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ABSTRACT

A class of proper scoring functions which combine the error in a decision problem and
the precision of the statistical decision rule, is introduced. The Bayesian procedures with
respect to these loss functions are pairs formed by the usual Bayes decision and by the
expected posterior loss. A necessary and sufficient condition for admissibility under the
corresponding risk is given.

1. Introduction

Consider general statistical decision problem as described by possible states of Nature
8, decisions d and a loss function W (6,d). Classical decision theory advocates making
some decision d = §(x) where z is the observation, with frequentist risk R(8,6). There are
important situations where one would like to accompany the decision 6 with an estimate,
say v = v(z) of its inaccuracy or of the loss W(#,6(z)). In many examples the procedure
6 has constant risk R(8,6) = E¢W (0,6(z)) = R, but a constant estimator 4(z) = R is
unreasonable. In fact, one would expect v to take smaller values for “lucky” observations
x.

The idea of estimated inaccuracy of a point estimator is behind the concept of a
confidence interval (cf. Savage (1954), Ch. 17). Indeed while the midpoint of such in-
terval typically may serve as a point estimator, its width indicates the inaccuracy of this
estimator.

The problem of estimating the risk function has been considered by Lehmann (1959)
who mentioned estimated power of a test and by Sandved (1968) who found unbiased
estimators of risk corresponding to quadratic loss in several estimation situations. A
lot of attention was brought to this problem by Kiefer who in a series of papers (1975),
(1976), (1977) developed conditional and estimated confidence theories which in particular
provide estimates of confidence or accuracy admitting frequentist interpretability. Berger
(1985a, 1985b, 1985c) compares the subjective Bayesian approach to this problem with
the frequentist one. In particular he discussed the desirable properties of valid measures
of performance of a statistical decision rule § from the frequentist point of view. We also
note that estimated standard errors and other characteristics of statistical accuracy may be
of interest in nonparametric and bootstrap methods (Efron (1982), Efron and Tibshirani
(1986)).
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To be able to compare two estimators of the loss, one must specify an appropriate
utility function. In fact, a variety of loss functions in interval estimation has been con-
sidered (see Aitchison and Dunsmore (1968), Pratt (1961), Winkler (1972), Cohen and
Strawderman (1973)).

In this paper for a general decision problem, we give a class of loss functions which
combine the decision problem error with the error of inaccuracy estimate. These loss func-
tions are very convenient in the problem of simultaneous “decision-precision” reporting.
The corresponding risk, as any risk function, has frequentist interpretability in terms of
long-run frequencies. The Bayes “decision-precision” pairs turn out to be the usual Bayes
decision ép for § and the posterior loss yp = E{W(0,6p)|z}. Since admissible pairs in
statistical decision theory are typically Bayes or generalized Bayes procedures a frequentist
may accept posterior loss as an estimate of risk because of the admissibility argument.

2. Loss Functions Combining Decision Error and Estimated Loss Error

Denote by ~ an estimator of the nonnegative loss W(0,6), and assume that a loss
function £(8;6,~) which combines the decision error W (8, 6) and the error in estimating
W (0, 6) by ~, is desired. We develop here an axiomatic approach to determine such a loss
function £ from two conditions.

The first condition is that for fixed ~, i.e., in the case when one does not have to
estimate loss W (4, ), the utility function £ should be equivalent to W. If this equivalence
is defined by the expected utility, then (see DeGroot (1970), Sec. 7.9)

L£(6;6,7) = aly) W (8,6) +b(7) (2-1)
with positive function a. Thus we consider loss functions £ only of the form (2.1).

According to the second condition for fixed 6, i.e., when decision 6 is specified, £ as
a function of «, v > 0, must be uniquely minimized at

Ymin = W(9,9). (2.2)

This condition just means that for a fixed §, £ is indeed a loss function for estimating
W (4,0).

Theorem 1. Any loss function £ of the form (2.1) with differentiable functions a
and b, such that v a(y) — 0 as v — 0, and for which (2.2) holds has the form

L(8;6,7) = f'(v) W(6,6) — f'(Mv+ f() +e (2.3)

Here c is a constant and f is an increasing concave function,

f'(v) >0, f'(7) <0, Af'(y) -0asy—0.

Proof. Condition (2.2) implies that

a'(v)y = =¥ (7).



Put a(q) = f'(v). Then

b(1) — b(0) = - [

0

! ()t dt = —f'(7) + /: f'(t) dt = —f'(v) + £(v) - £(0),

and representation (2.3) obtains with ¢ = b(0) — f(0).
The function £ of the form (2.3) has minimum at W (4, d) = w if and only if for all

(w—=7)1"(7) = flw) - F(7),

which implies the concavity of f.

Henceforth we assume that the utility function (2.3) is normalized by the condition
¢ = 0. Rukhin (1985) studied the loss (2.3) in the particular case f(v) = %.

We give now statistical interpretation of the function f. Assume that
EyW(0,6(z)) =1,
i.e., that the risk of § is constant. If one uses an estimator ~; of the loss

71 () = 7,

then the risk R(8;8,~1) of the pair (6,v;) is

R(0;6,71) = Eo L(0;6,m1) = /(M7= (v + F(7) = f(7)-

In other terms f(4) is the value of the combined risk of (6,7) if § has constant risk
equal to 7.

Notice also that the differentiability condition in Theorem 1 can be considerably re-
laxed. In fact it suffices to assume lower semicontinuity of the functions ¢ and b in (2.1).

The most important feature of loss functions (2.3) is that the Bayes procedure (65,75)
has the following form. The rule ép is just the Bayes decision corresponding to the loss
W(6,6) and vp coincides with the posterior loss

~ve(z) = E{W (0, éB)|z} (2.4)

Loss functions possessing this property are called proper scoring rules (cf. Savage
(1971), Hogarth (1975)). From the frequentist point of view the use of Bayes procedures
and (some of) their limits is motivated by the admissibility argument, and the combined
loss function £ allows decision-theoretical comparison of different pairs (4, ). In particular
the corresponding risk function can be used to define a natural notion of admissibility.
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As an example let us consider the situation where 8 can be estimated correctly with
positive probability. Namely let Dy = {z: 6(z) # 0}, and assume that Py(Dg) = 4,0 <
~ < 1, for all §. Also assume that for | J Dy = C, one has

]

Py(C) = w, O<w< 1l

Under zero-one loss the risk of § is constant but the constant estimator vi(z) = ~ is
inadmissible under any loss function (2.3). Indeed let vo(z) = v/w,z € C;=0, otherwise.
Then as we already noticed

R(9;6,71) = f(v),

and
Eof' (o)W (0,6) = f'(v/w),

Eo [f'(v0)70 — f(0)] = F'(v/w)y — Fv/w)w — f(0)(1 — w).

Therefore for all § because of the concavity of f
R(66,70) = wf(v/w) + £(0)(1 —w) < f(v) = R(6;6,m).

A particular case of this situation happens in an example considered by Berger
(1985 a,b). Let z = (z1,z2) with independent z; and z2 such that

Po(m.,;Zo—-l) =1—Po(z,;=0+1) = p.
Consider the procedure §(z) = (z1 + z2)/2 if |z1 — z2| = 2; = z1 + 1 if 1 = z3. Then

Do={z: z,=2z2=0+1}, Py(Dg)=(1 —p)2,
C={z: z, =123}, P(C)=p*+(1-p)?=w.

In this example constant estimator v1(z) = (1 — p)? is clearly unreasonable. Indeed if
|z1 — z2| = 2 one is certain that §(z) = 6 while if z; = z the exact value of 6 is unknown.
The inadmissibility of ;. under (2.3) should be contrasted with its admissibility under loss
(v —W(9,6))? (see Berger (1985a)), where W is zero-one loss function and § is fixed.

The important feature of this and similar examples can be extracted as the following
simple result.

Theorem 2. Assume that for some prior distribution the posterior loss
Yo(z) = E{W (6, 6)|<}
possesses the following property: for all §
| Eg f'(70)[W(8,6) — 0] <0, (2.5)
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and
sup Eg y0 =7 < 00. (2.6)
@

Then o improves upon any constant estimator v;(z) = 4 with 4 > 7 in the sense of (2.3).

Proof. Under condition (2.5)
R(0;6,71) > R(6;6,70)
if
Eg f(v0) < f()- (2.7)

Because of Jensen’s inequality

Ey f(v0) < f(Eev0) < F(7)

so that (2.7) follows because of the monotonicity of f.

In another example considered by Kiefer (1976) and Berger (1985b) where conditions
(2.5) and (2.6) hold, z is a normal random variable with mean 8 and unit variance. Assume
that the hypothesis Hp: 6 < —¢ (e fixed positive) has to be tested against Hy: 6 > e.

Consider the test § which reject Hp if £ > 0. Under zero-one loss
EgW (0,6) = Pjg|(z < 0) = &(—[0]) < ®(—¢).

If, say, € = 2,®(—2) = .0228, but it seems to be rather unreasonable to state that Hp is
rejected with error probability not exceeding .0228 when the observed value of z is 0.

Motivated by the fact that é is a Bayes test against the prior distribution assigning
equal mass to § = —¢ and 0 = ¢ we put

t0(z) = EW(0,8)/z} = 1/(1+ ),
An easy calculation shows that
Esf'(70)(W (8,6) — o)
= (27)_% /0°° f'(v0(2))v0(2) [625” — ezlol”] e~ (=+100?/2 g < 0

and
E0 Yo < Es Yo = @(—6).

Thus (2.5) and (2.6) are met and any “silly” constant estimator v(z) = v,7 > ®(—¢),
is inadmissible.

3. Admissibility Criterion



In this section it is assumed that the sample space X is Euclidean space, X = R”, the
decision space D is an open convex subset of R™ and the parameter space O is a separable
locally compact metric space. we make the measurability and regularity assumptions of
(i)—(v) of Theorem 1 of Farrell (1968). We suppose that W is a continuous loss function
over © x D which is strictly convex in d, and that there exist positive densities pg(z) with
respect to some measure yu.

Theorem 3. Under assumptions (i)—(v) of Farrell (1968) the pair (60,70) is an
admissible procedure under loss (2.3) if and only if there exists a sequence G,k = 1,2,...,
of finite measures over ® such that for any compact subset E of ©, Gx(E) > 1,k =
1,2,...,sup Gg(C) < oo for compact C and

k
/x [ 1W(0,80) =W (0,811 (ro)po(e) du(a) dG(0) ~ 0, (3.1)

[ [ 160 = 1) = 0= )7 0lpa(e) dula) dGa(0) ~0, (5

where 6, 7x are Bayes rules against Gg.

In particular if (6,v0) is admissible under the loss (2.3) then §y is admissible under
the loss W (0, 6) f'(v0) and 7o is admissible under the loss f'(v) EgW (6, &) — f'(v)v+ F(7)-

Proof. Define for any integrable function h(z,0), Exh(z,0) = [ [ h(z,0) pe(z) du(z)
dGr(0). According to Theorem 1 of Farrell (1968) (8o,70) is admissible if and only if

ok = Ee{L(0;60(2),v0(2)) — L(85 6k (2), 1k (2))} — 0. (3:3)

Because of the property of iterated expected value

pr = Ec{f' (10)[W (8, 60) — W (8, 8k)] + [f' (o) — f' (&)W (9, 6k)
— oS () + Y (&) + F(v0) — F(&)}
= E{f' (1) [W (8, &) — W (8, k)] + [’ (0) — (&) vk
— oS (v0) + &S (k) + f(v0) — F(&)}
= Ef'(10)[W (8, 80) — W (0, 6k)] + Ek[f(0) — F(ak) — (o — &) /()] (3.4)

Since both terms in the right-hand side of (3.4) are nonnegative, (3.3) holds if and
only if (3.1) and (3.2) are valid, which completes the proof.

Clearly (3.1) means the admissibility of & as an estimator of 8 under rescaled loss
function Lo(0,68) = W(8,6) f'(v0) (which involves the observation ).

Formula (3.2) means that 4o is an admissible estimator of the parametric function
©0(0) = E¢W (0, 60) under loss function L;(6,7) = ©(8)f'(7) —vf'(7) + f(7)- Indeed an
easy calculation shows that

Ex{L1(0,7) — L1(0,7)} = E{S(7) = F(vk) + F'(0) (9% — 1)}
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and the conclusion follows from Farrell’s Theorem.

Notice that separate admissibility of 6o under Lqy(6,6) and of vo under L;(0,~) does
not imply the admissibility of (6,~o) under L(4,6,).

It is known (cf. Berger and Srinivasan (1978)) that if ps(z) = B(6) exp{6'z} and
W (0,d) = ||0 — d||?, then any admissible estimator has the form

§(z) = V log G(z)

where G is a o-finite measure with support in the closure of the natural parameter space
and

G(z) = / exp{0z} dG(6) (3.5)

is the Laplace transform of G.

It is easy to see that the corresponding risk estimator has the form

2

y(z) = V2 log G(z) = E% log G(z). (3.6)

)

A modification of the proof of Theorem 2.1 of Berger and Srinivasan (1978) shows that
any admissible pair 8, under (2.3) has the form (3.5), (3.6) for some o-finite measure
supported by the closure of the natural parameter space. Formula (3.6) is convenient for
the calculation of admissible loss estimators in an exponential family.

Notice that the admissibility notion associated with the loss (2.3) is more conventional
and convenient to work with than the admissibility definitions due to Kiefer (1975) and
Brown (1978) in the problems of conditional confidence estimators.

Our concluding remark is that in the case of randomized procedures § = 6., the loss
W(0,d) over © x D should be replaced by a new loss

W(o,6) = /D W (6,¢)d6,(¢)

which is defined over ©® x P(D) where P(D) is the collection of all probability measures
over D.
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