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ABSTRACT

The present interest is to address some classical optimal design
questions in the context of the exact design setting for the poly-
nomial regression model. A necessary condition for an exact design
to be admissible is provided. It is conjectured that this condition
is also sufficient and the basis for the conjecture is discussed. It
is shown that the Salaevskii's conjecture holds for cubic regression.

The interesting forms of G-optimal exact designs are indicated.

Key words: Polynomial Regression, Exact Design, Admissibility

AMS 1980 subject classification: 62K05, 62J05.



1. Introduction
The present study is concerned with the polynomial regression
model y(x) = 6'f(x) + e, for a < x < b. Here y(x) denotes the ob-

served response, 6 = (90,6],...,6n)' the (column) vector of regression

coefficients, f(x) (1,x,...,xn)' the vector of regression functions,
and € the "error" random variable with mean 0 and variance 02. It
is assumed for now that the choice of degree n is not an issue.

We suppose that N uncorrelated observations on y(x) are to be
obtained at "levels" XqseoesXy of x. Thus we consider the Tinear
model Y = Xo + e, where Y = [y(x]),...,y(xN)]', where xij = fj(xi)
for T <i <Nand 0 < j <n, and where e = (e9s...0ey)'. We restrict
our attention to making inferences about g via the classical esti-
mator g = (X'X)-1X'Y. (Here we must interpret (X'X)'] as a general-
ized inverse if rank (X) < n+1.) Under the preceding model's
assumptions, 6 is unbiased for 6 with variance/covariance matrix

- 2

V(o) = o (X'X)_]. A Toose statement of the design goal, which will

be made more precise, is to choose X1sesesXy SO that (X'X)'] is
"minimizedf.

In order to more conveniently formulate the design problem,
Tet Xge+++sX, NOW denote the distinct levels at which no,...,nz
observations are to be taken. (Here n0+...+n2 = N.) An exact
design gN is a probability measure on [a,b] which concentrates mass
nj/N at each X Such a design prescribes exactly where and how to
allocate observations. The set of all exact designs for a given value

of N will be denoted by Ey- The information matrix (per observation)

of an exact design gN is M(gN) = fg f(x) f(x)'dgN(x). “For polynomial



regression, we have mij(gN) = Ciyj for 0 < i,j < n, where each Cy =
2 | -
fg xkdg (x) = ) nmx;/N. It is easily seen that V(s) = oZM_](gN)/N.
m=0

Thus a reformulation of the design problem is to determine an exact
design gN which "minimizes" M_](gN).

An approach, due to Kiefer and Wolfowitz [1959], which is often
taken in optimal design work is to extend consideration to the class
of all approximate designs, i.e. arbitrary probability measures g
on [a,b]. This approach has the distinct advantage of greater math-
ematical tractability. However, in practice, only an exact design
may be implemented. It is often the case that an optimal approximate
design is not exact for certain choices of N (or even for any choice
of N). This limitation can be espec1a11y troubTesome when N is not
too large.

The present interest is to address some classical optimal design
questions in the context of the exact design setting. Results will be
compared with those known for approximate designs. Section 2 is
devoted to the admissibility problem for polynomial regression.

Theorem 2.1 provides a necessary condition for admissibility. It is
conjectured that this condition is also sufficient and the basis for

the conjecture is discussed. Section 3 deals with the design

criterion of D-optimality. Salaevskii [1966] has conjectured that a
D-optimal exact design distributes mass as equally as possible among

the (n+1) support points of the D-optimal approximate design. This was
shown to be true for quadratic regression by Gaffke and Kraft [1982] and
shown to be false in general by Gaffke [1985]. For cubic regression it is
shown that the conjecture holds. Also we summarize the cases where

the conjecture is false by checking the necessary conditions for the



exact D-optimal designs in Gaffke [1985]. Section 4 indicates the
interesting forms of G-optimal exact designs. In particular, the
well-known non-equivalence of D- and G-optimal exact designs is

discussed.

2. Admissibility

Recall that the exact design problem is to determine an exact
design gN which "minimizes" M_](EN). A particular optimality cri-
terion may correspond to a real-valued function ¢ on the set of non-
negative definite (n+1)x(n+1) matrices. A o-optimal design is one
which minimizes ¢(M-](5N)). The cases that @(M'](EN)) = IM'](gN)[

-1,_N

for D-optimality and @(M'](gN)) = max.f(x)'M '(¢°) f(x) for G-

a<x<b
optimality cases will be considered in later sections. For a

concise discussion of these criteria, see Silvey [1980].

In many cases (including D- and G-optimality) the function o
is monotone in the sense that if M'](EN) 5_M'](£N), then
@(M_](gN))_i @(M-](gN)).' Here the inequality A < B for non-
negative definite matrices A and B should have the customary meaning
that B-A is non-negative. Thus we are naturally led to the admissi-
biTlity problem: characterize those exact designs whose inverse in-
formation matrices are minimal with respect to "<". Accordingly,
an exact design EN‘is said to be admissible if and only if there
exists no other exact design %N such that M(gN) # M(%N) and
M) < meeh).

our search for an optimal design to the class of admissible designs.

Solution of this problem will enable us to restrict



Note also that any inadmissible design can be excluded from consider-
ation because it can be bettered by another design which has smaller
variance for the classical estimator of any linear combination of the
regression coefficients. For further motivation of the admissibility
problem, see Kiefer [1959].

In the case of polynomial regression, the following Temma
relates the admissibility problem to a problem involving the design
moments C],...,Czn_],czn.

Lemma 2.1: gN is admissible for polynomial regression if and only if
there exists no other exact design which shares the same values of
Cyse--sCo,_q but has a larger value of Con-

Proof: See Karlin and Studden [1966].

In the approximate design setting, a design ¢ is admissible for
polynomial regression of degree n on [a,b] if and only if the support
of £ includes n-1 or fewer interior points. This characterization
has been developed by de la Garza [1954]7, Kiefer [1959], and Karlin
and Studden [1966]. Note that this admissibility condition involves
only the support of an approximate design. It will be seen that the
corresponding statement for exact designs does not involve only the
support of an exact design.

The following definition establishes some terminology which will

be used throughout the remainder of Section 2.

Definition 2.1: 4. If gN({xj}) > 1/N, then X; is termed a cluster of gN.
i, If gN({xj}) = 1/N, then x; is a singlet of ¢".
Example 2.1: Let [a,b] = [0,5], Tet N = 10 and let



g = 164 + .18, + .36, + .16, + .16, + .35_.

X X

X X

gN: X X X X X X
0 1 2 3 4 5

Thus gN is comprised of an interior cluster 2, interior singlets
1,3,4, a cluster 5, and a singlet 0.

The following theorem establishes conditions that are necessary
for an exact design to be admissible for polynomial regression of
degree n.

Theorem 2.7: Let gN be an exact design with r interior support
points, with ¢ interior clusters, and with s disjoint pairs of ad-
Jjacent interior singlets. If gN is admissible for polynomial

regression of degree n, then

Remark 1. Theorem 2.1 provides a complete class of exact designs for
polynomial regression. A typical exact design from this class might

have clusters at a and b, n-1 clusters within (a,b), and n singlets



separating the clusters. For n = 3 with N = 14, this ould locate

observations as follows:

X X X
X X X X

N .
£ X X X X X X X
0 5

Very roughly, Theorem 2.1 turns an (N-2)-dimensional optimization prob-

lem (at least one observation must be at each end) into several (2n-1)-di-
mensional problems. Any subset of EN satisfies the conditions of the theorem
for the corresponding N and the same degree n. For example the design in
example 2.1 satisifies the conditions of the theorem with N = 10 and n > 3.

It is proposed that the clusters 6f an exact design correspond to the

support points of an approximate design. The twist to this relation-
ship is that pairs of adjacent interior singlets and singlets at a
or b act as clusters.
Remark 2. At this time, the sufficiency of the conditions of Theorem
2.1 may only be conjectured. It is believed that this conjecture is
valid because if an exact design satisfies i. and ii., then it is thought
that no other exact design which also satisfies them can achieve the
same values of CyaeeeaCop - If true in general, this uniqueness property
(in addition to Lemma 2.1) would establish the conjecture.

In the special case of Tlinear regression (n = 1), the validity of
the preceding conjecture is readily demonstrated. Theorem 2.1 implies

N

that an admissible exact design must have the form g = (nocsa + S, + n, b)/N’



where ng * 1+ n, = Nanda<x<b. Itis readily shown that no other
exact design of this form can achieve ¢y = (noa + x + n2b)/N. Figure 1
provides a sketch of moment points (c],cz) when [a,b] = [-1,1] and N = 3.

The top boundary of the moment space corresponds to the admissible designs.

FIGURE 1 - Moment Space (C,,C.) for N=3

Proof of Theorem 2.1:  The:proof will make repeated use of polynomials

of the form



where a < YyseeesYan < b, where e, are the symmetric functions

o = z Y. Y. ...y,
ko < 3q<dy e dpsen T

for 1 < k < 2n, and where ey = 1. It will be convenient to define
: 2n
S =) y? for k = 1,...,2n. In terms of this notation,

j=1

k-1

- m+1 k+1
S, = mZ] (-1) en S e + (1) ke

k
for k = 1,...,2n. These equations establish a 1-1 correspondence
between SqseesSy and €ys- -8 for each k = 1,...,2n. Furthermore,
it is seen that another set of points §1""’§én achieves ;k = 5
for k = 1,...,2n-1 but s, > Spn if and only if e =e for . -,
k=1,...,2n-1 but ;Zn < ey According to (2.1), this is possible
if and only if P can be Towered by some amount A > O to the poly-
nomial 5(x) = P(x) - & with 2n roots on [a,b]. (Here a = e2n_é2n
and the roots of P are ;1""’§2n') This approach will now be
applied to the admissibility problem by choosing Yis+-sYop
appropriately.

To demonstrate that conditions i. and ii. must hold, suppose

first that an exact design gN has more than 2n-1 interior support

points. Let YioeeosYop denote any 2n of them. Then it is seen



that we can lower P as in the preceding paragraph to obtain P with
associated roots i]""’§2n in [a,b]. Furthermore, gk = Sy for

K =1,--,2n-1 but s, > s, . Nowlet z' be the exact design obtained

2n 2n’
from gN by exchanging a single observation at each of Yyseees¥o, for a
single observation at each of §1""’§2n. Then Ek = Ck for
k=1,...,2n-1 but Con > Cop That is, according to Lemma 2.1,
gN is inadmissible. Therefore, an admissible design can have no
more than 2n-1 interior support points.

Suppose next that gN has more than n-1 interior clusters.
Let SERRRPS S denote n of them and let Yoi.1 = Ypi = X; for
i=1T1,...,n. As in the previous paragraph, P may be Towered to p
which has its 2n roots in [a,b]. As before, this implies that gN
is inadmissible and hence that no admissible design can have more
than n-1 interior clusters. |

To complete the proof that condition ii. is necessary, suppose
that gN has ¢ < n-1 interior clusters and more than (n-1)-c disjoint
pairs of adjacent interior singlets. Then let x],...,xcdenote the
interior clusters, let Yoi-1 = Yoi = X for i =1,...,c, and let
Yoc4177 "+ Yoy denote points which comprise pairs of adjacent interior
singlets. By applying the same method to construct %N, it is seen
that gN is inadmissible. Therefore, an admissible exact design with
¢ < n-1 interior clusters can have no more than (n-1)-c disjoint

pairs of adjacent interior singlets and the proof of the theorem is

complete.
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3. D-optimality
As already stated, a D-optimal exact design gﬂ minimizes

]M_1(£N)|. Equivalently, {M(gﬁ)[ = max lM(gN)I. An exact design
ETEEN n.

EN is a probability measure on [a,b] which concentrates mass T% at

each Xis 1=1,...,%. MWithout Toss of generality we can assume that

[a,b] = [-1,1] since we have

n. ...n,

N 10 n 2
IM(e7) | = Y i (X, -x. ) (3.1)
1<ig<.ci <o NPT T Ty

0 O<k<j<n

according to the Binet-Cauchy and Vandermonde formula.

Hoel [1958] has obtained the result that an approximate design is
D-optimal for polynomial regression of degree n on [a,b] = [-1,1] if
and only if it concentrates equal mass at the n+l roots of
T (x) = (1—x2)Aé(x), where A is the Legendre polynomial of degree n.
For purposes of notation, let -1 = x6 < x? < .. < x; = 1 denote the
roots of nn(x).

If N is an integer multiple of n+l, then the D-optimal exact
design coincides with the D-optimal approximate design. Otherwise, a
reasonab1e exact design might be one which distributes the N obser-
vations as evenly as possible among the same points x*,...,x;.
Salaevskii's conjecture [1966] is that such a rounded-off form
characterizes the D-optimal exact designs. Salaevskii [1966] has

proved that the conjecture holds for sufficiently Targe N and

Constantine and Studden [1981] have streamlined that proof. A proof of
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the conjecture in the case of Tinear regression is not hard to provide. This

can be verified directly for general N by considering figures similar to Figure 1.
The value of |M| is cz-c§ and one can check that this is maximized at the two
"peaks" nearest cy = 0. For.quadratic regression, Gaffke and Kraft

[1982] have proven the conjecture by using the arithmetic-

geometric means inequality. The elegant approach of

Gaffke and Kraft [1982] was then generalized by Huang [1983] and

Gaffke [1985] in order to obtain a simplified proof of the conjecture

for sufficiently large N and give helpful guidelines for when N is

“large enough". Their values are tabulated in Table 1.

TABLE 1

degree n 1 2 3 4 5 6 7 8 9

minimal N | 2(all) 3(al1l) 8 15 24 35 48 63 80

For cubic regression we prove that the conjecture holds for arbitrary
N in the following.

Suppose N = k(n+1) + q. Denote by gﬂ’T a conjectured design,

so that the support of gﬁ’T is {x*,...,x:} and the weights are

Kl ifier
X.*) = K (3.2)
N

N,T
( i
ifigT,

Ex



where T C {0,1,...

Binet-Cauchy and Vandermonde formula we have

|M(e

regardless of the choice of T.

Define g(x)' =(gO(x),...

polynomials induced by'{xg,...,x:}, i.e.,

N,T)l =

k(n+1-q)(k+])q

g(x) = F

where F = [f(x*),...,f(x;)].‘-

0
Also Tet t , v =
Vv

207 |
g, (x) in [x*_;,x*] and then

2,0\ _ 2 . _
g, (x) = max g;(x) » x € [t ,t 431, v =

1

-1

f(x),

N

ntl

,h} and the number of elements in T is g.

0,...

12

By the

,gn(x)) to be the Lagrange interpolation

1,...,n be the intersection point of gi_](x) and

N

with t0 and tn+1 being equal to -1 and 1, respectively. Consider a

design u on'{xg,...,x:} with p1=14({x?}), i=04...,n.

function is as follows:

d(X,p)

£ OOM™T () £(x)

Then the variance

g' (x)F'[Ffgg'du F' 1 Fg(x)

.i

~1=

0

g

—-de [N

P.

(

1

X

)
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The following first two lemmas are similar to those given by Gaffke
and Kraft [1982] and by Huang [1983].

n
2 k 2
Lemma 3.1: Suppose Y g%(X) < o7 * o Max gi(x), x € I.
Lemma 3.7 B = I
Then for any X E[tio’ti +]] NI and iy € T,

0

1 N,T 1
N d(X,S* ) < k+1 *

Lemma 3.2: min Tr[M'](gE’T)M(gN)] < n+l1 for any exact design EN if

T
n 2 k 1 2
-20 gi(x) < Tt oaT mex gi(x)’ for all x€[-1,1].
i= i
For n = 3, the roots of wn(x) are {-1, l—-, 1—3 1} and the
VI

Lagrange polynomials are obtained as follows: go(x) = 3(1—x)(x2 - %&,

_ 55 (1-x2)(x—/;—_), 9,(x) = g;(-x) and g (x) = g (-x). Simple
3(5 - +5) 3(5 - /5)

algebra shows that t1 = —~———Tﬁ————and t3 = =5 Also it can be

g1(x) =
easily checked that

2
95

H~—1

(x) 5—E§T‘+ E}T' m?x 9? (x), k>3, xel[-1,1] (3.4)

i=0

and
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2
g5 (x) :_k51 + E%T‘ max gi(x), 1 <k <2, |x] > .25. (3.5)

0 i

Let I = [-1,t]), I1 = [t], - .25), I, = (.25, t3), I3 = [t3,1] and
I, = [-.25,.25]. The following lemma is needed to prove that the
conjecture is true for 1 < k < 2. Proofs of Lemma 3.3 and Theorem 3.1
are in the Appendix.

. 1 3 BUEVS VS JRVE VT T
Lemma 3.3: Suppose u ?fx is a design on {xo,x1,x2,x3} with

4
r. + g?(x4)

- Ty _ s
p; = , where r'= (ro,r],rz,r3), 0 <i<3and

2
j(x4))

H T~3 QO —

(r. +g
j=0 7
Xz € I4. let k be 1T or 2. Then for

1 r.=k 0<3j<3,

J
2 ro = k+1, rj =k, i #0or r3 = k+1, rj =k, jJ# 3, or
3 ro = r3 = k+1, r] = r2 = k,
we have
3 2 4-q,, .\q
sup o (r, ¥ g.(x4)) < k7 (k+1) (3.6)
x€l, §=0 J
and
d(x¥, wx ) = max d(x, vz ) (3.7)
Xy XEl, reXy4
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where

3
q=1+)r. -4k and 0 <7 <3.
j=0 J

Theorem 3.1: An exact N-point design gﬁ is D-optimal for cubic regression

on [-1,1] if and only if gl = ¢NoT

for some T.

Gaffke [1985] has obtained a necessary condition for the exact
D-optimal designs. The following Temma is from Gaffke [1985].
Lemma 3.4: If gﬁ € By is a D-optimal exact design, then for any
support point x* of gﬁ, which is in the interior of [-1,1] and has
weight > 2/N, it is necessary that

d" (x*,e}) < 0. (3.8)

With q = 1, Gaffke [1985] has checked that condition (3.8) is
violated for n > 4, k = 1, for n >6, k<2, forn>8, k <3. For
q9=1and 4 <n <8, numerical results were obtained by considering
exact designs with an observation at each of -1 and +1 along with N-2
interior points Xos«.+sXy_qs Where X¥ o < Xj <X¥ g5 2 <1 <N-1. A
system of N-2 nonlinear equations in X2""’XN-1 was obtained by
setting the partial derivatives of [M(gN)| with respect to XoseeesXy g

equal to zero by uysing
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TABLE 2 - Approximately D-optimal Exact Designs

for 4 <n <8 with q = 1

N N _zAmZ,av_ . H@MMMMHWW
degree support {g,} IM(g)] * Ml |
4 +1, +.115384, +.662934 .34772E-4 .34539E-4 .99866
5 +1, +.772243, +£.354109, 0. .71125E-7 .70379E-7 .99824
6 +1, +.832819, +.492047, +.123890 .37090E-10 .35614E-10 .9942]
7 +1, +£.873389, +.605283, +.273891, 0. .47184E-14 .44841E-14 .99365
8 +1, +.900592, +.683696, +.391883, +.108250 .15062E-18 .14064E-18 .99247
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1=2,...,N-1. The resulting solution yielded the designs which are

given in Table 2 and they seem to be approximately the D-optimal exact

designs.

Now Tet us examine condition (3.8) for the conjectured designs

gﬂ’T with 2 < q < n. Suppose T = {10,...,iq_]}. Noting
- m(x) ' 2_ " = ,
gi(x) = x-x? —rxT and 2xAn(x) + (x 1)An(x) n(n+1)xn(x)
we get
2
. n(n+1)(X-X$)An(X) + (1-x?)xn(x)
%0 = (xt) (xox2)?
n(n+1)>\n X5 ) (x-x
and
n(n+])xé(x)(x-x?)2 - 2n(n+])An(x)(x-x?) - 2(1-x2)A6(x)
gi(x) = 3
1 -
n(n+1)An(x?)(x x?)
A0 oo
For j # 1, g%(xf) = (x§ — x?)xn(x?T'and’ using L-Hospitals rule, we get
n 2 2
' (x¥) = "(x*) = - ﬂiﬂiﬂl——-. Also ?(x) =1 - U=x) [2(x)]
gi(xi) 0 and g1(x1) 3(1-x*2) 12091 n(n+i n
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: 2 n
(Guest [1958]), and then ELE-_E g?(x) ' = -2$§§;ll Aﬁ(x? ). Thus
dx™ i=0 X=x* i 0
- 0
we get
2 n -]
" N,Ty _ N d 2 1 9 2
d"(x¥ 5e,°") == S [T ¢5(x) - g5 (x)]
i K ax® Ty5g S I e Pt
o
2
q-1 ]'X?Z AnX§ )
K 3(1+k) ~ "n'\™4 (+In(n+ 1) L. T 272 N :
- 0 J=1 (x § X3 ) An(xi )
0 0 J J
For g < 3, we choose iy = [gJ, i] = 0 and 12 = n since we want to make
d"(x? ,gﬁ’T) as big as possible and 1 = (x*) > An(x?) > oo > An(xg) (Szega (197817,
0 "o 5]
.\ s 1:3:-+(n-1) . .
p 164). Also An(xn]) is equal to >4y if nis even and less than
M

2
An_](O) otherwise (Sze95 [1978], p 165). From the interlacing property
of the roots of orthogonal polynomials (Freud [1971], p 17) and the

evaluation of the roots of Aa(x) up to degree 9, xﬁ is in (-.5,0].
2

1-x2

Noting > 1s decreasing in (-.5,0], we get

(x-1)

d“(EE],gE’T) > 1 —flf(g—’ﬂ (ﬁ--kﬁ(fﬁ%(H(Sﬂth L)) (3.10)
2- . [gi 2
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from (3.9). Since R.H.S of (3.10) is increasing in n, d“(x; ,gﬁ’T) is

[5]
positive for n > 6 with k = 1, n > 8 with k = 2 and 3 and n > 10 with
k =4, etc. With k = 1, numerical evaluations of (3.9) say that the
conjecture is false for 4 < n <9exceptq=4,n=4andq=5,n-=5,
Also from (3.9) we can say that the conjecture is false for large

enough n with any k and q.

4. G-Optimality

As already noted, a G-optimal exact design ag minimizes

ma X d(x,gN), where the variance function
a<x<b

d(e") = F) M TN fx).

Guest [1958] obtained the G-optimal approximate design gy for
polynomial regression of degree n on [-1,1]. This later turned out to
coincide with the D-optimal design given by Hoel [1958], leading Kiefer
and Wolfowitz [1960] to prove that the two criteria are equivalent in
the general approximate design setting.

For polynomial regression of degree n, the G-optimal exact design
coincides with the G(and D)-optimal approximate design when N is a
multiple of n+l. Otherwise, G-optimal exact designs can exhibit some
interesting behavior as indicated by the following examples.

Example 4.1: 1In the case of simple Tinear regression on [-1,17, it is

well-known (see, for example Federov [1972]) that the G-optimal exact
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design for N = 2k+1 has k observations each at x = -1 and x = +1-as well
as an interior singlet at x = 0.

Example 4.2: Consider now the setting of quadratic regression on [-1,+1].
For N = 3k+1, it is believed that the form of a G-optimal exact design

is k observations each at x = -1 and x = +1, k - 1 observations at x = 0,
and an interior singlet each at x = -u and x = +u (u > 0). Among such
designs, G-optimality will be attained if and only if d(O,gg) = d(],gg).

Manipulation of this condition yields

(3-5/k)u” - (9-1/k)Z +2 =0

An interesting consequence of this result is that u2 ~ (9 - /57)/6
as k > ». That is, for large k, the G-optimal exact design.for

N =3k + 1 has singlets at approximately +.4916. Perhaps even more
interesting is that u2 =V5 -2 for k = 1. Thus these two singlets
at +.4859 are already very close to their asymptotic values. Note

finally that max d(x,gg) = 1+ [-14(3k+1) (k+u?) /2 (keu?) 277

-T<x<1

whereas  max d(x,go) = 3,
-1<x<1

For N = 3k+2, it is believed that the form of a G-optimal exact
design is k observations each at x = -1, x =0, and x = +1, and an
interior singlet each at x = -v and x = +v (v > 0). Among such
designs, G-optimé]ity will again be attained if and only if d(o,gg)

= d(1,gg). Manipulation of this condition in the present case yields
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(3-a/k)0v* = (9-2/k)v2 + 4 = o,

In the T1imit as k - o, v2 + (9-v33)/6 and the singlets converge to
approximately +.7366. For k = 1, the singlets are at +.7288, already

close to their Timiting values. Note finally that

max d(x,ag) = 1+ [-1+(3k+2) (kv ) 2 (ki) 277,

-1<x<T1.

Example 4.3: The final example for G-optimality is that of cubic
regression on [-1,+1]. Of course when N = 4k, the G-optimal exact
design coincides with the G (and D)-optimal approximate design. The
remaining cases are now considered in turn.

For N = 4k+1, the following possible forms for a symmetric

G-optimal exact design have been considered:

i k K 1 k& K,
-1 -y 0 vy 1
1. k-1 1 «k 1 l k-1, and
-1 -u -y 0 y 1
iiq kK 1 k=1 1 k-1 1l k
-1 -u -y 0 N u 1
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Note first that each type belongs to the complete class described in

Section 2. For each form it was required that the variance function

attain its maximum value on [-1,+1] at the points x = #1 and x = £x,.
Thus the variance function for a cubic regression model with a design
symmetric about x = 0 must have the form

N) 2 2)2.

d(x,e) = o + B(x -1)(x2-x0

Now d(x,gN) = f(x)'M—](gN)f(x) is a sixth degree polynomial in x with

its coefficients functions of y and, in cases ii. and iii., u. Equating

the coefficients of the two representation of d(x,gN) and eliminating

all other unknowns, a constraint on y and, possibly, u is obtained.

(This constraint assures that the maximum variance is attained at

four points in [-1,+1] and not two.) For forms ii. and iii., a G-

best design is then found by minimizing o = max d(x,gN) with re-

spect to y and u by the method of Lagrange %l%é%;11ers. The resultant
equations were solved using the IMSL subroutine ZSCNT for N = 5,9,...,97.
Interestingly, the G-best designs of types i. and ii. were, for every
value of N considered, found to be inferior to the G-best designs of
type iii.. The latter are presented in Table 3. For the sake of

comparison, the table includes the values of 4 + 1/k which are the

maximum variances achieved by distributing observations as equally
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as possible among the support points of the G (and D)-optimal
approximate design. Of course the table shows y approaching 1//5 as
N increases. Interestingly, the singlets at +u rapidly approach
asymptotic values of roughly +.6935.

For N = 4k+2, the only form of design considered is the

following:

A G-best design of this form was found for N = 6,10,...,98 by the same
method employed when N = 4k+1. Results appear in Table 4 along with
the maximum variance 4 + 2/k obtained by rounding off the G (and D)-

optimal approximate design. Of course y once again approaches 1//5

but not as rapidly as it did when N = 4k+1. Additionally the singlets
at +u rapidly approach their limiting values which, this time, are
roughly +.8335.

For the final case, when N = 4k+3, the forms of design considered"

are the following:

ii. k+1 k1 k k+1 , and
—.‘__—__—-.._——__*_—..—.—-——_—.—
=1 -y 0 vy 1
ifi k k+1 1 k+1 k
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For forms i. and iii., a G-best design was found for N = 7,11,...,99
by the same methods used when N = 4k+1. 1In every instance, form i. was
superior to form iii.. Surprisingly, form ii. would not allow the
equalization condition on d(x,gN) to be met for any choice of y.
Results for type i. designs are given in Table 5 and compared with the
rounded-off maximum variance 4 + 3/k. From Table 5 it is seen that
y again approaches 1//5 but this time from above. The singlets at
+U again rapidly approach their limiting values which this time are
roughly +,8935.

Summarizing the results for all three cases, it is seen that
progressively better G-optimality performance, relative to a rounded-

off design, can be achieved by the exact designs obtained here when

N = 4k+1, 4k+2, and 4k+3 (respective]y). Also, it is suggested that
a G-optimal design for polynomial regression of any order will always
have adjacent clusters separated by singlets (with no singlet at
0 for N even).

Finally, the G-optimality of designs obtained in this section
would be established upon the proof of the following two conjectures.

Conjecture 4.1: A G-optimal exact design for polynomial regression

on any (compact) interval must be symmetric about the midpoint of
the interval.

Conjecture 4.2: A symmetric, G-optimal exact design for polynomial

regression of degree n must satisfy the equalization condition that

its maximum variance is attained at exactly n+l points.
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TABLE 3 - G-optimal Designs for n=3 and N=4k+1 of the Form

N y u a 4+1/k
5 .4455 .7154 4.623 5.000
9 .4398 .6919 4.310 4.500
13 .4431 .6924 4,201 4.333
17 4443 .6927 4.149 4.250
21 .4450 .6928 4.118 4.200
25 4454 .6930 4.098 4.167
29 .4457 .6931 4.084 4.143
33 .4459 .6931 4.073 4.125
37 L4461 .6932 4.065 4.111
41 . 4462 .6932 4.058 4.100
45 .4463 .6933 4.053 4.091
49 4464 .6933 4.048 4.083
93 .4468 .6934 4.025 4.043

® L4472 4 4
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TABLE 4 - G-optimal Designs for n=3 and N=4k+2 of the Form

S S S
1 -u -y 0 vy u 1
N y u ) 4+2 /k
6 .3737 .8300 4.767 6.000
10 .4036 .8309 4,368 5.000
14 .4164 .8316 4,242 4.667
18 L4235 .8320 4.180 4.500
22 .4279 .8323 4.143 4.400
26 .4309 .8325 4.119 4,333
30 .4331 .8327 4,102 4,286
34 .4348 .8327 4.089 4.250
38 .4361 .8329 4.079 4.222
42 .4372 .8330 4.071 4.200
46 .4381 .8330 4.064 4.182
50 .4388 .8331 4.059 4.167
98 .4430 .8334 4.029 4,083
o L4472 4 4
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TABLE 5 - G-optimal Designs for n=3 and N=4k+3 of the Form

-1 -u -y O u 1

N y u o 4+3/k
7 L4916 .8922 4.814 7.000
11 L4739 .8953 4.413 5.500
15 .4659 .8964 4,278 5.000
19 L4615 .8969 4.210 4.750
23 .4587 .8972 4.168 4.600
27 .4569 .8974 4.140 4.500
31 .4555 .8976 4.121 4.429
35 .4545 .8977 4.1706 4.375
39 .4537 .8978 4.094 4.333
43 .4531 .8979 4,085 4.300
47 L4526 .8979 4.077 4.273
99 .4496 .8983 4.035 4.125
w L4472 4 4
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Appendix

Proof of Lemma 3.3:

By the direct calculation, it can be easily checked that

3 3
sup 1 (r. + g5(x)) < kI, where q=1+ ¥ r.-4k, for each case.
xel, j=0 3 Y 480
*
For the second part we take N* = 4k+1. By Lemma 3.1 aﬂ T with
T = {i,} has Tocal maximum at x¥ , where i, =1 or 2. So
0 19 0
1 * 2 t *
3 (gi(x¥ ) g (x¥ )
2 -1 b o o o
[2 ] (rotgsOgNT lant ou, )= ] ——0— + -
=0 0 Fex, JFG(rsres(x,)) k+910(x4)

0
< .;1 K M
I71y
- *
= ()71 - (xr el )
0
< 0.

Thus d(x,u> ) has Tocal maximums at x* and x%. Since d(x, uw> _)is
reX, 1 2 reXy

a 6-th order polynomial, it has at most two local maximums. Hence it

suffices to compare d(x$,u+ ) with d(x,uz ., ) at the boundary
Y‘ox4 Y"X4

value of Ii’ 0 <1i<3. For IO’
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[T (rorg2 )T (ke ) = Aty ) = — L fgg(t‘)
) r.tg. X4 XJsu, - sl = > - 5
j=0 3 7Y 077rexy 1%y rg*9plxg) 3=0(r;*g5(x,))
2 2
. ]'go(t]) ) 3 gj(t])
k+1+sup gg(x) j=1 k+inf g?(x)
X€l, x€l, J

> 0.

The last inequality can be shown by direct calculation. By similar

arguments and simple calculation, d(x,p;.x ) is maximized at x = x? on
4

Lo 0 <17 <3.

Proof of Theorem 3.1

Let aN be a design in whose support is {21""’ZN}’ where some of

N
zi's might be same. By the geometric-arithmetic means inequality, we
have
N -
MM | < e | el Gomce™a®, (A.1)
Define
D -
oy (™) = O r L T g, (A.2)
N N,T 4
M(gs )|

Then, together with (A.1) and (A.2), we get

N).

MM < el (A.3)

¢ <IDN(]rlsg



So to establish the theorem, it suffices to show that for any

EN € EN there exists a design u such that

30

o(usg) < 1. (A-4)
"
1 i * * * * 1 *) = L
Consider a design Ex,, on {xo,x],xz,x3,x4} with g?_x4(x1) N
. _ 1 4
0 <1< 3and a?.x4(x4) = 3> Where x, € I, r' = (rp,ry,r,,rs) and
3
N= ) r.+1 and recall N = 4k+q. Then,
j=0
1
4 -1 4 N,T 4
(st ) < 1o TLMG) L T GoNCez 007 < Inee )]
1 2
3 3 (ri+g7(x,)) 4-q q
4, 1 I D SO S ¢ k+1 4
o[(M p.")y ) I'< ) ) 4
i=0 ' "Ny Py =N N
3 4-q g 3 3
2 o, 4 4 4
@] (TP )(r4gi(x,)) - 4k 7 (ke1)" (1 p.7) <0
i=0 j#i J j=0 9
3 3 1 ) 4-q 9 %
@ T A b gk ® e 51 <0
i=0 j#i Jj#i
A sufficient condition for (A.4) to hold is
1 49 g 3
(1 p i) -k P et et o, 00 <3 (a5)

J#i
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Now take

2
_ T1+91(X4)

3
!

=)

L (et

and call the corresponding design i

Sy By the direct substitution

4
of (A.6) into (A.5), we get
3 23 3 3 1 4q q
[T (rras(xy0] % (rpraf e L1 (roralx)* - k0 * (e)*1 <0,

Hence a sufficient condition for @N(pe- ,E> _ ) to be Tess than or
PeXg’ 7T X,
equal to 1 is

(r.+q?(x4)) <k, x, € 1 (A.7)

With k > 3 we get min Tr[M_](ag’T)M(gN)] < 4 for any exact

design gN by (3.4) and Lemma 3.2. Choose y = gE’TO so that

-1, NTo N NTo n .
Tr[M "(g, “M(g7)] < 4. Then @N(g* Y,£') < 1. Now let us consider
g =1, 2 and 3 cases separately with T < k < 2.

(i) q =1 case.

First, suppose support {gN} has one point in 14, say Xg» and
k points in I., 0 < i < 3. With ¥ = (k, k, k, k) (A.7) holds from

Lemma 3.3. So QN(U?,X 285y ) <1 and d(X?,ur_x ) = max d(X;u?_X ),
4 4 4 eri 4
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0 <i < 3, from the second part of Lemma 3.3. Thus

T e M7 = & E‘ d(z; ouz . )
Xy N 529 177Xy
LNy f ( ) + d( ))
< — (k d(x¥,u> + d(x,,p>
=N 20 170X, 42 rex,

which implies that
oy (uz, &) < olux sgx ) < 1.
4 4 4

Secondly, suppose support {gN} has more than one point in 14 and less
than or equal to k points in I., 021 <3. Take X, to be the median
of support {gN}. Then Xg is 1in I4. Suppose x4is positive. Then

gg(x4) = max g?(x4), which implies that d(Xﬁ,u?,x ) = mjn d(x*,u> _ ).

i 4 Ty
Also d(XS’U?.x4) and d(Xg,u?.x4) are greater than d(X?,u;.x4) since
2 2 2 .
g-(x) and g5(x) are less than g7(x), x € I,. Moreover d(x%,nz ) is
0 3 1 4 2°7r Xg
greater than d(x4,U?_X4) since
2
3 3 g%(x,)
2 -1 * 1 i‘"4
[} (k+gs(x, )] "(d(xponz ) - d(xuz ) = —— - ——
R 270y I kegh(x,) 150 kegf(x,)
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2

_ ]'92(X4) [] ; (k+92(X4))92(X4) ]
kras(x,)  iR2(krgl (x,)) (1-05(x,))

| 1550%) s k+a5(x,)  a5(x,) ]
oty T ey

>0 .
Hence Tr[M_](u+ )M(gN)] < Tr[M_](g++ M(g> _ )], which implies that
" reX, reX, reX, |
QN(”??X4’E ) < Q(”?-x4’g?-x4) < 1. By the same arguments @(u?'x4?€ )

is less than 1 for nonpositive Xg-

Thirdly, suppose support {gN} has more than k points in some Ii .

Taking p> = eNoT with T = {i.}, we get °
g Ur.x4 Ex 0’ d

o N,T N)

e ey = e Time

The third inequality follows from Lemma 3.1.
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(ii) q = 2 case.

First, suppose support {gN} has one point in I4, say X, (k+1)
points in I0 or I3 and k points in all the other Ij's. With rj,

0 < Jj < 3, being the number of points in Ij’ we get

CD(U‘> s & ) <1
Y"X4 Y"X4

by Lemma 3.3. By the second part of Lemma 3.3,

Tv‘[M_1(u¢.x4)M(€N)] < Tr[M_](u?.X4)M(E?_X4)]-

gN) < 1.
Secondly, suppose support {gN} has (2k+1) points in IO U 13, at

Hence ®(“?-x4’

most k points in I1 and IZ’ and (2k+1) points in I] U IZ.U 14. If
the number of points in I0 is greater than k, set rg = k+1 and rj =k,
1 <J < 3. Otherwise, set ry = k+1 and rj =k, 0 <3 <2 Take x,
to be the median of the points in I] U I2 U 14. Then Xg is in 14. By

arguments similar to those in the g = 1.case, it can be easily shown that

N
@(u+. 58 ) < o(u> SE> ) < 1.
r X4 Y"X4 Y"X4

Thirdly, suppose support {gN} has at least (2k+2) points in

I] U I2 UI4 or (k+1) points in at least two of Ij's, 0 <j<3, say 10

: | N,T . : ..
and i Take L= to be £,° with T = {1,2} or T = {10,1]}. Then

4
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N,T

o(E4 Ny <

3

follows from the Lemma 3.1.

(iii) g = 3 case

First, suppose support {gN} has one point in 14, say Xg» (k+1)
points in IO and 13, and k points in I] and 12. With v = (k+1, k, k, k+1),

it can be easily shown that

4’(11-> »& =< e .
Y"X4 Y"X4 r X4

by using Lemma 3.3.

Secondly, suppose support {gN} has (k+1) points in IO and I3, at
most k points in I1 and Iz, and 2k+1 points in I1 U 12 U I4. Take Xg
to be the median of points in I1 U 12 U I4. Then Xg is in 14. Similarly

to the g = 1 case, we get

N
@(u¢,x4,a ) zolugy sey ) < 1

Xg reXy

Thirdly, suppose support {gN} has k+1 points in three of Ij's, say

{10,1],12}, or k points in IO or 13. Take T = {10,1],12} or T ={1,2,3}
or T={0.1,2}. Then

¢(€§’T,5N) <1
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follows from Lemma 3.1.

For the only if part, we assume that gﬁ is D-optimal.

Then |M(g§)l = [M(gﬁ’T)|. So the equality holds in the geometric-

arithmetic means inequality, which implies that M(gﬁ) is equal to

M(gg’T) for some T. By the Theorem 2.1 in Karlin and Studden (1966)

M(gﬁ’T) is a boundary point of {M(g): & is a measure on [~-1,1]}

and gﬁ’T has the unique representation. Thus gﬁ = g*’T for some T.
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