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Abstract -

A loss function which combines the error in a decision problem and the accuracy of
the statistical decision rule, is introduced. This loss provides a variable data-dependent
measure of precision of the decision made, which admits frequentist interpretation. The
Bayesian procedures with respect to this loss are the usual Bayes decision and the posterior
loss, so that this loss function also may appeal to the Bayesian school. We give a necessary
and sufficient condition for admissibility and demonstrate the inadmissibility of the sample
standard deviation as an estimate of the accuracy of the normal sample mean.

-

1. Introductiori

Let us start with general statistical decision problem as described by possible states
of nature 6, decisions d and a loss function W (0,d). Classical decision theory advocates
making some decision d = 6(z) where z is the observation, with frequentist risk R(9,6).
This approach has been often criticized because it implicitly assumes that R(0,6) is a
good measure of accuracy of the procedure used (or of a measure of conclusiveness). In
fact it is desirable “to have a methodology that gives a highly variable data-dependent
measure of conclusiveness on the conclusion inferred from the experiment, with frequentist
interpretation of that measure” (Brownie and Kiefer (1977)). There are many important
examples where one would like to accompany the decision § with an estimate, say, v = ¥(z)
of its accuracy or of the loss function W (6,6). Exactly this necessity of measuring the
accuracy or rather the inaccuracy is known to be behind the idea of confidence estimation
(cf. Savage (1954), ch 17). Indeed while the center of a confidence interval may serve
as a point estimator of the unknown parameter, its width represents the precision of this
estimator.

The problem of estimating the risk function has been considered by Lehmann (1959)
who mentioned estimated power of a test and by Sandved (1968) who found unbiased es-
timators of quadratic risk in several estimation situations. A lot of attention was brought
to this problem by Jack Kiefer Who in a series of papers (1975), (1976), (1977) devel-
oped conditional and estimated confidence theories which in particular provide estimates
of confidence admitting frequentist interpretability. (See also Brown (1978) for some no-
tions of admissibility in the problem of estimated confidence). Berger {1985a, 1985b,
1985c) compares the subjective Bayesian approach to this problem with the frequentist
one. In particular he discusses the desirable properties of valid measures of performance
of a statistical decision rule 6§ from the frequentist point of view. We also note that cer-
tain nonparametric and bootstrap methods for standard errors and other characteristics
of statistical accuracy (Efron (1982), Efron and Tibshirani (1986)) may be of an estimated
or conditional nature.



To develop a decision-theory approach to this problem one must specifj'z an appropriate
loss function. “Any serious attempt to take account of the consequences of unreliability in
not capturing the true parametric value and of lack of usefulness in excessive width should,
we feel, involve the specification of some reasonable loss function and the subsequent
examination of the problem in terms of decision theory” (Aitchison and Dunsmore (1968)).

In fact, a variety of loss functions in interval estimation has been considered (see Pratt
(1961), Winkler (1972), Cohen and Strawderman (1973)). -

—

In this paper we give a loss function which combines the general decision preblem error
with the inaccuracy estimate. This loss function is a very convenient tool in the problem of
simultaneous “decision-precision” reporting. The corresponding risk, as any risk function,
has frequentist interpretability in terms of long-run frequencies. The Bayes “decision-
precision” pairs turn out to be the usual Bayes decision ép for # and the posterior loss 7p =
E{W (0,6)/z}. Since admissible pairs in statistical decision theory are typically Bayes or
generalized Bayes procedures a frequentist may accept posterior loss as an estimate of risk
because of the admissibility argument (see Section 3 of this pa,per) Of course for him or
her (and for this author too) there remains the often difficult pr5blem of evaluating the
risk function.

In Section 2 we introduce and discuss the mentioned loss function. Also a necessary
and sufficient condition for admissibility is derived in Section 3. This condition is used in
Section 4 to prove the inadmissibility of the sample standard deviation as an estimate of
the accuracy of the normal sample mean.

2. “Decision-Precision” Loss Function

Denote by « an estimator of the loss W(6,6). A loss function which combines the
non-negative decision loss W (6, §) with the accuracy of 6, L(6,6,7), is given by

L(8,6,~) = W(8,6) v V% + 412, (2.1)

The important feature of this loss function is that for a fixed 4, the'(uni_que“)‘fﬁxhinimum in 4
is attained at ~,,;, = W{(0,6). A convenient convention is to put i, = 0. if W(6,6) =o0.
On the other hand for a fixed ~ this loss function is just a linear transform of W (6,$), s

that the Bayes.procedure 6p for L is the Bayes procedure for W. The Bayes estimator vp
of accuracy is

v8 = E{W (0,6B)/z}; :

i.e. vp coincides with the posterior loss of ég. This result allows one to interpret the
posterior loss of the Bayes procedure §p as the Bayes estimator of the loss function of
ép under (2 1). This estimator is related to Kiefer’s conditional loss estlmate for the
“continuum” (finest possible) partition of the sample space. =

—

To illustrate the properties of the loss function (2.1) let us consider two examples
essentially treated by Kiefer (1977) and Berger (1985b).

Example 1. Let z = (z;,22) where independent variables z; and z; have the distribution
Po(:l:i =0 - ].) = Pylz; =0+ 1) =.5.
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- Let W(0,d) = 1if d # 6;= 0 if d = 0. Consider the procedure §(z) = (z1 + z2)/2 if
|2y — 22| = 25=2z1 — 1if z1 = z2. Then L

R(0,d) = Py(6(z) #£6) =.25  foralld.

Clearly the estimate 1 (z) = .25 of W (0, 6) is rather silly. Indeed if |21 — z2| = 2 one is
100% certain that 6(z) = @ while if £, = z2 one is equally uncertain as to whether 0 is

1 —1orzy+ 1. -

Under the loss (2.1) the estimator v, is inadmissible. Indeed

R(6,8,7m) = Fo L(8,8,7) = 25(25) ™/ + (:25)/2 = 1.

If one uses common -sense and defines yo(z) = .5 if 3 = z2;=0if |z1 — 22| = 2, then for
all -
R(6,6,%0) = Polz1 = 22} [(5) 7" + (8)/?] =22/2 <1 = R(0,6,m).

This fact seems to confirm the reasonable character of (2.1). It shqpld be contrasted with
the admissibility of ~; for the loss (y — W (0,6))? (see Berger (19852) p. 44).

s

Example 2. Suppose one observes a normal random variable z with mean § and unit
variance. The choice between two hypotheses Ho:0 < —e and Hy:0 > € has to be made.
Here ¢ is a fixed positive number.

Consider the test § which rejects Hy if z > 0. Clearly, for § <0
Py(Type 1 error) = Pjg(Type II error) < P_.(z > 0) = ®(—e).

If, say, € = 2, ®(—2) = .0228, but it seems to be rather unreasonable to state that Ho is
rejected with error probability not exceeding .0228 when observed value of z is 0.

Motivated by the fact that 6 is a Bayes test against the pribr distribution assigning
equal mass to § = —e and 0 = ¢ we put

v(z) = E{W (0,6)/z)}
where W is zero-one loss. Then

1(#) = (e, 6(0)) exp{ — (o -+ €)2/2} + Wie, 8(2) expf{ — (= — <)?/2}]
/ lexp{ — (z + e)?/2} + exp{ — (z — e)?/2}] = -

—~

_ [exp{ - (z+¢)?/2}/[exp{ — (z +€?/2} + exp —(z—¢€)?/2}] z>0
N {exp{ — (z—€?/2}/[exp{ — (x+s)2/2% + expi —(z - 6)2/21 z<0
=1/(1 4 e*I=l). | (2.2)



- When z = 0, v takes its largest value, .5, but for large values of |z| this functlon is small
which is intuitively appealing. - :

When € tends to zero, i.e. one considers testing § < 8 versus § > 0, the estimator
(2.2) becomes useless. Since the test § is Bayes against any symmetric prior distribution
A, one may rather employ an estimator « of the form

(@) = /0 " etlel gi(g)/ /_ Z e gi(e)

where dA(8) = e=9°/2 dA(9).
Notice that-y(0) = .5 and -y is decreasing as || increases.

Kiefer (1977) (see also Rubin (1984)) suggested the use of conservatlvely biased esti-
mators ~, i.e. 4 for which

Eq v(z) > R(9,6). s ' (2.3)

If A is proper priér distribution then

| [ tia@ - w850 dPoa) an(e) = [ (8o va(e) - R0, 8)] d(0) =
where Py denotes the distribution of z. Thus (2.3) cannot hold unless for A-almost all ¢

Eg ’YB(IB) = R(0, 53)

But the latter can be valid for a Bayes vp only if

/ / [vB(z) — W (8, 65(x))]” dPs(x) dA(‘g) —0

(see Lehmann (1983) p. 244-245). It follows that typically there is no proper Bayes conser-
vatively biased or unbiased estimator vp. Therefore it is hopeless to expect conservatively
calibrated precision estimators in most of statistical problems with a compact parametric
space.

Another remark is that the loss function (2.1) gives equal weights to the “decision”
loss and to the “precision” loss. If these losses are of different importance, then this fact
can be reflected by introducing a positive factor w possibly dependent on 8 in the following
way: ‘

Lo, (0,6,7) =W (0,8)y~ Y2 + wy*/? - -

Then the Bayes estimator of R(f,6) corresponds to a new prior A,:dA, = w™!dA.

3. Admissibility Criterion

In this section it is assumed that the sample space X is Euclidean space of dimension
n, X = R™, the decision space D is an open convex subset of R™ and the parameter space
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"@ is a separable locally compact metric space. We make the measurability and régularity
.assumptions of (i)-(v) of Theorem 1 of Farrell (1968). In particular we suppose that W is
a continuous loss function over ® x D which is strictly convex in d, and that there exist
positive densities pg(z) with respect to some measure A

Theorem 1. Under assumptions (i)-(v) of Farrell (1968) the pair (60570) is an admis-
sible procedure under loss (2.1) if and only if there exists a sequence G,k = 1,2,...,
of finite measures over © such that for a compact subset Eof®,G(E)=>1, k =
1,2,... ,5111cp G(C) < oo for compact C and

_T/r /0 [W(0,80) — W (6, 86)) 75/ *pe(2) du(=) dGk(6) — O, (3.1)

: /x /@ [73/ P 2]273/2;:9(9:) du(z) de(o:ﬁ-‘o_j: | (3.2)

where 6, are Bayes rules against Gk.

In particular if (80,70) is admissible undeét loss (2.1) then & is admissible under the
loss W(0,5)fyo—1/2 and o is admissible under the loss EoW(0,68)7 Y% + ~1/2,

Proof. Let for any integrable function f(z,8), &k f(z,0) = [ | f(z,0)pe(z) dp(z) dG(6).
According to Theorem 1 of Farrell (1968) (8o,0) is admissible if and only if “

ok = 6l (0, 6.(2)) Pro (@)™ + o)/ — W (0, 64()) [re=)] /7 + k()] %} 73 ‘;;)

Thus because of the property of iterated expected value e

o = Ex{ W (6,60) — W (8:60)] 75/
+ (R =AY W (0,8 (0 T = )}
— & { W(8,8) — W (6,60)]% /2
-+ 5k{(’;3/2 - ’711c/2) + ’Yk('76—1/2 - ’71:1/2)}
= &{ W (0,60) — W (0, 6x)] 7o ’

2 - -
rad [ - e | (3.4)

Thus (3.3) holds if and only if (3.1) and (3.2) are valid.

Clearly (3.1) means the admissibility of 6 as an estimator of 0 under rescaled loss
function Lo(8,6) = W(0,6)70 1/2 (which involves the observation ).
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Formula (3.2) means that 7o is an admissible estimator of the pa.ra.metrlc function
p(0) = EsW(0,60) under loss function Li(8,v) = ©(0)y =1/2 L 41/2 " Indeed an-easy
calculation shows that '

2
Ex {L1(8,7) — L1(0,vk)} = &k { [,75/2 - ’711/2] 70_1/2}

and the conclusion follows from Farrell’s Theorem. -

—

Notice that separate admissibility of 6, under Ly(0,6) and of 4o under L1(8,~) does
not imply the admissibility of (8,~0) under L(8,6,v). Indeed 6y and o may be Bayes
rules with respect to two different prior distributions, and Theorem 1 can be used as a
source of examples of this kind.

It is known (cf. Berger and Srinivasan (1978)) that if ps(z) = B(f) exp{6'z} and
W (0,d) = ||0 — d||?, then any admissible estimator has the form .

§(z) = V log G(z) s

where G is a o-finite measure with support in the closure of the natural parameter space
and

m@=/uﬂhuqm (3.5)

is the Laplace transform of G.

It is easy to see that the corresponding risk estimator has the form

() = V? log &(2) = £ — log G().  (39)

o
oz 2
A modification of the proof of Theorem 2.1 of Berger and Srinivasan (1978) shows that
any admissible pair 6, under (2.1) has the form (3.5), (3.6) for some o-finite measure
supported by the closure of the natural parameter space. Formula (3. 6) is convement for
calculation of risk estimators in an exponential family. :

Notice that the admissibility notion associated with the loss (2.1) is more natural and
convenient to work with than the admissibility definitions due to Kiefer (1975) and Brown
(1978) in the problems of conditional confidence estimators. . .

From the author’s point of view the main advantage of the loss function (2.1) consists
in the possibility of weeding out inadmissible pairs (4, v) some of which might be generalized
Bayes. )

4. Inadmissibility of the Sample Standard Deviation -

In this section let z = (z1,...,Zs),% > 3 be a random normal sample with un-
n
known mean ¢ and unknown variance o?. The sample mean X = )} z;/n is a nat-
1
ural traditional estimator of the mean ¢, and this estimator possesses numerous opti-
mality properties (is minimax, unbiased, best equivariant, admissible under a wide class
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- of loss functions). A ‘natural estimator ~ of the quadratic loss of X, 'y(X S’) c.S"2

$2 =Y (z; — X)?, for a suitable choice of the constant ¢, does not have all these opﬁmal—
1

ity properties. In fact, all estimators ¢S2 are inadmissible as estimators of o2 for a variety
of invariant loss functions. This result was discovered first by Stein (1964), and the further
study has been performed by Brown (1968), Brewster and Zidek (1974), Strawderman
(1974). The practical importance of this inadmissibility remains unclear since only minor
relative improvements over ¢S? are known (see Rukhin (1986) for numerical study).

We show here that all estimators of the form ¢S2 are also inadmissible as estimators
of the risk function of X under the loss function

© Lgo) =0 (X = &)21/2 4 912 (4.1)

This loss is invariant under affine transformations, and the best equivariant estimator is
-

70(X,S) = ¢0S2, co = [n(n — 2)]'_1 .

Notice that -
E(X,8) = (n—1)o? [n(n —1)] "
>o?n"! = E(X - €)?
so that ~o is conservatively calibrated.

One can also consider the loss function
L.(¢,056,7) =0 [(5 — &2y 4 7%’2] (4.2)

which essentially coincides with (2.1) and which admits a general estimator § of £. Notice
the analogy of this loss function to the loss function considered sometimes in confidence
estimation

Li(&,0;6,7) = I(a_ql/2,5+.71/2)c(£) + w’yl/z. (4.3)

Here /2 represents half-width of the confidence interval (6§ — 41/2,6 4+ 41/2), and w is
a positive weight. In other terms (4.2) can be obtained by smoothlng the indicator
function of the complement of the confidence interval into a quadratic function. The
analytical advantage of (4.2) over (4.3) is tremendous. Both loss functions yield the best
equivariant estimator 6y (X, S) = X, v0(X, S) = ¢S2. (For (4.3) this is essentially Student’s
confidence interval.) In Theorem 2 we prove the inadmissibility of (8o,~e) under (4.2) or of
~o under (4.1). The question of the admissibility of Student’s confidence interval, however,
remains unsettled.

Theorem 2. The estimator
5 (X, S) = X, vo(X, 8) = 82/ [n(n — 2)]
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- is inadmissible under loss (4.2). The estimator
70(X,8) = S?/[n(n — 2)]

is inadmissible under loss (4.1).

Proof. According to our Theorem 1, if (8o,40) is admissible under'(4 2) then ~o is ad-
missible under loss

Li(¢,057) = [ozn— n1/2 +'71/2] o~ 1. (4.4)

Since L; is continuous and strictly bowl-shaped (in fact it is convex in ~Y/ o~ 1) the best
equivariant estimator ¢ is inadmissible (see Brewster and Zidek (1974)). The case of loss
(4.1) is treated similarly.

Theorem 2 does not have a constructive character. In fact e)g'plicit-r-improvement over
(60,70) is unknown. Interestingly enough the generalized Bayes estimator «; of Brewster-
Zidek which improves upon 4o under (4.4) does not lead to an improvement upon vy under

(4.]).
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