is worth noting that here

1

(o]
1]

(I sw)s A=A s n -
; 2.1 ~(8,+v)

When v = 0, there is a close parallel between (3.4) and (3.7).

that in this case Cg = B].

Note also
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Even when v # 0 (the distribution of f21 depends on f]i)’ the result

(3.7) was obtained without the need to make extra assumptions on the higher

moments of the common distribution of the ti’ in contrast to our conclusions

in the case of Section 3.2.

3.4 Both h, and f21 random. In this case it is more natural to make

assumptions concerning (h%, féi)’ i=1,2,... . We assume that these vectors

are i.i.d. with a common mean vector u and a common covariance matrix ¢. The

strong law of large numbers now shows that (3.1) holds with

Let u' = (uy»u,) and
<‘I’n 212

@:
%12 %22

where Hys @1] are the common mean vector and covariance matrix of the hi's.

Thus,

1 ul '] U|
M1tz ; o @2 o)
Lo I B L 12 "M1¥2

] ] —.I
Hp T oup 917 %72

-1

1

212
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Let H' = (hy,h,,...,h_). Then
n

_ -1 n -I
In=n*® < > (Fy = 1(ugmuf#37915) = Hojjop,) -

~ The Central. Limit Theorem shaws' that the first row of.-Zn has an
asymptotic multivariate normal distribution. For the remaining rows of Zn
to be asymptotically multivariate normally distributed, additional assumptions
on the higher moments of the joint distribution of (h fé1) are needed. To
avoid such assumpticns, we can assume that
1 -1

(3.8) f21 = Hpm01p077Hp * @12 Hh + t s 1 =1,2,...,

where the ti's are i.i.d. with mean vector 0 and covariance matrix

-1

292.1 7 %22 " %10 ¥7 @

12
and statistically independent of the hi's. If we condition on the hi's, (3.8)
is the model (3.5) with

-1

_ 1 1 '] _
b= (Hym0qp21 gy 2p2q7)s A =0

22.1°

We can now use the results of Section 3.2, noting that with probability

one (over seguences h],hz, o)
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. .
Tim = FIF, = Tim —(1_,H)' (1_,H)
e N 11 noe M N n
1 ui
= =A

Thus, conditional on the hi's,

Wik

~ _] . .
(3-9) n (CB‘CB) - MVN(OsA]][n|Zn+Y @22.]Y])
in distribution as n»«. Using the arguments given at the beginning of this
section about converting conditional Timiting results to unconditional Timiting

results, we conclude that (3.9) also holds unconditionally.

3.5 Conclusion. The results (3.4), (3.7), (3.9) can be used to construct
large sample confidence ellipsoids for Cg based on the OLS estimator Cé provided
that consistent estimators can be found for the covariance matrices of the
asymptotic normal distributions. It should be noted that in general CB is a

function not only of B, but also of A;}A]z, which need not be a known matrix.
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