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1. Introduction
We start with the general statistical decision problem, as described by

possible states of nature.g, decisions d, and a loss function W(p,d). Classical
decision theory advocates making some decision d = §{x) where x is the obser-
vation, resulting in the frequentist risk R(e,5). This approach has been often
criticized for the lack of a data-dependent measure of the accuracy of the
procedure used. Numerous examples of classical procedures are known which assign
the same decision and the same numerical measure of accuracy (say, a constant
confidence coefficient) er two different sample va]ues,»ohe of which seems
intuitively much more informative than the other (see Kiefer (1977), Berger
(1985a,b) ). Thus there are many important situations where one would 1like to
accompany the decision vy by an estimate y = y(x) of its accuracy or of the loss
function W(e,s). Exactly this necessity of measuring the accuracy is behind the
idea of confidence intervals (cf. Savage (19@4), ch. 17). Indeed while the center.
of the confidence interval may represent a point estimate of the unknown para-
meter, its width gives a measure of the precision of this estimate.

| To develop a decision-theoretic approach to the loss estimation problem, one
must specify an appropriate Toss function. "Any serious attempt to take account
of the consequences of unreliability in not capturing the true parametric value
and of lack of usefulness in excessive width should, we feel, involve the speci-
fication of some reasonable Toss function and the subsequent examination of the
problem in terms of decision theory" (Aitchison and Dunsmore (1968)). In fact
a variety of loss functions in interval estimation has been considered (see
Pratt (1971), Winkler (1972), Cohen and Strawderman (1973)); Other loss estima-

tion problems are less studied. Lehmann (1959) mentions the estimated power of



a test, and Sandred (1968) investigates unbiased estimators of quadratic loss
in some estimation situations.

In this paper we give a loss function which combines the general decision
problem error with an accuracy estimate. Namely, if ¢ is an estimator of the
Toss W(g,s) with a non-negative Toss function W, then

1 1

2 (038,y) = W(e,8)y 2+ 2 (1.1)

represents such combined loss.

The important feature of this toss function is that for a fixed &,
the unique minimum in y is attained at W(e,5). On the other hand for a fixed
v, this Toss function is just a linear transform of W(e,s), so that the Bayes
procedure 85 for #£ 1is the Bayes procedure for W. The Bayes estimator YR has

the form

g = E{W(e,aB)[x}

i.e. g coincides with the posterior loss of 8g- This result allows one to
interpret the posterior loss of the Bayes procedure 8g as the Bayes estimator
of the risk function of GB under (1.1). In the next section we illustrate
further properties of the Toss (1.1), in the problem of estimating a binomial

parameter.

2. Estimators of a Binomial Parameter and Estimators of their Loss
Let X be a binomial random variable with unknown probability o of success,

0<56<1,



PL(X = x) = () o"(1-6)"7%, x = 0,1,....n,

We consider the problem of simultaneous estimation of ¢ by, say, an estimate
s and an estimate of the loss of §, under the combined loss function (1.1),
with W(g,d) = (g-d)°.

If () = e“'] (l-e)B-] is a conjugate prior density, then it is well known
that thé Bayes estimator 8g has the form

s5(X) = (X + a)/(n + o + g).

An easy calculation shows that the Bayes estimator YR of the mean square error

of g5 under (1.1) (i.e. the posterior loss) is
vg(X) = (X+ a)(n+ 8- X)/Ln+a+p)m+a+p+ )]

In particular if ¢ = g = 0, the best unbiased estimator is
s9(X) = X/n ,
and its risk estimate is

5p(X) = X(n = X)([n*(n+1)]1.

1l

Notice that if X = 0 or X = n, then yO(X) = 0, i.e. the choice of an improper

prior beta-density with o = g = 0 leads to a rather silly estimate of the risk

of 8o In fact, for all 9, 0 < 8.< 1.
- 2 - 21 = . :
Ee‘{(es 50’ Yo) = Ee[(GO - 6) Yo' + YO ] - ® (2.])
so that the risk is infinite in the open interval (0,1). Thus the Toss (1.1)
seems to provide a tool for weeding out unreasonable accuracy estimators, even if
they are generalized Bayes.

1
Another interesting case is o = g = 0.5n%, Teading to the minimax estimator



5:(K) = (X + 0.50%) /(n + n¥)

which is known to have a constant risk,
Rlexs ) = E (5 - )% = 1/[4(n% + 1)2] (2.2)
>®m g m ' ‘

The Bayes estimator Y of R(e,am) is not constant,

v (X) = (X + 0.50%)(n + 0.5n% - X)/[(n + nHZ(n + n% + 1)1.

Because of (2.2), one may consider the constant estimator v of R(e,am)
1
= 2

Y](X) = 1/[4(n= + 1)]

which has the risk

W=

1
2

, 2 - , z
R(G, (Sm) 'Y'l) = Ee[(Sm - 6) 'Y-l + 'Y-I ] - -l/(n + 1).
It is instructive to compare this risk with the risk R(e,am, ym).

One has
1 -1
| RO, 5 ) = T2+ 07)]
2

i 1 1.1 1
[n®n + n®+1)2 ((2n + n®)) 2 +n

(n+nE+1)77

Wik

1 1
2(2n + n®)

L -1 1 1
> [2(n + n®)]"" 2n® = 1/(n® +1) = R(e,&my1) .
so that at 6 = 0 the total risk of (am, ym) exceeds that of the pair (6m, y1).
A nemerical calculation shows that for & between 0 and 0.5 (because of the
symmetry it suffices to consider only these values), one has
R(G, 6ms Ym) < R(eg 5m3 'Y'I)
if and only if & < 6 < 6. The values of ¢ and 6 for small values of n,

n=2,.., 8 are given in Table 1. It is easy to show that as n increases,

o~ .5and 6 >0y = .069. This value 6, solves the equation



L
2

[o(1 - 6)1% + 1/4 = [o(1 - 8)]% .

From the frequentist point of view (see Kiefer (1977)) it is desirable to
have conservatively biased estimators y, i.e. estimators satisfying
Ev(X) 3_R(e,6 ).
In our situation such estimators Yp do not exist. Indeed for positive o, B
R(6, s5) = (n + o+ 3)'2[6(1-9)(n - (u+g)2)) + 952 + (1-e)a2] >
and

Eyo(X) = (n+ o+ 8)2(n+a+p+1)"" x [n(n-1)s(1-e)

6'B
+ g(n+a)e + al(n+s)(1-0)].

Comparing these functions shows that if
a<+p)n+tatp+1)T, (2.3)

then EeYB(X) > R(e ,GB) for small e, and if
g<(n+a)(n+atp+1)] (2.4)

then EeyB(X) > R(e,'aB) for o close to 1.

If both inequa]ities'(2.3) and(2.4) are violated, then EeyB(X) > R(s, GB)
in the inner part of the unit inverval.
It follows, for instance, that for some values of X,

v (X) > R, 5) = 1/[4n% + 1)1,

i.e. the posterior Toss for some samples exceeds the constant risk which it

estimates. A similar situation for the unknown normal mean was described as



"a moment of indecision" by 0'Hagan (1981). An easy calculation shows that
these "non-informative" values of X are such that
IX - 0.5n]< 0.5n%/4,
Ifa=p8=0,
E;vg(X) = (n - T)e(1 - ¢)/[n(n + 1)]
and
R(6, s5) = 6(1 - 8)/n ,
so that for all 6, 0 < 6 <1

Egro(X) < R(6, §)

i.e. g systematically underestimates the loss of 8o In view of this fact and
also (2.1), this loss estimator cannot be recommended in practice, which confirms

previous findings (cf. Bernardo (1979), sec. 3.4 and references there).
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Table 1. The end-points of the interval where

the risk of (am, ym) is smaller than the risk of (6m, y])

n ] )
2 .000 .288
3 .005 .293
4 .008 .297
5 .013 .304
6 .018 .309
7 .024 .314
8 .030 .321

8

.069 .500



