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Burgess Davis

Summary. An idea of Burkholder is used to give a simple proof of the Barlow-Yor
martingale local time inequalities. Related inequalities are proved for some stable pro-
cesses.

Let L,—c0 < a < o0, t > 0, be jointly continuous local time for the standard
brownian motion B = B;, ¢t > 0, and put L} = sup, LY. In [2], (see also [3]), M.T. Barlow
and M. Yor show the existence of absolute constants ¢, and Cp, such that, if 7 is a stopping
time for B,

e, ETP/? < EL® < C,Er*%,p> 0. (1)

Brownian motion is the normalized symmetric stable process of index 2, and Trotter
[6] proved it has a jointly continuous local time. The symmetric stable processes of index
a € (1,2), as well as some other stable processes, also have a jointly continuous local time
(see [1]). We prove the following theorem.

Theorem 1. Let Z = Z;, t > 0, be a stable process of index a with jointly continuous
local time L¢, and put Lf = sup, L. There exist positive constants k, and K,, depending
only on Z, such that if T is a stopping time for Z,

k,ETP/® < EL¥* < K,rP/* p>o. (2)

Our proof of Theorem 1 uses scaling to prove good-bad lambda inequalities and should
be thought of as an adaptation of a similar argument used by D.L. Burkholder ([4]) in the
context of maximal functions for » dimensional Brownian motion. The Barlow-Yor proofs
also involved good-bad lambda inequalities and thus both proofs give a generalization of
(1) (and in our case (2)) to functions other than z? which satisfy a growth condition. See
[5], p. 154, (3). Also, (1) may be rephrased as a result about continuous martingales. See
[2]. Theorem 1 is the first extension we know of (1) to discontinuous processes, a question
mentioned in [3].

Now (1) is proved. The proof immediately generalizes to a proof of Theorem 1. It
will be shown that there are functions «(t) and B(t) on (0,00) which approach zero as ¢
approaches zero and such that for any stopping time 7 and any §, A both exceeding O,

P(rY% > 2), L < 6)) < a(6)P(r1/2 > 1), (3)
and
P(L:>2), Y2 < 6)) < B(S)P(L:> A). (4)

These are the Burkholder-Gundy good-bad lambda inequalities. They quickly, essentially
upon integration, give (1). We have written (3) and (4) in such a form that readers
unfamiliar with this may follow, line for line, the presentation in [5], p.154, with 6% there
replaced by a(6) and g(6).



The functions a and § are defined by a(6) = P(L} < 6//3) and B(6) = P(vy < 62),
where v, = inf{t : L{ = a}. To show that both a(6) and $(6) approach zero as § — 0 we
must show P(L] = 0) = 0 and P(v; = 0) = 0. The first of these equalities is immediate,
for example, from the facts that L} > L3 and P(LY = 0) = 0, or in several other ways.
That P(v; = 0) = 0 follows from the joint continuity of L¢ in ¢ and a, and the fact that
L = 0if | a |> supgce< | Bs |[= ®(t). Since (I’(t) — O0ast— 0,on {v; =0}, L} > 1 for
(a, t) arbitrarily close to (0,0) which, since L3 = 0, contradicts joint continuity.

Now if 4 > 0, the process y"Y/2B;, t > 0, is standard Brownian motion, so if
@1,...,04y are any numbers and t;,...,t,, are nonnegative numbers the distributions of

the two random vectors (Lt )i1<i<m, 1<i<n and (4~ 1/2L‘/_a’)1<1<m, 1<i<n are the same.
Together with the joint continuity of L$ this yields

*dlst \/_L (5)

and 1
ist.
vy 5 Ny (6)

Let ch, i = sup, (LG — L%). The third of the following inequalities follows from the first
two. '

Lrw,y] + Lf‘y 2 2 sz,z], 0<z<y<-=z (7)

% dlst *
[zy] = Ly —z 0Zz<y. (8)
Pop—va<0) < Plvp_o<¥0) if 0<a<b, §>0. 9)

Next we prove (3). Assume P(r!/2 > X) > 0. Then

P(r/? > 2), L <X | 7Y% > X)) < P(Liy < 6A |72 > 1))
< P(Lfya,q00) < 6X | 72 > 3)
= P(L%. < 6))
= P(L] < §/v3),

using the Strong Markov Property and (5) for the last two inequalities. The proof of (4)
is similar. Assume P(L} > A) > 0. Then

P(L: > 2, 7Y/2 < 6X| LE > )
= Pvax <7, /2 < 6 | va < 7)
< P(vaa <, (var — 'v,\)l/2 <6X|va<T)
< P((var —va)Y2 < 6 | vy < 7)
= P((vzx — va)Y2 < 6))
< P(vy? < 6X) = P(v; < 62),
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using (9) and (6) for the last two steps.
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