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1. Introduction

The problem of determining the important (“best”) subset of independent variables
has long been of interest to applied statisticians: primarily, because of the current avail-
ability of high-speed computations, this problem has received considerable attention in the
recent statistical literature. Hocking (1976) has given an excellent survey of the existing
techniques. Several other papers have dealt with various aspects of the problem but it
appears that the typical regression user has not benefited appreciably. One reason for the
lack of resolution of the problem is the fact that it has not been well defined. For the
procedures that we usually discussed in textbooks, the probability of a correct selection is
not guaranteed.

The problem of selecting a subset of independent or predict variables is usually de-

scribed in an idealized setting. That is, it is assumed that

(1) the analyst has data on a large number of potential variables which include all relevant
variables and appropriate functions of them plus, possibly, some other extraneous

variables and variable functions and

(2) the analyst has available “good” data on which to base the eventual conclusions.

The analysis of residuals (see Draper and Smith (1981)) may reveal different functional
forms which might be considered and may even suggest variables which are not initially
included. We assume that the process for model building has been completed and the
resulting models are true. The problem is to determine an “appropriate” regression model
based on a subset of the original set of variables. In this problem there are three ingredients,

namely,

(a) the computational technique(s) used to provide the information for the analysis,
(b) the criterion used to analyze the variables and select a subset, if that is appropriate,
and

(c) the estimation of the coefficients in the final equation. (cf. Hocking (1976, 1983)).

In this paper, we study this problem from the viewpoint of statistical ranking and
selection to investigate some selection criteria. From this approach we can obtain some

useful procedures to select important regression variables.
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In these studies, we have found that the reduced models are based on noncentrality
parameters which provide a measure of goodness of fit for the fitted models. We also
propose a statistic to measure the standardized total square error, and study the detection
of bias for the fitted model. The statistic we propose is an unbiased estimator which is
different from Mallows’ Cp statistic. Based on this statistic, a two-stage selection procedure
is proposed and studied.

Finally, we mention that we have shown the relation of the noncentrality parameters
and the statistic we proposed. We should use both of them to select a good fit and less
bias models and at the same time, the total square error is also to be made as small as
possible. An asymptotic result is also studied to determine the value A of the bias. This
asymptotic result enables us to determine at least how many regression variables will be

neglected.

2. Some Selection Criteria

Consider the usual linear model

Y=XB+¢ (2.1)
where Y' = [V1,...,Y,] is an 1 X n vector of a random sample, X = L, Xy, ., X, 4] s
an n X p matrix of known constants, ﬁ' = [Bo,P1,---,Pp—1] is a 1 X p vector of unknown

parameters and g ~ N(0, 02I,). Here I, denotes the identity matrix of order n X n.
The model (2.1) having p — 1 independent variables is considered as the true model. Any
reduced model whose “X matrix” has r columns is obtained by retaining any r — 1 of the
p — 1 independent variables Xi,...X,_1, where 2 < r < p. For each r, 2 < r < p, there
are k, = (’r’_—_i) such models. These k, reduced models of “size” r are indexed arbitrarily
with the indexing variable 7 going from 1 to k.. We will refer to a typical model as Model

M,;. A reduced model of size r can be written as
E(Y) =X, @_"., 1=1,2,...,k, (2.2)

where X,; and _@_”. are obtained from X and 2 corresponding to the variables that are
retained in the model.
It should be pointed out that all expectations and probabilities are calculated under

the true model (2.1).



Usually, we use the residual sum of squares to measure goodness of the fitted model for
a random sample. Hence, the expected residual sum of squares is naturally considered as
the measurement for the goodness of fit. Large values of this expectation are not desirable.
It should be first noted that our comparisons of models are made under the true model
assumptions.

For any r, 2 < r < p, the residual sum of square SS,; for the reduced model M,,,

1< 1<k, is as follows

S8pi = Y'[I — Xoi(X7: Xri) 71 XY
=Y'Q,.Y, (2.3)

where Q,; = [I — X,;(X],X,;)"1X".]. Also,

SSyi :
—2’-_1' ~ Xz{Vr’ ’\ri}a (2'4)
%0

where the degrees of freedom v, = n — r, and the noncentrality parameter

i = (XB)' @ri(XB)/202.

We note that Q,; is idempotent and symmetric; thus it is positive semi-definite. Hence
Ari is nonnegative, but not zero, in general.
We have
E[S8s] = vy 63 4 205 Ars. (2.5)

Since 03 is fixed, it is clear from (2.5) that A,; should not be large for a good model.

We define any reduced model with associated noncentrality parameter A,; inferior if
Ari > A where A(> 0) is a specified constant. Our goal is to elimina.t'e all inferior models
from the set of 2°~! — 1 regression models including the true model.

The residual sum of squares for the full model is denoted by S Sp1. Then,
E[SSp1/(n — p)] = d3.

Hence, we use SS,1/(n — p) to estimate o2, and denote

SSpy

n—p

A2 _
0=
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Now, let R? and R denote the multiple correlation coefficients of the models (2.1)

and (2.2), respectively. Hence

2_q_ SSp1
¥ -Y)Y-x)

and
2 S Sri

EORR 2= oy a2

where Z’ =(Y,...,Y)and ¥ = %22;1 Y;. From (2.5), we propose A,i as an estimator

of A,; where

n—pSSy; Vy
T 2.6
2 SS5p 2 (2:6)

n—pl—R% v,
_ v 2.7
2 1-R? 2 (27)

~
A1'1Z =

Proposed Selection Procedure.
We propose the selection rule S as follows:
Exclude (reject) the reduced model M,;
iff Xri > dri

where d,; is determined by inf P{j\"- >dy} = P*,0 < P* < 1. It can be shown that the

following are equivalent forms:

j\ri > dy; (2'8)
> (1= B%) > (dri+ 2)—2—(1 — BY) (29
ry/ = \U'rt 2 n—p
(88rs — 88p1)/(p—7) Ve, 2 n—p
> ; -+ — -1 . 2.10
S8Sp1/(n — p) > |(dri + 2)n—p p—r ( )

Hence, the correct decision of excluding all inferior models M,; under the guaranteed

probability P* is equivalent to
inf P{},; > d.} = P*. 2.11
/\3">f { ri 2 n} ( )
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It is well known that the distribution of the statistic

o (85— 85,)/(p—7)
" SSp1/(n ~ p)

follows the noncentral F distribution denoted as F'(p —r,n — p, A,;) (cf. Graybill (1976)).

Thus the critical value d,; in (2.11) can be computed as follows:
Ari.'HZfA P{Vr,; > D,-,;} = P* (2.12).

From Ghosh (1973), the noncentral F distribution is stochastically decreasing in A,;. Thus

we can compute d,; through the following equation:

P{V,; > Dyi|\si = A} = P, (2.13)

where Dr: = [(dri + %) 525 — 1]

Now, we rewrite the selection procedure S as follows.

=P as in (2.10).

n
p—r

Theorem 1. The selection procedure S is equivalent to the following;

Exclude M,; as an inferior model
iff Vei > D,;
where D,; depends on A,n,p,r and P* and is chosen to satisfy

P{Vri > Drilkri = A} = P*.

Total Squared Error as a Criterion for Goodness of Fit.

A measure of “total squared error” was first given by Mallows (1973). He used the
statistic, called C,, to measure the sum of the squared biases plus the squared random
errors in Y at all n data points. Daniel and Wood (1980) described the problem as follows.

The total squared error (bias plus random) for n data points, using a fitted model

n A
M,; with r terms, is Y E(Y;; — v;)?, i.e.,
j=1

n n
A

(v —nij)* + ) var (¥y) (2.14)

1 j=1

J



where

=y(X 1_., , X2, »++.), expected value from true equation,
= fBo + E BeX;e, expected value from the fitted model M,; being used,
(1/,] nis) -e- bias at the jth data point, and
Y, = (Y,-l, e, ,-,,,) = X,i(X],X,s)"1 X!.Y is the predicted value under least square

estimate in the reduced model M,;.

n
For convenience, let SSB,; stand for ) (v; — 7:;)? and define a quantity, T,;, the stan-
i=t
dardized total squared error, by
SSB
L,; = 2o 2 Z var (Y,_7 (2.15)
Since
Y_i = Xri( rz) IX’
we have

cov (£)
= B[Xri( X7 Xri) T XY — Xopi (X Xri) T XL X B X
[Xri(X7:Xr) "1 XY — X0i( X7, X00) 71 X X )
= 05 Xri(X7:Xri) T X750
Hence, we obtain

n

3 var (%) = o3 tr Xeu(X0Xo) 1 X

C = ro3; (2.16)
SSBri= ) (v — ) = Y. [B(%) - B(%y)]
j=1 j=1
= [Bw-2))] [E(Y - 2.)]
= {B(I — Xoi( X0 X)) Xl 1) Y {B(I — Xni X1 Xoi) " Xri]1)}
= (XB)'lI - Xri(xn-xri)-lxg-l(xg)
= Zagxri; (2'17)



and
E(SS)=E{Y -Y,)(¥ -1,
= E{Y'[I — Xyi(X7: X)X, Y}
= E{ tr (Y[I - Xr:(X7,X7) 1 X]Y)}
= tr {E[(X. - XB)"(I - Xri(X7:Xr:) "' X},) (¥ — XB)]
+ (XB)'[I — Xri(X7: Xri) ™ X7,)(XB)}
= tr {[I - X,:(X7,X,05) 7' X )08}
+ (XB)'[I — Xri(X7:Xi) T X1)(XB)}
= (n—r)oa + 202 ),,. (2.18)
From (2.17) and (2.18), we have
E(88y;) = SSBy; + (n — r)og. (2.19)

From (2.16) and (2.19), we can rewrite (2.15) as
E(SSy;
(0. r ) _ ( )
0
= vy 42X, — (n — 2r)

Fri

=2X\;i + 7. (2.20)
We have an unbiased estimate of T',; as follows:

n—p—2
n—p

f=2. [23\,,- +(n— r)] — (2p - 37) (2.21)

since
25\"- +(n—r)=(p—1r)Vy.

Hence, we can show that for n — p > 2, we have

Ny {(p—7) + A} (n—p) _ 3
E(Frz)—z n—op (P ) ( —r)(n p— 2) (2p 3)

= itr =T, (2:22)

n—p—2

From (2.5), we see that ),; is a measure of the error. That is, \,; is used to measure the
fitness of the reduced model M,;. If it is a good fit then A,; = 0. Then from (2.20), we
have

I, =~r.
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(Note the notation ~ means “approximately close”.) We require the total square error to
be small for good fit. Hence I',; should be as small as possible and close to r. Hence A,;
should be as small as possible.

We summarize these results in the following theorem.

Theorem 2. The total squared error (bias plus random) for n data points, using a fitted
model M,; with r terms, as defined by Mallows (1973) (see also Daniel and Wood (1980))
is

n
Z(Yl.‘l - VJ')Z’
=1

where v; = E(Y;) and Zi = (ﬁl,...,ﬁn)’ = X,i(X],X,:)"1X!.Y. Now from (2.21), as
n—p>2,

n—p—2 .
ri =2 ————[2Ay —7)]— (2p—
r — [2Ari + (n—7)] — (2p — 3r)

is an unbiased estimator of the standardized total squared error T',;. Also if SSB,; =~ 0,

then I'y; &~ r.

The Relation between R2 and I',;

From (2.7) and (2.21), we have

. 1 — R2
]:‘"-:Z(n—p-——Z)l_Rr; —(2n — 3r — 4). (2.23)

Hocking (1976) pointed out that the R,; plot may be quite flat for a given range on r:
the coefficient (n — p—2) can magnify small differences causing [',; to increase dramatically

as r is decreased.
The Relation between F-statistic V,; and [,;

From Theorem 2, we have

s _2ln—p—2)(p—r7)

I,; = Vei — (2p — 3r). (2.24)
n—p

The Relation between Mallows’ C,; and [,
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Mallows’ C,; is defined as follows:
Cri=(n—r)Vei— (n—2r).
Hence

_2(n—p—2)(p-
T (n-pn-r)

=

r) [Cri + (n — 27)] — (2p — 37). (2.25)

3. A Two-Stage Selection Procedures R,

Now we propose the following selection procedure which depends on the procedure S.

R,: At stage 1, apply the selection procedure S to select some desirable reduced
models denoted by the set T. At stage 2, from the set T, we select the reduced
model associated with the smallest f‘,-,-.

From (2.8), (2.9), and (2.10), we see that the following selection rules S; and Sy are

all equivalent to S.

S1: select model M,; if (1 — RZ) > d,(1 — R?);
S2: select model M,; if V,.; > da;

where d; and dy depend on n, p,r, ¢ and P*.

Gupta, Huang and Chang (1984) have studied some optimal properties of Ss. Huang
and Panchapakesan (1982) have studied some selection procedures related to S51. S5 can
be used in the stepwise regression analysis. Also S; can be used for analysis of all possible
regression models.

~ From the previous discussions, one can use S, to compute the critical values dy to
decide the acceptance or rejection of the reduced models. From the selected models we
choose a suitable one by plotting - against r with T',; as small as possible (see Theorem
2). It follows from the fact that SSB,; [o2 = 2),;, that the large values of ),; measure

the degree of the departure from the line I',; = r.

Computation of Constants D,;

Patnaik (1949) provided an approximation to the noncentral F distribution (cf. Guen-
ther (1979)) by the relation

F(plap27A) ~ [(pl + 2)\)/p1]F(p*,P2) (3'1)

9



where

p* = (p1+22)%/(p1 + 4X).

Hence, we can determine D,; from the following (approximation) equation (see Theorem
1):

PEFW -0 2 |2 Dy = P, (32)

where p* = JL(%, and F(p*,n — p) is the statistic which follows the central F
distribution with p* and n — p degrees of freedom.

Ghosh (1973) has shown that P{F(p;,ps) > ¢} is monotone decreasing in p; and
increasing in p,.

Thus we can use interpolation method to obtain the critical value ¢ = F (p*,n—p; P*)

by noting the fact that F(p*,n — p; P*) = [F(n — p,p*;1 — P*)]~1. Note that

p—r)+2A

D,; = ( . F(p*,n — p; P*). (3.3)

Asymptotic Results for R,

Note that procedure R, at the first stage satisfies (2.13). Suppose we want to deter-
mine the (minimum) number of independent variables to be chosen for a specified value
of A. Assuming the sample size n to be sufficiently large, we study the asymptotic results

for the two-stage selection procedure R,. Let n — p> 4.

P* = P{Vyi > DyilAvi = A}
Vri - E(Vn) > Dri - E(Vrz)

Var(V;;) — +/Var(Vy)

~P{Z>a} = 1-9%(a),

A7'1.' = A}

where ®(-) is the standard normal distribution function,

(p—r+2A)(n—p)

E(Vr‘i): (n—p—Z)(p—r) ’
and
N 2(n — p)* ((p— 1) +2A)2 (p—7) +4A
Va.I‘(Vrz)_ (p—r)z(n—p—2) [(n—p—-Z)(n—p—4) n—p—4 :l

10



For a fixed random sample, we have

P 2(n—p—2)(p—r)
reT — n_p

Vei — (2p — 3r).
Now, we rewrite f‘,-i as follows:

= 2(n — Pn—_z)(P —) {\/m E(Vy:)

Var(V;;)

p

+ E(Vri)} — (2p — 3r).

We are trying to minimize the following function f‘,‘f‘i with f,‘?‘t < T,; to obtain an upper
bound of A, for the given value p — r = z and a < 0.
Let

\/ \/ (P=r+24)7  p—r+4A
(p—r (n— p 2V (r—p-2)n—-p-4) n-p-4
(P—r+2A)(n—p)\ .
G e My
= V2Da[Az? 4+ Bz + C]% — x4 4A + p,

where ( 2
— n—p
BRI CET T H L
B 4A(n — p)? (n —p)? _
(r—p—2)2n—p-4) (m-p-4)(n—p-2)
4A%(n —p)2 4A(n — p)? _
" m-p-22n-p—-4) (n-p—4)(n-p—2)
and
p=2n-—p-2)
n—p

Since A = 0, B~ 1, C ~ 4A and D = 2, hence, f‘f; ~ 2v2a VT +4A — z + p + 4A.
By letting %& = 0, we have A ~ 2a? — z, such that %‘"ZL > 0. Hence, f‘,‘?‘z is minimized
when A =~ 2a? — z. For which, we can find an upper bound of A such that at least how
many variables are excluded for this bound, since A is decreasing in z; see the following

example.

Example:
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We use the Hald data (Draper and Smith, 1981, Appendix B, page 629) to discuss

the procedure as follows.

No. X1 X2 X3 X4 Y
1 7 26 6 60 78.5
2 1 29 15 52 74.3
3 11 56 8 20 1043
4 11 31 8 47 87.6
5 7 52 6 33 95.9
6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1
10 21 47 4 26 115.9
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4

Daniel and Wood (1980, p. 89) have computed C,;’s for all equations. Using their

values, we compute T',; as follows:

A

Variables in Equation r Cr; T, Vi

. €1 2 202.7 82.6 19.25
X 2 1426 58.0 13.78
X1, X5 3 2.7 1.9 0.97*
X3 2 3153 1286 29.48
X1, X3 3 198.2 60.6 20.52
X2, X3 3 62.5 19.9 6.95
X1,X2,X3 4 3.0 3.3 0.89*
Xy 2 1388 56.5 13.44
X1, X4 3 5.5 2.8 1.25
X9, X4 3 1383 42.6 1.45
X1, Xa, X4 4 3.0 3.3 0.89*
X3, X4 3 224 7.8 2.94
X1, X3, X, 4 3.5 3.4 0.94*
X, X3, X, 4 7.3 4.1 1.37*
X1, Xo, X3, X4 5 5.0 5.0 1.00*

As an illustrative example, we compute some D,;’s in (3.3) for P* = 0.90, and A = 3

as follows: n =13,p = 5.

12



r 2 3 4
Dy; 0.939 1.1106 1.647

Now we apply the procedure R,. At stage 1, we exlude all inferior reduced models.

This results in the selection of the models marked *. Thus, we retain the following reduced

models:
{X1,X>}, {X1,X5,X3}, {X1,X2, X4}, {X1,X3,X4}, and {X2, X3, X4}.

These above are the desired reduced models. Then, we use f‘”- versus r plot:

5 =
(]3233’4)
o (2,3,4)
4 e
. 1,3,4
o (1,2,3) (1,2,4)
R 3+
TY"i
2 F ® (1,2)
1 =
| [ 1 1 1
1 2 3 4 5

® means a single point.

I means a double point.
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From this plot, we see that the reduced model {X;,X>} is our desired model. Note
that after the first stage, we can state with confidence probability P* = .90 that all other
models (A = 3) — except the 5 reduced models given above — are inferior and have been
excluded.

We also note that the largest value of r for the selected models is 4. If we take 4 as an
upper bound of r to start with, then an approximate upper bound of A can be obtained
using the asymptotic relation A ~ 2a2 — (p — r). For P*=0.90, we get @ = —1.282 and
therefore A =~ 2.29.
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