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ABSTRACT

Designs are considered for situations where the mean response consists of a
general model together with any number of 2 level factors and suitable interac-
tions. The D-optimal criterion is shown to be equivalent to a type of weighted

model selection. Two examples are given.
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A Note on Approximate D-Optimal Designs for G x 2k

Yong B. Lim !, W. J. Studden ? and H. P. Wynn 3

1. Introduction.

In experimental designs, we frequently have a response variable y which
depends on both qualitative and quantitative factors. The qualitative factors may
be, for example, type of fertilizer, method of treatment, sex of patients, type of
drug, curing condition, etc. The quantitative factors may be temperatures, or the
amount of concentration, etc. In addition, the levels of some of the quantitative
factors may be reduced to two levels, thus making them, in effect, qualitative fac-
tors. The reason for this may be for cost considerations, for ease of experimenta-
tion or to conduct preliminary studies. In the following all of the qualitative fac-

tors will have only two levels.

The purpose of this note is to show that one can leave part of the model
more general and still analyze the situation from a D-optimal viewpoint; and that
the analysis is equivalent to a type of weighted model selection which has a

Kiefer-Wolfowitz equivalence theorem.

The general part of the model may consist of those factors of more interest

to the experimenter.

2. Definitions and Formulation.

The basic criterion of design optimality which we shall use here is that of D-
optimality developed largely by Kiefer (1959, 1961) and Kiefer and Wolfowitz
(1959, 1960). It is assumed that for each point z in some multidimension factor

space a random variable or response Y(z) can be observed. The variable Y(z) has
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expected value

EY(z)=X 0.f=0" f(2)

and

varY(z)=c ?

where f(z) is a kx1 column vector of known functions f(z), i = 1,...,k, and f is a
kx1 vector of unknown parameters. Uncorrrelated observations are taken at
Z1yZ9y - - « 5 Zy (nOt necessarily distinct). If the least squares estimated of § are
used, they have covariance matrix given by (o 2/N) M71(¢) where M(£) has ele-

ments
m;;(§)= [fi(z)f;(z)d&(z) (2.1)

and &(z) has mass 1/N at each point z;. We shall assume that our design measure
€ is an arbitrary probability measure. As usual, some approximation would be

necessary in practice.

The D-optimal criterion is to choose ¢ to maximize the determinant | M(€)].
This is known, by the celebrated Kiefer-Wolfowitz theorem, to be equivalent to

minimizing the supremum over z of
d(z,&) = ' (Z)M(E)M(2). (2.2)

In this general setting we let z=(x,y;, . . . , ¥,)- Here x, which may be mul-
tidimensional or more general, consists of the more important factor(s) while
Vis - - - » Y are each set at two levels +1. For the x factor we consider a general

model, denoted here by G, which involves g + 1 linearly independent functions



hy(x), by (x),-..;hg(x). The model G corresponds to or incorporates the variables of
main interest. For example if the experiments are categorized by height, weight
and sex, and height = x is the important variable, one might use h;(x) = x,
i=0,...,g. Then take weight at two levels, light and heavy and sex at two levels,
male and female. If height and weight are important then we may use
X = (X1,Xg) and hy(x), i=0,1,...,g, could consist of a general polynomial model in
two variables, leaving sex at two levels. The functions h; should really be con-
sidered as function on z = (x,yy, . . . , ¥) 2s they will constitute part of our more

general model involving f;, . . ., fi.
In addition to these hj(x) we allow m linear variables y;,...,y,. To the
functions h; we will eventually add m + (1;1) terms y,¥g, - - - » ¥ 20d ¥; ¥,

1<i<j<m where each y; € [-1,1]. These will be eventually restricted, without

loss of generality, to take on only the values +1.

To describe the interaction between the two parts of the model it is con-
venient to introduce a number of submodels of G. This will be used later to
describe the equivalence with the weighted model selection formulation in section
4. Thus let G, j = 1,2,...,r denote distinct submodels of G, i.e. each G; consists
of a distinct subset of the functions hy,hy, . . ., h,. The interactions will be of the
form y; x Gj, consisting of y; times all the functions in G;. For later analysis it
will be sufficient to note how many y; occur with each specific G;. This we denote
by sj, j=L1,...,r. That is, there are s, terms like y; G;, s, of the type y; Gy, etc.
For convenience we assume f; = 1 is contained in each G;. Then the totality of

our functions f;, i = 1,...,k consists of

G
1GipYe Giyy « -+, YGiy, (2.3)
yiy; 1<i<j<m
To illustrate, (2.3) might consist of 1, x,

X%, X%, y1, ¥1X, Yo YoX, Y3 VaX, VX%, ¥Vp VeX5, and y; oy, 1<i<j<4.
Here,G = {1,x,x2,x%}, G, = {1x}, G, = {1,x,x*}, G; = {1,x2}.



3. Symmetry Reduction

In analysing the above situation, all of the functions listed in (2.3) are viewed
as functions on z = (X,y;, . . . , yx). An arbitrary design is a probability measure
on z. A symmetry argument will show the following.

Lemma 3.1

A solution £ to the D-optimal design problem has each y; on +1 with proba-
bility 1/2 and a measure g on x; the full ¢ being a product of these measures.

The D-optimal design problem reduces to maximizing
I S
A = IMq(u)| TT M) (3.1)
i=1

where Mg denotes the information matrix corresponding to G and M; to G,
i=1,2,...,r.
Proof

We consider the functions in (2.3) in blocks as indicated. Thus G is one
block. Each y; Gij » J = l,...;m, is a block and all the terms y; Visi<jareina
separate block. A symmetry argument on each y; shows that the D-optimal
design must have these blocks orthogonal. That is, integrals of products of func-
tions from different blocks are zero. To show that y; must be +1 we observe that
d(z,€) will split according to the blocks. The terms with y, Gj, separate out and
vi? factors out with a nonnegative coefficient. Terms from yiy;j also will enter
with y2. Thus the supremum over y; must be at y; = 41. Similarly for y,, etc.
The symmetry on y; then gives weight 1/2 to y; = +1. We may then assume
without loss of generality that £ is of the form £ = uxp where u is on x and p
has equal mass on the 2™ points (y;, . . . , y,) with each y; = +1. (The measure
€ is only constrained by certain moment conditions and may differ from the one
described).

If the design & is as described above then the determinant of the overall

information matrix is seen to be equal to A in (3.1).



4. Weighted Model Selection

The situation resulting in A given in (8.1) is exactly the same as certain
analysis of Atkinson and Cox (1974) and Lauter (1974). In these situations a
number of models (in our case G and G;, i = 1,2,...,r) are tentatively being con-
sidered. (Here y,, ...,y are not present.) We have assumed that the models G;
are all distinct in our formulation. Omne of the G; may, however, be equal to G.
In this case we could omit G, if desired, and replace the corresponding s; by s;+1.
For convenience of notation we shall set G = G, and assume it is distinct from
the other G;. To design an experiment to distinguish between the models con-
sideration is given directly to the weighted D-optimal criterion A. At least two
methods for choosing the weights seem to present themselves. The first is to
make them proportional to some prior likelihood of the different models. The

other is to make them proportional to the inverse of the dimension of the model.

For the criterion A, a Kiefer-Wolfowitz equivalence theorem has been
described in Léiuter (1974) and Atkinson and Cox (1974). Thus the following are

equivalent:

prmaximizes A(u)
m
p*minimizes sup ) s;d;(x,u)
X 5—
o (4.1)
Usidi(x, ¥ )=Xik;
where k; is the dimension of G;

The analysis of A in previous sections gives another interpretation of the condi-

tions in (4.1).

5. Examples.
Example 1.

Consider for G the simple case G = {1,x,...,x"} with x € [-1,1] and let
G = {1,x,...,x'} i = 0, 1,...m. Thus in our model we have x € [-1,1] and m
variables yq, . . .,y on +1, with 1st order interactions between the y;. The sub-

set G; appears as interactions with s; of the y terms and



Ap) = Mp()] x TT M) I (5.1)

i=1

The minimization of (5.1) is given in Studden and Lau (1984) using canonical
moments. We use the notation from that paper to describe the solution here.

One can show that, except for some constants independent of p,

k .
M = TT (Saig o) (5.2)

i=1

where ¢; = q;_y p;j, i>1, g9 = 1, 0<p;<1 and q; = 1-p;. The quantities p;,po,-.-
give a convenient parameterization to the design part y. Substituting (5.2) into
(5.1) the general model G x 2¥ can be solved, at least in terms of the p,. For

m=2 the quantity A reduces to

1
A= (P1q1P2)Sl[(qulpz)z(qus%P4)]52+

Maximizing A in terms of py, py, P3, P4 We find p; = p3 = 1/2, p, = 1 and

2 (so+1) + 5
3(spt+1) + 5

P = (5.3)

The resulting measure p* can be shown to give weight p,/2 to +1 and 1-p, to
Zero.

For m=3 it can be shown that the measure p* has weight p/2 on 41 and (I -
p)/2 on +t where t = (poqy)/2, p = pop4/(de+Dopy) and

3(s3+1)+2sy5+s; 2(sg+1)+s,
P2 = 5(s3+1)+3s9+s; Pa= 3(sgt+1)+s,




We remark that the usual D-optimal design for polynomial regression corresponds
to s; = 0, i = 1,2,...,m. This same solution results if these are zero only for i up

to m-1. In this case we have a "full product” model for some of factors.

Example 2

Consider for G the quadratic polynomials on the k-cube,

G=1{1,x? ... x? , x; € [-1,1],i=1,....k,k > 2

XiXg - .. Xp Xk

and

G1={1,X1, .y Xk}.

Thus we have the quadratic polynomials on the k-cube, m variables y;, . . ., Y
all the 1st order interactions between x; and y;j and interactions between y; in our

model. The subset G, interacts with each of the y terms and

Ap) = Ma(p) | - My () ™

Note that the model is invariant under the group H of sign changes and permuta-
tions of x;’s, i==1,...,k. By the invariance theorem ([3]) there exists a symmetric
D-optimal design p* under H. By the same argument as one in the proof of
Lemma 3.1 d(z,£*) is a quartic function of x; with the positive coefficient of x;*
and symmetric w.r.t. x;. So d(z, *) can be maximized at x; = +1 or 0. Thus we

restrict 4 to a symmetric design on E, E = {x: [x] = 0 or 1}. Let

u = [x/p(dx)



and

v = [xfx7p(dx).

Noting that p is a symmetric design on E, we get

uly 0 0

Mg(p)= | 0 (uv)+vil'’ 0
0 0 VL (i)

2

and

M, () = [3, u‘}k}

where 1 is the kx1 vector of ones and I is the identity matrix. So

k(1)
A(p) = [u¥ - (u—v)e? - (ut(k-1)v-ku?) - v 2 |- (ub)m

k(k-1
k(m+1) ., 2 . (u—v)k‘l . (u+(k—1)v—ku2)

Simple algebra shows that A(yx) is maximized at

ok — k+2m+3 [(k=1)6%+1]
k%+k(2m+3)+2
and vk = tk * ux

(2k+2m+1)+V 4(k-+m)?*+12(k+m)+17

where tk = a(k-tm+2)

(5.4)

(5.5)



For i=1,2,...,k, let E; be the subset of E consisting of those (11{) + 2! elements

with the (k-1) components of x being equal to zero. Then a symmetric design p*

on E. UE UE, is D-optimal iff

OSI‘1S(k—1)u*%ll_z—%51‘2§k—17 rs=k,

* — K ro—(k+ry—1)us4(k—1)v*
W B) = oy (et (e,

* o _.__k —T1 r—1)jux—(k—1)vx* .
v (Erg) (k—I'Q)(I'2—1‘1) [ 1+(k+ 1 1) (k 1) ] (5 6)

and W (Ey) = 1-p*(Ey )-u'(E,)
A proof of this fact is given in an appendix.

The weights for a symmetric D-optimal design with r; =0 are listed in Table

1 for some k and m. That would be benificial if fewer points in design are desired.

We remark that a symmetric D-optimal design for quadratic regression on
the k-cube corresponds to m = 0, and Farrel, Kiefer and Walbran ([2]) have
shown that E;, UE, UEy supports a symmetric D-optimal design iff

ro=k-1, r;<k-1 fork <5

ro=k-1 or k-2, r; <k-2 for k > 6.

But we have to choose ry to be k-1 for any k and sufficiently large m since

(k1) - ux 1“*

T converges to k-1 as m goes to infinity.
-u
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Table 1. Weights for a symmetric D-optimal design

m 0 1 2 3 4 m 0 1 2 3 4

p*E;) | 583 6556 706 743 772 p*Eg) | 510 578 620 .670 .702

k=2 | uXE;) | 321 .284 252 226 .204 ([k=3 | p*E,) | 424 378 .339 .306 .279
p*(Eo) | 096 061 042 031 .024 p*Eo) | 066 .044 032 024 .019
p*Ey) | 451 516 567 609 .643 p*Es) | 402 465 516 .558  .593

k=4 | u*(Eg) | 502 451 408 371 341 |[k=5 | p*E, | .562 .509 464 426 .393
p*Eo) | 047 034 025 020 .016 *Eo) | 036 026 020 .016 .013
r*(Eg) | 616 423 472 515 .551 2*E;) | 607 642 436 477 513

k=6 | p*(E;) | 381 556 511 471 438 || k= #(Ey) | 389 357 550 511 477
p*Ey) | 003 021 .017 014 011 p*Eo) | 004 001 014 .012 .010

Iy 1 5 5 5 5 Iy 5 5 6 6 6

p*Eg) | 599 632 404 445 481 p*Eg) | 592 623 640 417 452

k=8 u*(E,2) 397 366 .584¢ 545 .510 || k=9 u*(E,z) 404 375 350 574 540
p*(Eo) | 004 002 .012 .010 .009 B | 004 002 001 .009 .008

ro 6 6 7 7 7 Ty 7 7 7 8 8
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Appendix : Derivation of y* in Example 2.

Farrel, Kiefer and Walbran ([2]) have shown algebraically that there exists a
symmetric D-optimal design for quadratic regression on the k-cube. Kono ([7])
has used geometric arguments for the moment space to get a symmetric D-

optimal design. In the following we generalize the geometric ideas contained in
[7].

The space of (u,v) is the convex hull of {(- M) i

X (k) =0,...,k} since

k i
u= Y- - uE)
i—o k

0 ke
i v = S = 83 .

So we need to show that (u*,v#) is in that convex hull for the existence of a sym-

metric D-optimal design. Now we try to find ry,rp,r5, p*(E; ) and p*(E,) such that

3 I'l *
uk = E f K (Eri)
1=1
r(r-1)
and v = (E;) (A.1)
) k(k-1) &
where 0<r;<r,<r3<k.
Since t*x > ktmtl and ux is a linear increasing function of t*,

k+m+2
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kt2m+3 (4 ), kimetl

—+1
k%+k(2m+3)+2 k+m+2 |

k-1
>k

So we have to choose r to be k. Let L; be the line which passes through (1,1)

ry ry(r-1) ry ro(ry-1)
PR k(D) ) and L, be the line which passes through (k =) ——) a

u*,vx), Suppose u; is the abscissa of the intersection point of L; and L,. Then
1 1 2

and (

ux < u; <1 if and only if there exists a symmetric D-optimal design p* whose
support is EL UE, UEy. It can be easily checked that

o = ro(keu¥—r;)+r;[(r;—1)uk—(k—-1)v*]
L ry(kewsry )1y (k—ry)+k(k—1)(ut—v* )

and

W<y <l it ry<(k-1)us ((11:::)) <r, (A.2)

By the direct substitution of (5.5) into u*'iﬂl we get

(i-u)

—_—)
(w) =

which assures the existence of a symmetric D-optimal design on E,, UEg; UE,.

We get (5.6) from (A.1) and (A.2).



1]

[2]

8]
[4]

[5]

o
7
8
9

[10]

-13 -
References

Atkinson, A. C. and Cox, D. R. (1974).Planning experiments for discriminat-
ing between models.J. R. S. S. Ser. B. 36, 321-348.

Farrel, R. H., Kiefer, J. and Walbran, J. (1967). Optimum Multivariate

designs. Proc. Fifth Berkeley Symp. Vol. I, Univ. of California Press, 113-
138.

Kiefer, J. (1959). Optimum experimental designs. J. R. S. S. Ser. B. 21,
272-319.

Kiefer, J. (1961). Optimum designs in regression iproblems, II. Ann. Math.
Statist. 32, 298-325.

Kiefer, J. (1961). Optimum experimental designs V, with applications to Sys-
tematic and rotatable designs. Proc. Fourth Berkeley Symp. Vol. I, Univ. of
California Press, 381-405.

Kiefer, J. and Wolfowitz, J. (1959). Optimum designs in regression problems.
Ann. Math. Statist. 30, 271-294.

Kiefer, J. and Wolfowitz, J. (1961). The equivalence of two extremum
problems.Canad. J. Math. 12, 363-366.

Kono, K. (1962). Optimal design for quadratic regression on the k-cube.
Mem. Fac. Sci. Kynshu Univ. Ser. A. 16, 114-122.

Lau, T. S. and Studden, W. J. (1985). Optimal designs for trigonometric and

polynomial regression using canonical moments. Ann. Statist. 13, 383-394.

Lauter, E. (1974). Experimental planning in a class of models. Math. Opera-
tionsforsch. U. Statist. 5, 379-398.



