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ABSTRACT

For two multivariate normal populations with a common covariance matrix and strat-
ified sampling, we consider two methods of estimation—Fisher’s linear discriminant func-
tion and logistic regression. Intuition suggests that taking half of the observations from
each population is a reasonable design choice. Based upon minimizing the expected error
regret, asymptotic optimal sample allocations are found. The results indicate that the dif-
ferences in the expected error regret for optimal versus balanced allocation are generally
quite small. It is recommended that equal sample sizes for the two populations be used
for these problems.
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1 INTRODUCTION

Assume that an individual belongs to one of two populations Hy and Hi, indicated
by Y = 0 and Y = 1, respectively. Let P{Y = 0} = mp and P{Y = 1} = m, where
mo+71 =1, and 0 < m; < 1. Let X be a k-dimensional random vector which is measured
on each individual. We assume that the distribution of X given Y = i is multivariate
normal with mean u; and covariance matrix ¥, and denote the corresponding density by
fi(z), where i =0 or 1.

Suppose that an individual with an observed value for X, say z, is to be classified
into one of the two populations. The rule which minimizes the expected probability of
misclassification assigns = to population Hy, if 71 f1(z) > 7o fo(z) and to population Hy,
otherwise.

If the consequences of misclassification are the same for each population then the
expected probability of misclassification is equivalent to the expected loss. In the more
general case, I; is the loss associated with misclassification of an individual from population
¢, and the loss is zero for a correct classification. Here, we let mj = 1—7} = lgmo/ (i0ﬂ0+l 171)
and note that minimizing expected loss for the general case is equivalent to minimizing
the expected misclassification probability with (mg, m1) replaced by (7)), 7).

Under a zero-one loss function, this rule is the Bayes rule. See Chapter 6 of Anderson
(1984) for details. Let P{Y = i|z} be the posterior probability that Y = ¢ given , where
¢ =0 or 1. Then 7 fi(z) > mofo(z) if and only if P{Y = 1|z} > P{Y = O|z}. From the

normality assumption, it follows that

exp(o + 0'x)
(¥ =0} = PY = 1fa} = (720208 (1)
where
m 1 — -
a =log (7r_(1)> ~3 (WS Ty — pp> o), (1.2)
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and

§ =% (p1 — po)-

Let = («,¢')’. We wish to estimate the unknown parameter 8 using stratified
sampling, i.e., {Xi,..., X, }, a random sample of size n; is taken from population H;
and {Xn,+1,- -+, Xni4no }, & random sample of size ng is taken from population Hy. Let
n = ng + n1. The sample allocation problem is viewed as follows. For a fixed value of n,
let 7* denote the proportion of observations taken from Hj, i.e. #* = ny/n. The design
problem is to choose a value of 7*.

Anderson (1972) suggests that 7* = .5 is a reasonable choice for logistic regression.
He writes, “It is conjectured that for a given total sample size n, samples with balance
give better estimates, on average, than those with imbalance.”

We study this problem for two different estimators of 8. The first is the maximum
likelihood estimator (MLE). Here we find the MLE’s of u1, g and ¥ by maximizing the

likelihood function

ni n1+ng
E(u’la,U’O)E) = Hfl(x’&) ) H fO(xz')>
=1 i=ni+1

where f;(xz) is the multivariate normal density with parameters p; and $. The MLE of
is then found using the relationships given in (1.2). This approach will be referred to as
normal discrimination. Here we assume that 71 is known. If w1 is unknown, the MLE of
B still can be found from (1.2) given an independent estimator of .

The logistic regression estimator is found by maximizing

2 exp(a+ 6'xz;) - 1
E — . .
(8) Z=1_Il 1+ exp(a + §'z;) z‘=]ﬁ_1[+1 1+ exp(a+ 0'z;)

Note that this method of estimation does not require the assumption that X given Y is

multivariate normal. It is sufficient to assume that the posterior given by (1.1) has the
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logistic form. Details regarding estimation for this model can be found in Efron (1975),

Blyth and McLachlan (1978) and McLachlan (1980).

The expected error regret (EER) is the difference between the expected misclassifica-
tion probability using a specified estimation procedure and the misclassification probability
that would be obtained if all parameters were known. Asymptotic expressions for EER are
used to determine the optimal sample allocation for any given parametric configuration

and to compare the optimal allocation with 7* = .5.

In a typical application one of the populations represents individuals who have a
disease such as a particular type of cancer. The other population represents similar in-
dividuals who do not have the disease. If the disease is relatively rare then a random
sample from the combined population will contain very few individuals with the disease.
Under such circumstances it is common practice to use the stratified sampling procedure
described above. Our results indicate that equal sample sizes are a very good choice in a

wide variety of circumstances.
2 PRELIMINARY THEOREMS

In many practical applications, 7 is not known but can be estimated from an inde-
pendent random sample for which the X’s are not measured. We assume that Yi,...Y,,
are i.i.d. Bernoulli random variables with parameter 7; and that this sample is indepen-
dent of the stratified sample. Let #; = Y. We further assume that limy, m—oo(n/m) = R,

where R is finite.

Let A = {(u1 — po)' 2~ (u1 — po)}2. Since our results are invariant with respect to
linear transformations of X, it is sufficient to consider a standardized form of the problem,
as in Efron (1975). In this form, u; = (A/2)e1, po = —(A/2)e; and X = I. Here, e; =
(1,0,...,0)" and I is the k x k identity matrix. Note that in this form o = log(my /(1 —m))
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and 0 = Aey, ie., 8 = (log(m1/mg), Ael).
The following theorem gives the asymptotic distribution of the MLE produced from

the normal discrimination procedure for w1 unknown or known.

Theorem 2.1. Suppose 7y is unknown and it is estimated by #; from an independent
sample as described above. The normal discrimination procedure gives the MLE estimator

BJT(,I, that is consistent and satisfies

vn (B?/I - 5) 4 Niga (0, Zr),

where
A4 Bl A2ty 0...0]
. —21-2r") 1+42A%r*(1—7*) 0...0
XM= ’
(1 — %) 0 0 W...0
i 0 0 0...W.

and W =1+ A?r*(1 — n*). If 7y is known, the above results hold with R = 0.

The proof of the above theorem uses ideas similar to those used in Efron (1975) and
follows directly from Theorem 3.3.1 and its corollary in Kao (1982).

The logistic regression. procedure gives an estimator BZ, that converges almost surely
to B* = (a*,d’)’, where o* = log(n*/(1 — m*)) and § = Ae;. For technical details, see
Theorem 3.2.4 by Kao (1982).

Recall that o = log(mi/m). Thus, the constant term in the logistic regression es-
timator is asymptotically biased. This bias is easily removed by adding log[(my/(1 —
m1))/(m*/(1 = 7*))] to the first component of 87. We denote the adjusted estimator by
[3’2. Note that if 71 is unknown, its value #; from an independent sample is used in place

of w1 in the adjustment.




The following theorem gives the asymptotic properties for the adjusted estimator, Bﬁ

Theorem 2.2. Suppose m; is unknown and it is estimated by #; from an independent

sample as described above. The adjusted estimator BE is consistent and satisfies

Va(BE — B) =+ Nyt (0,%1),

where
- A Rr*(1—-7™) —A; 7
AoAzz—-AE - 1 + T17TQ AoAz—A% 0 e 0
—A A
AoAz—lAg AoAzO~A§ 0 ... 0
1 1
Ny = 0 0 - 0
L (1 — 7*) % 4o ’
i 0 0 0 e
and
_AZ A 2 2
27 m* exp(Az/2) + (1 — 7*) exp(—Az/2)

If m1 is known, the above results hold with R = 0.

The proof of the above theorem uses ideas similar to those used in Efron (1975) and
follows directly from Corollaries 3.2.4.1 and 3.2.4.2 in Kao (1982).
3 MINIMIZATION OF THE EXPECTED ERROR REGRET

First, we define the error rate of a classification rule as the probability that it mis-

classifies a random individual. The true error rate is equal to

7'('0/ fo(z)dx + 7r1/ fi(z)dz
{a+6'2>0} {a+46'x<0}

Suppose (a,d’)’ = f is estimated by an estimator, say 3", satisfying the following
asymptotic condition
5 L
V(B = B) = Nit1(0, V),
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where V' = (v;;) 4,7 = 0,1,..., k. Under these conditions, Efron (1975) gives the following
asymptotic expression (ignoring terms of order less than 1/n) for the expected error rate

using the estimator 5",

T1(d 2 A2
1Q0( 1) Voo — ——Vo1 + ——=5Vi1 + Va2 + ... 4+ Uk (31)

g} @(—dl) + ﬂo@(—do) -+ W A AP

1
2

where di = A/2+X/A,do = A/2— N/ A, X =log(my /mo), A = [(p1 — po) S (1 — )] ?
and ¢(-) and ®(-) denote the standard normal density and cumulative distribution function,
respectively.

The first two terms of (3.1) give the error rate for the case where all parameters are

known. Therefore, we define the (asymptotic) expected error regret as

m1o(d 2\ A?
12(10A(n1) Voo — “A-Um + E'Ull tU22+ ..+ Uk (3.2)

The optimal sample allocations for normal discrimination and logistic regression are
discussed in detail in subsections 3.1 and 3.2 respectively. The main results are given in
Theorems 3.1, 3.2 and 3.3.

3.1 Normal Discrimination
Assume that 7; is unknown. From Theorem 2.1 and (3.2), the asymptotic expected

error regret for normal discrimination is

—”;“’A(il) {h(w*) +2)% 4 (k- 1)A% + Woil } , (3.3)

where

(3.4)

If 7r; is known, the asymptotic expected error regret is obtained by taking R = 0 in the

above expression. Since the function A(7*) contains all of the dependence of the expected
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error regret on 7*, it is sufficient to minimize this quantity to determine optimal values of
™.

From (3.4), it can be seen that particular difficulties arise when k = 1 and A = £A2/2.
Under these conditions, A(7*) is minimized at either 7* = 0 or #* = 1. Recall that the
validity of (3.1) depends upon the asymptotic normality of f. Since this condition would
not be satisfied with 7* = 0 or 1, we exclude these special cases from further consideration.

Using the expression for the expected error regret given by (3.3) we can find values
of 7* that minimize this quantity. Note that the results are based on asymptotic consid-

erations that require both n; and ny to approach infinity at the same rate. The following

two theorems give the basic results.

Theorem 8.1 The value 7* = .5 minimizes the asymptotic expected error regret for normal
discrimination under each of the following conditions: (a) k — 0o, (b) A — o0, (c) A—0,
(d) m = .5.

Proof. As k gets large, h(7*) is approximately (k—1)/[7*(1 —n*)]. As A gets large h(7*)
is approximately A?/[47*(1 — 7*)]. As A — 0, h(r*) is approximately A\?/[A%7*(1 — 7*)].
For my = .5, A = 0 and h(7*) = a/[x*(1 — n*)]. These expressions are all minimized by
m* = 5.

Other cases are covered by the following theorem.

Theorem 8.2 For normal discrimination when 71 # .5 and A # +A2/2 with k = 1, the
optimal sample allocation is 7* = (a—+/a(a — 2X))/(2)) where a = A2%/4+)X2 /A2 4 A +k—1.
Proof. The result follows by setting the derivative of h(n*) equal to zero and taking the
root corresponding to 0 < 7* < 1.
3.2 Logistic Regression

Assume that 7y is unknown. From Theorem 2.2 and (3.2), it follows that the asymp-
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totic expected error regret is

ML) Lor) + B/ (rom)}, (55)
where
o 1 As +2(0/A)A; + N2Ay/ A k-1
g(ﬂ- )_7'('*(1-—71'*) { AoAz—A% : _1+ Ao } (36)

and the A; are defined in Theorem 2.2. If m; is known, the asymptotic expected error
regret can be obtained by setting R = 0 in the above expression.
The following theorem gives the optimal value of 7* for some special cases.

Theorem 8.3 The value 7* = .5 minimizes the asymptotic expected error regret for logistic
regression under each of the following conditions: (a) k — oo, (b) A — 0, (¢) 7 = .5.
Proof. It is sufficient to restrict attention to the function g(n*). (a) As k gets large,
g(m*) is approximately (k — 1)/(7*(1 — 7*)Ag). The result follows from examination of
the derivatives. (b) As A approaches 0, the terms Ao, A; and A, approach 1, 0, and 1,
respectively. In this case g(7*) is approximately A\?/[A27*(1 — 7*)] which is minimized at

7* = .5. (c) The condition 7; = .5 is equivalent to A = 0. Under this condition, we can

write g(m*) as

o) = 1 { Ay k-1

(7" | Aody —AZ 1] =4y

We noted in part (a) that the second term is minimized when 7* = .5. Since 1/[7*(1—7*)]
is minimized when 7* = .5, it remains to show that As/(AgAs — A3) — 1 is also minimized
when 7* = .5. Since A% > 0, this expression is bounded below by Ag b — 1 where A4,
is evaluated at 7* = .5. Note that A? = 0 if and only if #* = .5. Thus, the bound is
achievable and the expression is minimized when 7* = .5. Combining the above and noting

that Ag < 1 when 7* = .5 gives the desired result.
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Note that the expression for g(7*) given by (3.6) involves 7* in the A; terms. Since
these terms involve 7* in a complex way, it is not possible to find the value of 7* that min-
imizes g(7*) analytically. On the other hand, the expression can be evaluated numerically.
Results of these types of calculation lead to the conjecture that 7* = .5 as A approaches
infinity.

4 Numerical Computations

Optimal values of 7* for selected values of k,7; = .50(.05).95 and A = 2.0 are given
in Table 1. Qualitatively similar results hold for different values of A. For normal discrim-
ination, these values are obtained from Theorems 3.1 and 3.2. For logistic regression, the
function g(7*) given by (3.6) was evaluated for 7* = .500(.005).995 and the minimizing

value of 7* in this set is reported. Computational details are given in Kao (1982).

Following the definition of A(7*) in section 3.1, it is noted that technical difficulties
arise with the asymptotics when ¥ = 1 and A = £A2/2. For A = 2 this corresponds to
71 = .88 (or mg = .12). The effect can be seen in Table 1 where 7* is large for values of m;

near this point.

Values for m; < .5 can be obtained by interchanging the populations Hy and Hj.
Note that 7* > .5 whenever m; > .5, suggesting that the sample size should be larger
in the population having the higher prior probability. This conclusion easily follows from
Theorem 3.2 for normal discrimination and from Theorem 4.2.2 in Kao (1982) for logistic

regression.

For both normal discrimination and logistic regression, the asymptotic expected error
regret goes to zero as n~!. Thus, the error rate using these estimators approaches the true
error rate as long as n; and ny approach infinity. By choosing the optimal 7* the coefficient

of n™! in the expression (3.2) for the asymptotic expected error regret is minimized. In
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what follows, we refer to this coefficient as the rate constant.

By comparing the rate constants for different choices of 7*, we can investigate the
sensitivity of our results with respect to these choices. Specifically, we compare the rate

constant for the choice 7* = .5 to that for the optimal 7*.

Table 2 gives the differences between the rate constants for 7* = .5 and the optimal
7m* for A = 2 and normal discrimination and logistic regression. Note that all differences
are zero for m; = .5 since 7* = .5 is optimal for this case. As might be expected from
Theorems 3.1 and 3.3, the differences become smaller as &k increasses. Similar results hold

for different values of A.
5 CONCLUSIONS

For given values of w1, A and k we have shown how to compute the optimal sample
allocation for both normal discrimination and logistic regression. Table 1 gives optimal
values of 7* for selected cases. Although in some cases, particularly when k is small, the
optimal 7* is not particularly close to .5. Table 2 indicates that very little is lost in terms
of expected error rate by choosing 7* = .5. Note that the entries in these tables are divided

by n to obtain the differences in the asymptotic expected error rates.

In many practical situations the value of A is not known in advance of the data
collection although reasonable guesses may be available. The same may be true of 7; and,
in some cases, even k. Since very little is lost by choosing 7* = .5, we recommend this

choice for most practical applications.

It is important to note that the above conclusions are based upon consideration of
the expected error rate. When using these procedures for classification, the intercept o
in addition to the coefficient vector § must be estimated. For some problems, however,

interest may be confined to the estimation of §. In such cases, it is easy to see that the

10




arguments given in this paper can be modified to show that #* = .5 is optimal in the sense
that it minimizes the standard errors of the parameter estimator of any linear combination
of the components of 4.

Situations where the cost of an observation depends upon which population is being
sampled are easily accomodated within the present framework. Suppose that ¢; represents
the cost of an observation from population 7. If the total cost T' = cong + cinq is fixed,
then minimization of the asymptotic expected error regret is achieved by choosing ny =
7T /(co+(c1—co)m*) and ng = (1 —7*)T/(co+ (c1 —co)7*). When 7* = .5, this reduces to
ny =ng = T/(co + c1). In practice, the n; obtained by these formulas are not necessarily
integers. The optimal sample allocation is obtained by checking [n;] and [n;] + 1.
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