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Abstract

Consider k_populations M i=1,...,k, where an observation

from L has binomial distribution with parameters N and P; (unknown) .

Let p[k] = lT?fk p.- A population ™y with p; = p[k] is called a best
population. We are interested in selecting the best population. Let
R = (pl,...,pk) and let i denote the index of the selected population.
Under the loss function z(g,i) = p[k]—pi, this statistical selection

problem is studied via empirical Bayes approach.

Some selection rgles based on monotone empirical Bayes estimators
of the binomial parameters are proposed. First, it is shown that,
under the squared error loss, the Bayes risks of the proposed monotone
empirical Bayes estimators converge to the related minimum Bayes
risks with rates of convergence at least of order O(n_l), where n is
the number of accumulated past experiences at hand. Further, for
the selection problem, the rates of convergence of the proposed
selection rules are shown to be at least of order 0(exp(-cn)) for

some ¢ > 0.
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EMPIRICAL BAYES RULES FOR SELECTING
THE BEST BINOMIAL POPULATION

1. Introduction

In many situations, an experimenter is often confronted with
choosing a model which is the best in some sense among those under
study. For example, consider k different competing drugs for a certain
ailment. We would like to select the best among them in the
sense that it has the highest probability of success (cure of
the ailment). This kind of binomial model occurs in many fields,
such as medicine, engineering, and sociology. The problem of
selecting a binomial model associated with the largest probability
of success was first considered by Sobel and Huyett (1957) and
Gupta and Sobel (1960). The former used the indifference zone
formulation and the latter studied the subset selection approach;
see Gupta and Huang (1976) and Gupta, Huang and Huang (1976), and
Gupta and McDonald (1986) for further variations in goals and
procedures for this problem.

Now, consider a situation in which one will be repeatedly
dealing with the same selection problem independently. This will
be the case with an on-going testing with drugs, for example.

In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect
to an unknown prior distribution on the parameter space, and then,

use the accumulated observations to improve the decision rule at each



stage. This is the empirical Bayes approach of Robbins (see
Robbins (1956, 1964 and 1983)). Many such empirical Bayes rules
have been shown to be asymptotically optimal in the sense that
the risk for the nth decision problem converges to the minimum
Bayes risk which would have been obtained if the prior
distribution was known and the Bayes rule with respect to this
prior distribution was used. .

Empirical Bayes rules have been derived for subset selection

gdals by Deely (1965). Recently, Gupta and Hsiao (1983)

and Gupta and Leu (1983) have studied empirical Bayes rules for
selecting good populations with respect to a standard or a
control, vith the underlying distributions being uniformly
distributed. Gupta and Liang (1984) studied empirical Bayes
rules for selecting binomial'populations better than a standard

or a control.

In this paper, we obtain empirical Bayes procedures for
selecting the best among k different binomial popﬁlations.
These rules are based on monotone empirical Bayes estimators
of the binomial success probabilities. First, it is shown
that, under the squared error loss, the Bayes risks of the
proposed monotone eméirical Bayes estimators converge to the
related minimum Bayes risks with rates of convergence at least

1

of order 0(n ~). Further, for the selection problem, the rates

of convergence of the proposed selection rules are shown to



be at least of order O0O(exp(-cn)) for some c > 0.

2. Formulation of the Empirical Baves Approach

Congider k binowmial paopulations T, i=1,...,k each
consisting of N trials. For each i, 1 = 1,...,k, let Py be the
probability of success for each trial in T, and let Xi denote the
number of successes among the associated N trials. Then, Xi|pi

is binowially distributed with probability function fi(xlpi) =

N xi N—xi k

[x ]pi (1-p ) , %, = 0,100, N Let £(xlp) = T £ .(x,|p,)
i : i=1

where x = (xl,...,xk) and p = (pl,...,pk). For each p, let

Prij < ... < Prki be the ordered parameters of PyrecerPye It‘is
assumed that the exact matching between the ordered and the
unordered parameters is unknown. Any population T with

Py = Py is considered as the best population. Our goal is to

derive empirical Bayes rules to select the best population.

Let @ = {plp = (Pyre-erPp), Py € (0, 1), i=1,...,k} be the

k
parameter space and G(p) = T Gi(pi) be the prior distribution
i=1

over (. Let 4 = {i|j1i = 1,...,k} be the action space. When
action i is taken, it means that population Ty, is selected as the

best population. For the parameter p and action i, the loss

function &(p,i) is defined as:

(2.1) ¢(p, 1) Prri1 ~ Py

the difference between the best and the selected population.



k
Let X = T {0,1,...,N} be the sample space. A selectiocn
i=1

rule d = (di;...,dk) is 8 mapping from X ‘to [O,l]k such that for

each observation x = (xl,...,xk), the function d(x) =

(dy (x),...,d
k

£ d (%) = 1. Note that d,(x), i
i=1

k(;5)) satisfies that 0 < d,(x) =1, i1 = 1,...,k, and

]
[y
-
i
-
0]

the probability of selecting population r, as the best population

i

when X is observed.

Let @ = {d|d : X =~ [O,l]k, being measurable} be the set of

all selection rules. For each d € 2, let r(G,d) denote the
associated Bayes risk. Then, r(G) = inf r{(G,d) is the minimum
ded

Bayes risk.

From (2.1), the Bayes risk associated with selection rule d

is:
r(G,d) = J Y et dix)E(xigIdsip
Q x€X
(2.2) K
=c- ) [ Y d.(X)‘P.(x.)]f(x),
i~ "1 741 ~
x€X i=1 '
k wi(x)
where f(x) = ? fi(xi), ?i(x) = TRy
i=1 i
1 1
fi(x) = I fi(xlp)dGi(p), wi(x) = I pfi(xlp)dGi(p)
0 0
c = E I p[k]dG(E|§)f(¥)' being a constant,
X€X Q |

and G(p|x) is the posterior distribution of p given x.



For each x € X, let

(2.3) A(x) = {i|P, (x

{ i) = max ¥ (x )},

1<jek 4

Thus, a randomized Bayes rule is

dg = (le,...,de). where

|A(x) 7L, if 1 € Alx);
24 diG(z) ) {O otherwise;
and |A| denotes the size of the set A.

When the prior distribution G is unknown, it is impossible
to apply the Bayes rules. In this case, we use the
empirical Bayes approach. Note
that, for each i, Pi(xi) is the posterior wmean of the binomial
probability Py given that Xi = Xy is observed. Due to the
surprising quirk that Pi(xi) can not be consistently estimated in
the usual empirical Bayes sense (see Robbins (1964), Samuel

(1963) and Vardeman (1978)), we use below an idea of Robbins in

setting up the empirical Bayes framework for our selection problem.

For each i, i1 = 1,...,k, at stage j, consider N+l trials
from T, . Let XiJ and Yij' respectively, stand for the number of
successes in the first N trials and the last trial. Let Pij

stand for the probability of success for each of the N+l trials.

Pij hag distribution Gi' Conditional on PiJ = pij'

xijlpij ~ B(N’pij)' Yijlpij ~ B(l’pij)’ and Xijlpij and Yijlpij

are independent. Let Z, = ((X denote the

i lJ'Ylj)""'(XkJ'ij))
observations at the jth stage, j = 1,...,n. We also let ¥n+l = X

= (Xl,...,Xk) denote the present observations.



Consider an empirical Bayes selection rule dn(ﬁ;

ZoreeorZ) = (dy (Fi Zyree-rZdreeerdy (X5 Zyoe--r2 00 Let

n

r(G,dn) be the Bayes risk associated with the selection rule

dn(g; gl,...,gn). Then,

(2.5) r(G,d) = ) E f ep,d (%5 Zyoe..,z )0E(x]R)dBR),
Q

xeX
wvhere the expectation is taken with respect to (gl,...,gn). For

simplicity, dn(g; A

~1,...,

Z,) will be denoted by d_(x).

Definition 2.1. A sequence of selection rules (dn}:=1 ie said to

be asymptotically optimal relative to the prior distribution G if
r(G,dn)lﬂ r(G) as n - =,

From (2.4), a natural empirical Bayes selection rule can be
defined as fallows:

For each 1 = 1,...,k, and n = 1,2,..., let Pinix) = P, (x;

in

(X Y (X

i1’ il)""’ in,Yin).) be an estimator of ?i(x). Let An(§) =
{ilf- (x,) = max ¥ (x,)}, and define d_(x) = (d (XY, .04,
in 71 1<i<k jn 7§ n in
dkn(¥)) vhere
-1
lAn(§)| if 1 e An(ﬁ);
(2.6) din(g) =
0 otherwise.
P
If Pin(x) — ?i(x) for all x =0,1,...,Nand i = 1,...,k.

(where™ P " means convergence in probability),then, by the:
boundedness of the loss function ¢(p,i) and Corollary 2 of
Robbins (1964), it follows that r(G,dn) - r(G) as n - », Thus, the

sequence of selection rules {dn}: defined in (2.6) is

=1

asymptotically optimal. Hence, our task is only to



find the sequence of estimators {Pi

n(x)} possessing the above

mentioned convergence property.

3. The Proposed Empirical Bayes Selection Rules

Before we go further to construct empirical Bayes estimators
{?in(x)}, wve first investigate some property related to the Bayes

rule d. defined in (2.4).

G
Definition 3.1. A selection rule d = (dl""'dk) is said to be
monotone if for each i = 1,...,Kk, di(g) is increasing in Xy while
all other wvariables xJ are fixed, and decreasing in :»:‘j for each

J # 1 while all other variables are fixed.

Note that ?i(x) is the Bayes estimator of the binomial

parameter Py under the squared error loss given that Xi = x is

observed. It is also easy to see that Pi(x) is increasing in %

for x =0,1,...,HN.

Definition 3. 2. ‘An estimator P(:) is called a monotone estimator

if ?{(x) is an increasing function of x.

By the monotone property of the Bayes estimators ?i(x),
i=1,...,k, one can gee that the Bayes selection rule dG is a
monotone selection rule.

Under the squared error loss, the problem of estimating the
binomial parameter Py is a monotone estimation problem. By
Theorem 8.7 of Berger (1980), for a meonotone estimation problem,
the class of wonotone decision rules form an essentially complete
class. With this consideration, it is reasonable to require that

the concerned estimators (¥ n(x)} possess the above

i
monotone property{



In the literature, Robbins (1936) and Vardeman (1878), among
others, proposed some estimators for Pi(x). Those estimators
are consistent in that they converge t0‘¢i(x) in
probability. However, they do not possess the monotone property.

We now propose some monotone estimators.

For each 1 = 1,...,k, n=1,2,..., and ¥ = 0,1%1,...,N, define
n
1 -1,
(3.1) £,00 = = 2 Iy Xyy) * 00
J=1
n
(3.2) W, (x) = L z Y. I, (X,,) +n %
in n 13742} T4y '
j=1
where IA(-) denotes the indicator function of the set A. Al=o,
let vij = Xij + Yij for esach 1 = 1,...,k and j =1,2,... .
Define
n n
~ _ x+1 1 ~1
@3 W o E ) T Vi 2E Y Toa e ]}« 070
j=1 ~ j=1
wvhere a A b = min {a, bl. Let
(3. 4) Pin(x) = win(x)/fin(x);
(3.3) ?in(x) = win(x)/fin(x);

and, for each 0 <€ x £ N, define

| t
(3.6) Py (%) max  min { 2 Pin(y)/(t-s+l)};
O<s=<x s<t=<N y=g

t
(3.7) B G0 max  min { z 3, (y)/(t—s+l)}.
Osssx sstsN © O n



.10

s

Note that by (3.6) and (3.7), both . (x) and . (x) are

in in
increasing in x. We propose ?In(x) {or ¥:n(X)) as an estimator of

?i(x). Let

* * *
(3.8) A (x) = {i1P, (sx,) = max ¢ (x.)};

n in 4 1<jsk 90

~ % ~ ¥ ~ ¥
(3.9) A (x) = {1|¥, (x, ) = max ¥ _(x )}I.

n in 71 1<jzk Jn 7]

* * * ~ % ~ % ~ %

Two selection rples dn = (dln""’dkn) and dn = (dln""'dkn

analogous to the Bayes selection rule dG are proposed as follows:

For each i = 1,...,k, let

. 1ax et 1f 1€ AX(g);
(3. 100 din(§) =
0 otherwvise;
and
ok |K:(§)|'1 1f 1€ K;(%);
(3.11) din(z) =
(8] otherwise.
Due to the monotone property of the estimators {P:n(xi);
i=1,...,k and (¥] (%05 1 = 1,...,k), one can see that

* ~%k .
dh and dn are both monotone selection rules.

4, Asymptotic Optimality of the Monotone Estimators

In this section, we study the asymptotic optimality

property of the estimators ?;n(x) and ¥In(X)' Under the squared

error loss, wi(x) is the Bayes estimator of P, The -associated

Bayes risk is

= - 2
(4. 1) Ri(Gi) = E[(Pi Pi(Xi)) 1.
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Let ?i(-) be any estimator of Py with the associated Bayes
risk Ri(Gi’ wi). Then,

2
4 (Xi)) 1.

(4. 2) Ri(Gi,Y ) - Ri(G n i

i

]
(5]
™
-
5
}

1’ i

Let {¥, (x; (X

in (X

Y

il'Yil)""' in’ in)) Yin(x)) be a seguence

of empirical Bayes estimators based on (x; (xil’Yil)""’

(Xin,Yin)).

Definition 4.1. A sequence of empirical Bayes estimators

a©

{Yin}n=1 is said to be asymptotically optimal at least of order

«, relative to the prior G, if Ri(G

n ) - Ri(Gi) < O(an) as

1* ¥in
n = % where {an} is a sequence of positive value=s gatisfying

lim x = 0.
n
n-o

Theorem 4.1. Let {PIn} and {¥In},be the sequences of epirical

Bayes estimators defined in (3.6) and (3.7), respectively. Then,

*
Ri(Gi,?in) - Ri(G

-1
i) < 0D(n )

ok _y
and Ri(Gi,Pin) Ri(Gi) < O(n 7).

The following lemmas are useful in presenting a concise proof of
Theorem 4. 1.
Lemma 4. 1. LLet 2 be a random variable and z be a real number

such that - € a £ Z, z € b £ o, Then, for any s > 0O,

EL |Z-2 |51 = I st® lpiz-z < -tidt + J st ipiz-z > tidt,

provided that the expectation exists.

Proof: Straightforward computation.



12

Lemma 4.2. For the estimators Pin and ?:n defined in (3.4)» and

(3.6); respectively, we have

* : *
a) ¢, (0) =¥, (0), P

b) For 1 <€ % < N-1,

n(N) = 7

in(N).

¥ (x) > P, (%) iff there is some y < x

in in
such that ?in(y) > ?in(x);

Pzn(x) < Pin(x) iff there is some y > x
such that Pin(y) < Pin(x).

c) For O £ x < N,

@

X

¥*

PLP] (%) - P (x) > t} < 2 PLP, (y) = P (y) > t};
y=0

N
PLPL (%) - P (x) < -t} < z PUP, (y) - P.(y) < -t}
y=x

Proof: Parts a) and b) are straightforward from
(3.6). Part c) is a result of parts a) and b) and an applicatioh

of Bonferroni’s inequality.

*

Eemark 4.1. Lemma 4.2 is also true if ?in and Pin are replaced
~ ~ ¥

by Pin and ?in' respectively.

Lemma 4.3. For 0 < t < l-?i(x) and 0 £ ¥y = %,

5 »
a) P{Pin(y) - ?i(y) >t} = exp{—Enal(t,y,n,i)}; and

~ n 2
b) P{?in(y) - ?i(y) > 1t} < exp(- 5 al(t,y,n,i)},
if t > b(n,y,1), where b(n,y,i) = (1—?i(y))n_l/(fi(y)+n-l) and

: . -1 -1
al(t,y,n,l) = t(fi(y) + n ") - n (1-?i(y)).

For 0 < t < Pi(x) and x £ y

c) P{?in(y) - ¥f

1A

N,

(y) < -t} < exp{-2naZ

2(t,y,n,i)}; and

i
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d) PP, (y) - £ (y) < -t} 2 2 expl- 3 ag(t,y,n,i)}, where
-1 -1
a2(t,y,n,i) = —t(fi(y) +n ") - n (l—?i(y)).

Proof: Here we prove part a) only. Other parts follow by
a similar reasoning.

For 0 < t < 1—?i(x) and 0 €y £ %, by (3.1), (3.2), (3.4)

and the fact that ?i(y) = W (x)/fi(x), following a straight-

i

forward computation, one can obtain

P{Pin(y) - ?i(y) > t1}

= PU, _(y) - (P (y) + ©IE, _(y) > O}
(4. 3) n

- 1 - _

= P{H 5 Iiyy Xy LYy = P(y) = 1

Jj=1

tfi(y) > al(t,y,n,i)}.'

Note that I{y}(xij)[Yij - ?i(y) -t} j=1,2,...,n are i.i.d.,

- - - - - - 1
?i(y) t < I(y}(xij)[YiJ Pi(y) tl =1 ?i(y) t for all

J, and EILI (X

(yr Xy 0¥ - P(y) - £11 = -tf (y). Also,

al(t,y,n,i) > 0 iff t > b(n,y,i). Hence, by (4.3) and Theorem 2

of Hoeffding (1963), P(¢  (y) - ¥ (y) > t} < expl-2na’

l(t,y,n,i)}

if t > b(n,y,1i).
Remark 4.2. Lemma 4.3 is still true if the strict inequality
< (> ) is replaced by < ( > ).

Lemma 4. 4. For O £ y £ x,

1-?i(x)
[ -1
a) ] tP{Pin(y) - ?i(y) > t}dt £ O(n 7); and
(8]
1-7, (x)
n i ~ _l
b) ‘ tP{P, (y) - P, (y) > tidt £ O(n 7).

O -
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For x <y < N\,

Pi(x)
s -1
c) ] tP{Pin(x) - ?i(y) < -t}dt £ O(n 7); and
)
\?i(X) i
d) ] tP{Pin(y) - Pi(y) < -ti¥dt < O(n 7).
0
Proof: We prove part a) only.
Case 1. As b(n,vy,1i) =2 1 - Pi(x), then
l—?i(x)
J tPLP, (y) - ¢, (y) > tidt
0
b(n, vy, i)
= I t dt
8]
= b2(n,y,il/2
= 0(n"%).
Case 2. As b(n,y,1i) < 1 - ?i(x), then, by Lemma 4.3.a) and a

direct computation,

l—?i(x)

I PP, (y) - P (y) > tidt
0

b(n,y, i) 1—Pi(x)

< I t dt + f tP{Pin(y) - Pi(y) > tlidt
0] b{n,y, 1)

+ D(n_l)

1A
O
o]

"
(=
o]



15

Proof of Theorem 4.1.

By (4.2),
0 < R,(G,,? ) - R, (B,)
= RGP0 1464
(4.4) = Ef(e® () - v, (X3
in i
N
= ELCP® () - 2. (X2 1X = x1f, ()
= E in 1 IX = x1f; (x).
x=0

By Lemmas 4.1 ~ 4.3 and the fact that O hd P:n(x), P, (x) =

1, one can obtain that

* 2

E[(Pian) - Pi(X)) IX = =1l
Pi(x) . ‘
= 2 - -
J htP{?in(x) ?i(x) < -tidt
0
l-?i(x) .
(4. 5) + J 2tpPi{y (x) - ¥,(x) > tidt
. in i
8}

i(x)

P
j 2tP{P, (y) - ¥ (y) < -t}dt
0

IA

N

y=x
X 1-f, (0

+ E J 2tPLP, (y) - P, (y) > t)dt.

y=0 0O

Then, by Lemma 4.4, (4.4), (4.5) and the fact that N is a

* i

finite number, therefore, Ri(Gi,Pin) - Ri(Gi) < 0(n 7).

The similar claim for ¢§n is established on the same lines.
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3. Asymptotic Optimality of the Selection Rules

Let {dn):= be a sequence of empirical Bayes selection rules

1

relative to the prior distribution G. Since the Bayes rule dG

achieves the minimum Bayes risk r(G), r(G,dn) - r(B) = 0 for all
n=1,2,... . Thus, the nonnegative difference r(G,dh) - r(G) is

used as a measure of the optimality of the sequence of empirical

o

Bayes rules {dn}n=l'
Definition 5.1. The sequence of empirical Bayes rules (dn}:=1 is=

said to be asymptotically optimal at least of order pn relative
to the prior G if r(G,dn) - r(BG) = D(Bn) as n =2 ® yvhere {ﬁn} ig a

sequence of positive numbers such that lim ﬁn = Q0.
n-e

For each x € X, let A(g) be that defined in (2.3) and let

B(x) = {1,...,k} - A(x). Thus, for each x € X, ?i(xi) > ?j(xj)

for 1 € A(x) and j € B(x). Let ¢ = min (P, (x,) - P .(x )|
"~ N~ i i J \j
xex
i€ A(x), J € B(x)1?. Hence, e > 0 since X is a finite space.
Then,
*
0 <r (G,dn) - r(G)
* *
(3.1) < P{ max ¢, (% ) < max ? (x )}
1ea(xy 01 jeB(x) 7 J
EEI ~ ~
* *
< z z E POPY Gey) < Py (x )1

¥EX i€A(x) JEB(x)
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Now, for each x € X, i € Alx), j € B(x),

PL{PY (x,) < P* (x.)}
n n

in "4 Jn 74
* *
= P{[?in(xi)-fi(xi)]-[Pjn(xj)-PJ(xJ)] = ?J(xj)-Pi(xi)}
(5.2) ‘
* *
= P{[?in(xi)-?i(ki)]-[Pjn(xj)-PJ(xJ)J < -e}

* ‘ * _
=< P{Pin(xi)-?i(xi) < -e/2} + P{?Jn(xj) ?J(XJ) = e/2}.

In (3.2), the first inequality is due to the definition of e.

From (2.3), it suffices to consider the asymptotic behavior of

*

*
the probabilities P{Pjn(xj)-?J(xJ) > e/2} and P{?in(xi)-?i(xi)
< -e/21}.
Let ¢, = min min {esz(y)/z}. Then ¢, > 0. From the
1<i<k O<y=HN
definitions of & and b(n,y,i), we see that, for
sufficiently large n, & > 2 max max {b{(n,y,i)}. Therefore, by

1<i<k O<y<N

Lemma 4.2 c) and remark 4.2, for n large enough,

PLPY (%) - P.(x,) = &/2)

in 71 i 74

Xy

< 2 PUP, (y) - P (y) 2 e/2}

(5. 3) y=0

Xi 2

< z exp{-2na%(e/2,y,n,1))
y=0

< Q(exp(-c,n)).

1

The last step of (5.3) follows from the fact that

exp{~2nas (t,y,n,i)} < O(exp(-cn)) for all 0 <y <Nand 1 <i <k,
which is established easily by a straightforward computation and

definitions of al(€/2,y,n,i) and cq-
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Similarly, one can prove that

¥*
P{Pin(xi) - Pi(xi) < -e/2}
N
(5. 4) . < z exp{—2na§(e/2,y,n,1)}
y=xy

< D(exp(-clﬁ)).

Therefore, from (5.1) to (5.4), and the finiteness of the

space X, we have

0 < r(G,d:) - r(B) £ Olexp(-c,n)).

Similarly, for the sequence of empirical Bayes selection

o3

~%
n=1’ We can prove that 0 < r(G,d ) - r(G) < 0 (exp(-c,n}))

rules {¥*}
n

for some 02 > 0.

We now state these results as a theorem.

o0

n=1 be the sequences of

Theorem 5.1. Let (d*1* . and {d%)
- n n=1 n

empirical Bayes selection rules defined in (3.10) and (3.11),

respectively. Then,
r(G,d:) - r(B) = Otexpl-c,n)),
and
~ % '
r(G,dn) - r(G) = D(exp(—czn))
for some c, > 0, i = 1,2.

i
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