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1. Introduction. Confidence intervals are widely used in

statistical practice as indicators of precision for related point esti-
mators (which are often, but not always, midpoints of such intervals),

or as estimators (interval estimators) in their own right. Suppose we
observe data Y obeying a parametric model whose probabilities Pe{Y in A}

ére fhdexed by d paraméter é, wheré 9 fs ah eTement of a parameter space;@, A
confidence interval [L(Y),U(Y)] for a sﬁa]ar function v(e) of 6 is de-.

fined by (measurable) functions L(Y),U(Y) of Y. The coverage probability
p(e) of [L(Y),U(Y)] is defined for each & in @ by

p(e) = Pe{L(Y) < vy(8) < U(Y)},
and the confidence (confidence level) of the confidence interval by

1-0 = inf p(e). | (1.1)
0€W

The expected length A(e) of [L(Y),U(Y)] is defined by

A(e) = Ee[U(Y) - L(Y)].

If the confidence of the interval is large (e.g., 1-o =.95) and
the expected length A(e) is small for all 6, then the interval

[L(Y),U(Y)] is regarded as a good frequentist interval estimator of



v(e). Alternatively, the high confidence and small expected length of
the interval [L(Y),U(Y)] can be regarded as evidence of the accuracy or

precision of the point estimator

for v(8), or indeed of the accuracy of any point estimator ¥(Y) for
which L(Y) < ¥(Y) < U(Y). |

Similarly, for any r-dimensional vector function Z(e) of 8, r>1,
we might seek to simu?t~aneo-us1y-‘5es*t'vf‘mate‘fhé éomponents *yl(e-),. .. ,yr(,e) 61"'
x(e)‘by-a confidence sét C(Y). In this case, the coverage probability p(s) of the
set equals Pe{y(e)e C(Y)rand the confidence 1-q of C(Y) is defined by (1.1).
The diameter d(Y) of C(Y) is the maximum (supremum)distance between any
two points fn c(Y).

In most parametric and nonparametric problems, it is possible to
find 1-o confidence intervals of finite expected length for parameters or
parametric functions of interest. However, there are important exceptions
to this rule.

For example, consider the classical simple linear errors-in-variables

model (Anderson, 1984) in which we observe pairs (yj,xi) of random variables

satisfying the model:

Yi = Bt By Uy teqss (1.2)

b
"

u. + e,
1



where (e]13e21)' are i.i.d. with common mean vector (0,0)' and common

' ' 2
covariance matrix Iy = 02 12. Here, By B and g are parameters of

basic interest in the model. The quantities u; are usually assumed to

be either fixed constants (functional case) or i.i.d. random variables

with mean u and variance ¢° (structural case). For the functional case

D SN~

of this model, Gleser (1982) has shown that:

(1) any 1-a confidence interval for 31,»0 <o < 1, must have infinite
expected length,

(2) contrariwise, any confidence interval for By of finite expected

length must have confidence 1-o = O.

Gleser confined his proof to intervals which are based on the data 6n1y
through the first and second sample moments and cross moments of (yi,xi).
This leaves open the question of whether there exist confidence intervals or
confidence sets for g, having positive confidence (1-a > 0) and finite
expected Tength or diameter which are based on more elaborate use of the
data (such as through use of tne Jackknife or Bootstrap). In Section 3, we
show that no such confidence intervals or sets can exist; In Section 3,
we also verify similar nonexistence assertions concerning confidence inter-
vals or sets for arbitrary linear combinations of g, and By in both the
functional and structural cases of this model.

An analysis of Gleser's (1982) argument reveals that the key to
his results is that the model (1.2), by suitable choice of the "nuisance
parameters ui(in the functional case) or cﬁ (in the structural case) can

be made arbitrarily "close to the model

Yi T Bg F Byu ey

X: = u t+e,.



for which BO and B] are not identifiable. This suggests that more gen-

eral results are possible.

Thus, let Y be a random element of a probability space (¥, &), with
3 a sigma-field of measurable subsets of %. Let ¢ be a sigma-finite
measure on (%,¥), and let Y have probabilities determined by one of a

parametric class of densities f(Y|s) relative to ¢, with common support

Y* cy. Thus

P, LY € A} = [ f(Y[e)dz(Y).
A

"~ Assume that o = (e], 62) takes values in
®=®-I x@z’

where @, is a subset of p-dimensional Euclidean space Ep, and 0, is a

subset of g-dimensional Euclidean space 4,

The following Theorem is the main result of our paper.

THEOREM 1. Let y(e]) be a scalar function of 61€ 8 . Suppose that
there exists a subset @]* of e, and a point 62* in the closure E& of e,

such that

y(e]) has unbounded range over 6, € 8% , (1.3)

and such that for each fixed e]e @1* , YE€Y ,



exists, is a density for Y relative to ¢, and is independent of 01- Then,
every confidence set C(Y) for Y(G]) with confidence 1-o > 0 satisfies

P ) (d(Y) =) > 0 (1.5)

6],62
for all (e],ez)e ® , where d(Y) is the diameter of C(Y). {[Consequently,
Eeﬁi(Y)] = » for all g = (e1,92)€ ® .] Contrariwise, if C(Y) is a confi-
dence set for y(G]) whose diameter is finite with probability one for all
g€ ® , then the confidence level 1-4 of C(Y) equals 0;

Theorem 1 deals with confidence set estimation of scalar parametric
functions. However, this theorem is also applicable to vector-valued

parametric functions y(6]) because of the following theorem.

THEOREM 2. Let Y be a random vector whose distribution depends on an
unknown vector parameter o. Let y(s) be an m-dimensional vector-valued
function of o. If for some constant m-dimensional vector a it can be shown
that no confidence set for a'z(e) with positive confidence and finite
expected diameter exists, then the same conclusion holds for any confidence
set C(Y) for X(e).

Theorems 1 and 2 are proven in Section 2. This section, which is
technical in nature, can be skipped by anyone interested only in applications
of the main results.

In Section 3, it is shown how Theorems 1 and 2 apply to the simple

errors-in-variables models (1.2) in both functional and structural cases,



and to various generalizations of these models, including nonlinear errors-
in-variables models and estimation of principal component vectors. In
Section 3, Theorems 1 and 2 are also applied to the classical inverse-
regression (calibration) problem, and to the more general problem of estima-
ting ratios of slopes in classical multiple linear regression. Finally,
Section 4 briefly discusses some alternatives to frequentist confidence

interval estimation.

2. Proofs.

Proof of Theorem 1. By (1.4), for every 01 € ®]* .

Tim ff(Y|(61,62))d;(Y)=T=v{f(Ylez*)d;(Y)ﬁ f,lime- f(YJ(e],ez))d;(Y).(g.i)
' B Y 0o .

62+92*,y'

*
i 0 G
Also, s1nce,@] ®l’

e* = fﬁ* X Cé Ci®] X8 =@ .
It follows from (1.1) that

1 -a-= inf p

1€ ClY
(84:0,)€ & (6],62)(Y(91) (Y))

g dnf P (e e (),

T (ey,8,) €@ 91298,

Fix 61€:®]*. Since €(Y) is asserted to have positive confidence,



0 < 1-a -_<_1'nf P(l

J€ C(Y
(6,,0,) & &* “6],62)(“91): (Y))

< 1im P(

, (y(87)€C(Y))
8,,6,) 1
6, > eg T°72

= fy(8;) € C(Y)PF(Y] (8, ,0,))dc(Y),
e;m+ o5 {}I(Y(el) (Y)RF(Y[(ey,0,))dz(Y)

where I(A) is the indicator function of the set A. Note that for any
set A in %,

0 < () F(Y](0720,) < F(Y|(8125,)).

Thus by (2.1), (2.2) and a well-known extension of the Lebesgue

dominated convergence theorem, for each 8:€@*

0 < 1-a < Tim 41 ) €D F(Y](oy,0,))dz(Y)
> 6*

= {}I‘({y(e])e C(Y)3)f(Y]e3)dz(Y).

(2.3)

Since the range of y(e]) over e]”e @1* is infinite, we can find a sequence of

values of 8 in ®]* such that either,y(e]) + ® Or y(e]) + -, Assume that

we can take y(e]) + o (the proof when y(e]) + - is similar). Let

=

~

-

S
[}

max{g: g€ C(Y)},

-
-
-
S
It

min{g: g€ C(Y)}.

Then by (2.3) and the Lebesgue dominated convergence theorem,



0 < T-a < Tim

[ T(ty(ey) € C(Y)}) F(Y]ex)de(Y)
Y(e]) > o Y

f

¥

< Tim

I(ty(8q) < U(Y)3)F(Y]e%)de(Y)
Y(e]) > oy

Let

{Y:UQY) - L(Y) = =3,

w
(]

—
!

= {Y:f(Y|e$) > 0.

We have shown that

< T-a < [ F(Y|e%)dz(Y) = f(Y]ox)dz(Y),  (2.5)
0 <1 _é (Y]e3)dz(Y) S»rf]T(Iezc |

and it follows from (1.4) that the support T of f(YJeg) is contained in
the common support %* of the f(Y](e],ez)), (e],ez) €@. Hence, it

follows that for any (61,62) €0,
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This completes the proof of the first part of Theorem 1. The "contrariwise"

part of Theorem T follows directly as the contrapositive of the first part

of Theorem 1. Hence, the proof of Theorem 1 is complete. O

Proof of Theorem 2. Let C(Y) be a confidence set for v(e) with positive con-

fidence 1 - o > 0. Let

c(Y) = {a'g: geC(V)}_-
That is, Ca(Y) is the Scheffe projection (Scheffé, 1959) of C(Y) for estimation
of a'X(e). Clearly

0 <1 -aszinf P(y(e)€C(Y)) <inf P {a'y(s)€C (Y)3.
rry gyl N 96@ L

éy assumption, every confidence set for a'z(e) having positive confidence 1 - o
must have infinite diameter with positive probability for all 8. The diameter
of Ca(Y) is obviously no Tlarger than that of C(Y), and thus the proof of

Theorem 2 is complete. OO

3. Applications

3.1. Linear Errors-In-Variables Models. The simple Tinear errors-in-variables

model (1.2) is a special case of the following multivariate linear errors-

in-variables regression model. Let
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Vs 8 B.\ -
<1>=<0>.+(1)u1+eP i=1,2,...,n, (3.1)
X Q I

where Iq is the q-dimensional identity matrix and Qq the qédimensiona1 zero
column vector. In (3.1), Bg and Yi» 1 < i <n, are p-dimensional vectors;
Xi and u;, 1 < i <n, are q-dimensional vectors; B] is a p x g matrix and

i
the €ss 1 <1 <n, are (p+q)-dimensional random vectors with mean vector

Qp+q and covariance matrix Zg -
Recall that any matrix can be. represented as a vector using the "vec"
notation. To avoid notational complexity, we do not do this. Instead, when
we list the parameters making up the vectors 015 85 in Theorem 1, it will
always be understood that these are arrayed in vector form. Thus, for
example, if we write 0y = (BO’B])’ it is understood that 01 is a column

vector composed of the elements of 30, B].

To apply Theorem 1 to the model (3.1), let

Vo= (yg Xy toyo X e ay X )

For the functional case of the model (3.1), where the ui's are unknown vector

parameters, let

8y = (Ugslin,.eislinzy).

For the structural case of (3.1), where the ui‘s are random vectors with

unknown mean vector yu-and unknown positive definite covariance matrix'zu, let
8y = (u» I, %g) -

In both cases, let



12

6] = (BO’B])'

Suppose that we want to estimate an unbounded scalar function y(B])

of B, -- for example, an element of B], a linear combination of elements of

1
1

B], or perhaps the norm [tr(B]B1')]2 of B]. To show that no nontrivial

(1 - ¢ > 0) confidence set for Y(B]) with finite expected diameter exists, we

apply Theorem 1 with
®]* = {(BO,B]): Bg = b} , b a fixed p x 1 vector, :

and 62* defined from ez_by setting'g].=u2=ﬂﬂ..= unsﬁgqin.the functional case and

=0 in the structural case. (0 is the g x g matrix of zeroes.)

v QQ’ Ly g X q ~q X g
In both cases, functional and structural, it is easily seen that requiring

61 = (50’31) to be in @]* does not restrict B]; and thus does not restrict
the range of y(B]). Further, when 8, = 05", 8y € @1*,the distribution of Y

depends only on the known vector b and on Zas and is thus functionally inde-
pendent of 0y- (This assumes that the joint distribution of the €5
1 <1 <n, does not depend functionally on (50’81)') Consequently, Theorem 1
applies, and we can also conclude from Theorem 2 that no nontrivial confidence
set with finite expected diameter exists for B].

Instead, suppose that we want. to estimate an unbounded scalar function

Y(BO) of gy- In this case, define

8 * = {(80’31): By * B11d = b}, b a fixed p x 1 vector,

where 1q»1s the q-dimensiona]-yector.(l,]5],.,.;1)'; Let,ez*,berdefingd from 6,

by setting Up = Uy = ... = U = 1q in the functional case and y = 1

n q’

z, T Qq X q in the structural case. Again, requiring 01 to be in @1* does

not restrict the range of Bg> and thus of Y(BO)‘ Further, when
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6y = ez*, e1€ ®]* , the distribution of Y depends only on b and Za- Con-
sequently, Theorem 1 applies to Y(BO)’ and Theorem 2 shows the nonexistence
of nontrivial confidence sets for Bo with finite expected diameter.

In general, suppose that for a known (q+1) x r matrix A of rank r < q,
we wish to estimate an unbounded scalar function of (go,B])A. For example,

we might be interested in estimating a given linear combination of the elements

of (8g.B1), say

c'(sO,B])a ,c:px1,a:(g+1) x 1,

in which case A = a and y(v) = c'v. Since A has rank r < g+1, there exists
a q-dimensional vector t such that the columns of A are linearly independent

of (1,t')'. Define
@* = {(8ysB;): By + Byt = b}, b a fixed p x 1 vector,

and let eé* be defined from 8 by letting Up = .;; =u, =t in the functional
case, and y = t and X, T Qq X q in the structural case: The applicability of
Theorem 1 and Theorem 2 follows by the arguments stated previously. We thus
can conclude from Theorem 2 that nontrivial (1 - o > 0) confidence sets for
(BO’B]) with finite expected diameter do not exist.

The above assertions hold whether Lo is assumed known or unknown. (In
the latter case, we may need conditions on I, to make the model (3.1) identi-
fiable.) However, Iy Must be assumed to be positive definite in order that
the model (3.1) does not degenerate to the standard linear model, where non-

trivial confidence intervals for individual parameters in (BO,B ) having

finite expected Tength are known to exist. Since our results hold for known
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Zas it follows that our nonexistence assertions about confidence sets for
scalar and vector functions of (30’81) also hold in the contexts of generali-
zations of the model (3.1) which permit replications or use of instrumental
variables .in order to estimate T (For examples of such models, see
Anderson, 1984; Gleser, 1983.)

Note that use of Theorem 1 in this context does not require us to make
any parametric assumption about the joint distribution of the errors e, in
(3.1). The ej's do not have to be normally distributed, or Vindependent, or
even identically distributed. The ei's do not even need to have common
covariance matrix z,. Of course, the more assuhptions we'make, the move
striking are our nonexistence results! Still it is worth remarking that for
Theorem 1 to hold it is sufficient that the joint density f(e) for
e = (e]',ez',...,en')' satiéfies the-following conditions:

(i) f(e) is functionally independent of (BO;B]),
(1) f(e) is continuous in e (permitting the Timit as 8y > 6%
to hold and be a density),
(i1i) The support of f(e) is n(p+q)-dimensional Euclidean space
En(p+q) (so that the densities for Y for all values of the

parameters BO’B]’ Upseensl have éommon support).

n

In the structural case, the ui's are random vectors independent of the’
ei's. The uj's are usually assumed to be i.i.d. with a common g-variate
normal distribution, but such an assumption is not needed in order to apply
Theorem 1. The uj's can be dependent and even have non-identical marginal

distributions. In fact, the ui's need not have common mean vector y nor common
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covariance matrix Z,e If we assume that us has mean vector Uy and positive

definite matrix zé]) , 1 =1,2....,n, then we let

(1) (H)

92 = (].I-lsllzs---,llns Zu, s---52u ),.

To apply Theorem 1, we define 6,% from 0, by setting

T | I R
where the vector p depends upon which scalar function v is of interest to us.
(For example, if we are interested in y(B]), we set y = Qq:) Consequently,
the generality of aT]owing the ui's to have possibly different mean vectors
and/or covariance matrices is somewhat spurious. In any case, for Theorem 1
to apply in the structural case, it is sufficient that the class of distributions
of the ui's permit taking the 1imit 6, > 8,* , and that the density f(e) of
the vector of errors e has the properties (i), (i1), (iii) Tisted above for
the functional case. [Of course, it is also implicit in our assumptions that
the mean vector(s) and covariance matrix (matrices) of the ui's do not depend
functionally on (80’81)']

The key to our arguments in both the functional and structural cases of
the Tinear multivariate errors-in-variables model (3.1) is that we can find
a sequence of parameters tending to a Timit for which the variability of the
ui's is equal to zero. Note that in the functional case, this limit lies in
the interior of the parameter space; while in the structural case, the limit

I, = Qq X q is on the boundary of the parameter space.

3.2. Related Models.

Hwang (1984) considers a simple errors-in-variables model with a multi-

plicative error (rather than additive, as in (1.2) or (3.1)). Theorems 1 and
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2 can be applied in the context of his model to show the nonexistence of non-
trivial (1.- o > 0) confidence sets with finite expected diameter for.linear
combinations of the essential parameters. |

Theorems 1 and 2 also apply to nonlinear functional and structural errors-

in-variables models. Thus, suppose that

<i:>=< (ﬁ;“1)> te,i=1,2,..,n, (3.2)

where ¥; is a p-dimensional vector, g is an unknown m-dimensional vector,
h(g,u) is a known p-dimensional vector function of g and u which is continuous
in u for all fixed g, X and u; are g-dimensional vectors, and e, is a (p+q)-

dimensional random vector with mean vector 0 and positive covariance

ptq
matrix T The ui's can be unknown vector parameters (functional case) or
random vectors with unknown mean vector p and unknown positive definite co-
variance matrix Zo (structural case). Again, it will not matter whether Lo
is known or unknown, and distributional assumptions for the ui's and ei's
apart from those mentioned in Subsection 3.1 are not required.

We are interested in applying Theorem 1 to unbounded scalar functions
v(B) of 6; = 8. Let 6, = (u],uz,...,un,ze) in the functional case and
0, = (p,Zu,Ze) in the structural case. Once again we will let 92* be defined

from 8, by letting

Up = U, = ... =u =t (functional case),

(structural case),

where the g-dimensional vector t is at our disposal. We let
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e * = {g: h(,t) = b} , b a fixed p x 1 vector.

Note that @1* defines a surface in the p-dimensional range @1 of g. If

v(g) for g€ 8 * is unbounded in range for some t and b, Theorem 1 applies to
show that no nontrivial confidence set for y(g8) with finite expected diameter
can exist. Giving general methods for finding t and b is beyond the scope

of this paper. For particular cases;*th1S-1s‘usUa]]y:easy;v As a -simple
example, if p=gq =1, 8= (8;,8))" , v(8) = 8; and

Byu

h(g,u) = gy "1
thent = 0, b = 0, achieves the desired end, while if y(8) =By > then
t=1,b=1will suffice.

Finally, it is well known that the structural form of the linear errors-
in-variables model (3.1) is related to principal component analysis. Suppose
that Y1s¥psen.sy, are i.1.d. p-dimensional continuous random vectors with support
Ep,_mean vector u, and unknown positive definite covariance matrix z. Let
M2 > . >y > 0 be the eigenvalues of r. Suppose that it is assumed
that A > Ao, SO that the eigenvector x corresponding to M is uniquely

defined up to a scalar multiple. Also suppose fhét x is not erthogonal to the

vector (1,0,0,...,0)'. If we scale x so that

<= (s) -
where g is a (p-1)-dimensional vector, then the elements of g are the slopes
of x relative to the last p-1 axes of p-dimensional Euclidean space and serve
to define the first principal component of z. It is frequently desired to
estimate the elements of g. In particular, confidence intervals for the
elements 3]""3Bp-] of gior-a confidence set for g may be desired..

However, Tetting o, = 8, 6, = (A],...,Ap), @;* = @ and
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62* = (AsAshs...,1) for some A > 0, it is easily seen that Theorems 1 and 2
apply. Thus, no nontrivial confidence sets with finite expected diameter

for elements of B can exist.

3.3. Ratios of Regression Parameters and Inverse Regression. Consider the

classical multiple regression model

y; = By * g Bjxji *tes, i=1,2,...50, (3.3)

where the éi have mean 0 and variance 02, and a joint distribution
having the properties

. . . . . _ -1 e
given Joe 0 <Jg 2P define the ratios §j Bjo Bj, =05 ...5p.

Applying Theorems 1 and 2 with

‘we see that no nontrivial confidence sets exist for Bjj'j#jo,

which have finite expected diameter. A special case of this problem (with

p=1) is the inverse regression (discrimination,calibration) problem (MT]]er; .

11981, .p. 117; Hoadley, 1970; Seber, 1977, Chapter 7).

(i), (ii), (ii1) mentioned in-qusettion 3.1. For any

3.4. A Comment on Large SampTe Approximations.” In each of the above examples,

our results are not due to lack of identifiability of the parameters. [In the

functional errors-in-variables models, we can delete the 1ine Up = U, = ...=

from the parameter space and our conclusions still hold. The value 62*

u

simply becomes a boundary value of the parameter space.] Even after we impose

n
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identifiability restrictions on the parameters, the phenomenon persists. The
reason for this phenomenon is stated in the discussion preceding the statement
of Theorem 1: For fixed n, the confidence level of any confidence set is
approached as a Timit as 6, > 62*.

On the other hand, in each of our examples one can exhibit large sample
approximate 100 (1-a)%, O < a < 1, confidence intervals of finite length (almost
surely) for any y(e]). For example, a Targe sample confidence interval for g,
can be constructed in the context of the model (1.2) [Anderson (1984)].
Although for each fixed (e],ez) in®=8 x ®2,thé’eoverage;probabd&ity of
the large sample confidence interval for y(61) converges to 1-o as n » «,
Theorem 1 shows that for fixed n, no matter how large, the confidence level
of this large sample confidence interval must equal 0. The technical reason
for this apparent contradiction is that the 1imits as n » «» and as 0, > 62*
cannot be interchanged. The practical conclusion from our arguments is that

large sample approximations (asymptotic theory) fail to uniformly approximate

the finite sample distributions over the parameter space @. To use large

sample approximations for the models discussed in this section (and more
generally in Theorem 1), one must have some jnformation about the location

of (e],ez) in the parameter space (particularly how close 0, is to the points
92*). This casts doubt upon the usefulness of large sample approximations in
such models, at least when used for the purpose of forming confidence sets or

assessing the accuracy of point estimators.

4. Discussion. The models and inference problems mentioned in
Section 3 have wide applicability. Consequéntiy;‘the‘hdnéxfstéace of
nontrivial, finite-expected-length confidence intervals is of concern,
at least to those statisticians who use confident intervals as fre-

quentist indicators of precision, or as estimators in their own right.



Bayesian statisticians do not have similar problems. Bayesian
credible intervals, having posterior probability 1-a > 0, always exist
and have finite length with probability one (although some such intervals
hay have infinite expected length). However, such intervé]s solve a
different problem. If reported by the experimenter, they give an
interval of values for a parameter which has strong posterior support

based on the experimenter's own prior distribution. The credible

interval produced by a“reader of an experimenter's results :can:be greatly
different from that of the experimenter if that feader starts with a
different prior~distribution and the amount of information in the

data is not great enough tb overwhelm prior opinion. Hence,:where this is
possib]e; Bayesians should provide a fi@ili:Of credible intervals IW(XQ for
a parameter, from which a reader with a particular prior ; can select the
appropriate interval to reflect the precision he or she finds in the data.
The results of this paper (see Theorem 1) show that such intervals will be

sensitive to the amount of prior probability mass or density for 09 in

the neighborhood of/e§.

The goal of the frequentist approach is to present intervals or
measures of precision which have properties that can be stated inde-
pendent of the prior opinions of investigators. Of necessity, this
forces such measures to reflect "worst cases". In the case of the models
described here, such worst cases occur when 0o is arbitrarily close
to eg, and the data therefore provides vanishing 1hformation about 61.

However, some frequentists would point out that in real problems
there is vague prior information about 0, (perhaps too crude to be

quantitively modeled in the form of a prior distribution) which leads
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one to believe that 8, is bounded away from 95. In this case (specifi-

cally in the models presented in Section 3), it may be possible to

exhibit intervals [L(Y),U(Y)]of finite expected Tength for which the coverage
probability p(ej;ez) is high as long as 6, stays away from 95; An eX&mp]e
where this is true is given by Gleser (1982) for the model (1.2). Gleser
shows that the usual large-sample interval for By has confidence near.1-- 4
as 1onglas oﬁ/ag > 1. Of course, asserting that 05/02 > 1 changes the

parameter space. One may be willing to make such an assumption in evaluating

an estimator, but not in constructing jt.

Alternatively, a frequentist can try to find arbitrary confidence sets
which in some way reflect the information given by the data about possible -
values of Y(el)' This was apparently Fieller's approach (Fieller, 1954; see
also Creasy, 1954, 1956). This approach starts by finding good a-level tests
for the hypotheses HOC:y(e]) = C, o < C <o, One then Tets a confidence set
C(Y) for y(e]) consist of all values ¢ for which HOC is not rejected by the
data Y. In the context of the models discussed in Section 3, such regions
C(Y), which are guaranteed to have confidence I~a, are not always finite inter-
vals, and indeed can have the form (-, L(Y)Ju [U(Y),»), L(Y) < U(Y). Note
that Theorem 1 tells us that such confidence sets must have infinite expected
diameter for all parameter values. Although the sets C(Y), provided they are
based on good tests, do tell us what values of y(e]) cannot be dismissed by
the data, they only indirectly provide an idea of the accuracy with which
y(e]) s estimated. It is, for example, hard to imagine interpreting such
regions in graphical summaries of results--e.g. comparison of y(e]) across
several populations. On the other hand, graphs showing point estimates with

accompanying confidence intervals are easy to interpret. [Neyman (1954), 1in a
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discussion of the papers of Fieller (1954) and Creasy (1954),also worries
about what confidence to assign to a region (interval)formed by an experimenter
who repeats or continues experimentation until a set C(Y) which is a finite
interval is obtained.]

Fieller's approach to estimating the~5j*srin the model (3.3) is given in
most textbooks on linear models. A similar methodology 15 given by Williams
(1959), Brown (1957), Gleser and Watson (1973), and Schneeweiss (1982) for

the linear errors-in-variables regression models (3.1);

The present paper is intended only to point outa problem and
summarize available solutions, not to propose a choice. The choice
among these solutions (or otherswhich may be proposed in the future)
will depend upon one's statistical philosophy of inference, and on
one's goals.  Although the textbooks currently favor Fieller's approach,
it is not at all clear that this approach is the most satisfactory
for the goals of most practitioners. What the present paper does make
clear is that the traditional confidence interval approach cannot

work in the kinds of problems illustrated by the examplies in Section 3.
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