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ABSTRACT

Relative efficiencies of logistic regression to normal discrimination in the stratified
sampling case, and mixture sampling to stratified sampling for logistic regression and
normal discrimination are derived. These results can be used to decide whether mixture
sampling or stratified sampling is preferred.

1. Introduction

Suppose that a k-dimensional vector X can only arise from one of two normal popu-
lations Hy and H; with mean pp and common covariance 3, where A = 0 with probability
mo if X is from Hy, and h = 1 with probability m; otherwise, where ny + mp = 1 and
0 < mp < 1. Denote the probability density function of z given h by Py (+). If an individual
with an observed value for X, say z, is to be classified into one of the two populations.
Define L9z, 8) = By + 6’z, where

™ 1 _ _
Bo = log(;) - 5o Y1 — oo o),

0= (:U’l /"'0)7
( AT

)
( z)kxb
)

= (Koi)kx1- (1.1)

The classification rule, i.e., Fisher’s “linear discriminant function”, is to assign z to pop-
ulation H; if L(z, ) > 0 and to population Hy otherwise. It is well-known that the rule
is optimal in the sense that it minimizes the expected probability of misclassification (An-
derson, 1958). Under zero-one loss function, it is a Bayes rule w.r.t. 71 too. Let P{H;|z}
be the posterior probability of H; given X, where i = 0 or 1. Note that L(z,3) > 0 if and
only if

7r1P1(a:) Z 7TOP0($). (12)
Also, we observe that (1.2) holds if and only if
P{Hi|o} > P{Hy|}. (13)
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we note that

P{Hi|z} = exp(Bo + 6'z) /[1 + exp(Bo + §'x)],
P{Hy|z} =1~ P{H;|z}, (1.4)

where (Bo,6') = B; is a (k 4 1)-dimensional parameter vector. It is easy to show that (1.4)
holds if and only if

w1 Py (z)/[moPo(z)] = exp(Bo + 6'x) (1.5)
holds.

Now, we consider estimation of the unknown parameter B. First of all, we focus on
two types of sampling: (1) mixture sampling, that is, {X71, A1), ..., (Xn, hn)}, a random
sample of size n is taken from a mixture of the two populations; (2) stratified sampling,
that is, {X1,...,X,,}, a random sample of size n; is taken from population H; and
{Xn1+1,- -+ Xn 4no }» @ random sample of size ng is taken from population Hy. Let n =
n1 + ng. For each type of sampling, we consider two methods for finding estimators of S.
Throughout this article, we define 7* = nq/n.

The first approach is to use the maximum likelihood estimation (MLE). This will be
referred to as “normal discrimination”. We can find the MLE of p1, 1o, and ¥. Therefore,
by (1.1), the MLE of 3 can be found if m; is known. If m; is unknown, then we need some
conditional like (A) (stated in section 2) in order to obtain the MLS of 5.

the second approach is to use the so-called logistic regression. Here, we denote it as
“logistic discrimination”. That is, to find an estimator of 8 (i.e., M-estimator of 8) by
maximizing £s(8) (or £x(B)) with respect to 8 if we use mixture (or stratified) sampling,
where

lez POxz) ia

T
o~ 110
; n1+ng
117

25(B) = LT H Pox;, where
i=ni+1
Pix = exp(ﬁo +6'z)/[1 — exp(Bo + 6'z)], and
Pyx =1- Py .

1.2 Motivation

Efron ([5] in 1975) compared logistic discrimination approach with normal discrimi-
nation approach based only on mixture sampling. He just made his comment on stratified
sampling in the following quotation:

“Most frequently, the sample size n, (for the first group) and ng (for the second group)
are set by the statistician and are not random variables at all.” (Efron [5] in 1975, p. 898).
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Please note that he mentioned it and did not really compare mixture sampling with
stratified sampling. This comparison has not yet actually been studied rigorously. The
lack of any rigorous study motivates me to investigate this issue.

Suppose that there is a choice between mixture sampling and stratified sampling.
Generally speaking, the goal of this article is to work out answers for the following two
problems:

(1) Using the normal discrimination approach, under what other conditions is the mixture
sampling preferred to the stratified sampling and vice versa?

(2) Using the logistic discrimination approach, under what other conditions is the mixture
sampling preferred to the stratified sampling and vice versa?

1.3 Summary

In section 2, we give 4 Lemmas. They provide background to obtain the main result.
In sections 3 and 4, we study the relative efficiencies of mixture to stratified sampling for
logistic and normal discrimination respectively. Some relative efficiency plots are provided.
We then make choice between mixture and stratified sampling for each approach. Based
on our findings, we give two suggestions in section 5.

2. Preliminary Lemmas

This section defines the expected error rate (EER), and the relative efficiency measure.
Four lemmas are given on the EER for normal or logistic discrimination under mixture
or stratified sampling. Firstly, we consider the case where m; is unknown or no prior
information available. In order to estimate the m;, we impose on the following extra
condition:

(A) Let another sample of size m be taken from the mizture of two populations, independent
of the stratified sample of size n, and - — R, a non-negative finite constant, when n — co.

We define 7; = proportion of individuals which came from population H; in the
random sample of size m. It is easy to see that #; is the MLE of m; satisfying

’fl'l ﬁ) m1 (21)
and \/ﬁ{’ﬁ'l - 71'1} —L) N(O, 7('171'0) (22)

Secondly, we restate the definition of “expected error rate” (Efron 1975). Suppose
that under some method of estimation (say, M), (™ satisfies

Atn L
V(BT = B%) = Npia(0,V),
where V' = (v;;). From Theorem 1 in Efron (1975), the expected error rate is approximately

m1¢(d 2\ A2
EER(M) = “%2(7) © [Voo = X Y1 + Az UL +ua2 U, (2.3)




ignoring terms of order less than 1/n, where d = A/2 + \/A,

d
d) = Nor /_oo e~t/24t, X =log(mi/mo), and A = {(11 = o) =7 (11 — o) }-

Also, we see that the expected error rate is unchanged under linear transformations of the
data. Without loss of generality, we consider the standardized cases where

w1 = (A)2er, po=—(A/2er, and T =1I. (2.4)

Hereafter, we will write EER instead of EER(M) if no ambiguity occurs.

Thirdly, we restate the “relative efficiency” measure (Efron, 1975) which is used
through this article. Now let A, B be two methods of estimation of 5. We define the
relative efficiency of B to A, denoted EFFy(A, B), by

EER(A)

EFFy(A,B) = BER(B)

(2.5)

where the expected error rates, EER(A) and EER(B), are defined as in (2.3). We
note that EFFy(A, B) < 1 if and only if A is more efficient than B. Also, we define
the asymptotic relative efficiency of B to A, denoted EFF (A, B), by EFFy (A, B) =
hm EFFy(A, B). If no ambiguity occurs, we may write EFFy(A, B), EFF.(A, B) sim-

ply as BFFy, EFF, respectively.

Recall that we can restrict attention to the standardized situation (2.4), without loss
of generality. Let

A2 A2 ) Rr*(1 — m*)
* _ . - % 1 _ *
Qf = T AL -2+ Rl 28t (- )] S
Q5 =1+ A’n*(1— %),
. AL+ 2)0AY/A + A2AL/A? Rr*(1 — %)
Q3= : g L

and Qj = 1/43,
W* = A2/4+ A1 —20%) + A2 /A2[1 + 2A2%70% (1 — %)),
where Q1, Q2, @3, Q4 and W are obtained from QF, @3, Q%, Q% and W* by replacing m; by
7* in the above formulas.

Now we state the following four lemmas. Proofs can be found in the Appendix.

Lemma 1. Assume that normal discrimination with stratified sampling is used. (i) If my
is unknown, then

EER = m¢(d)[h(r*) + B/ (mom)]/[2An),
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where h(ﬂ'*) _ {A2/4 + /\(1 _ 271—*) + /\2[1 + 2A27r*(1 —_ w*)]/AZ

+ (k= 1)1+ A%x*(1 — 7))} /[7*(1 — ©*)].

(ii) If 7y is known, then
EER = m¢(d)h(m*)/[2An].

Lemma 2. Assume that logistic regression with stratified sampling is used. (i) If 7y is
unknown, then
EER = m1¢(d)[h(m1,7*) + R/ (mom1)]/[2An],

where

h(my, 7%) = {[A5 + 20AT/A + N*AG/ A]/(AFA3 — AT?)
| — 1+ (k= 1)/A5}/[x*(1 — 77)].

(ii) If 7y is known, then
EER = m¢(d)h(my, n*)/[2An].

Lemma 3. Assume that normal discrimination with mixture sampling is used.

(i) If 1 is unknown, then

m1¢(d)

EER = “SAn

{h(m1) +1/(mom1)},

where

1
h(mi) = %——;{Az/él + M1 = 2m1) + A2/A?[1 + 2A% 7 7]
170
+ (k= 1)(1 + A%mym) ).
(ii) if 7y is known, then

EER = m¢(d)h(m1)/[2An].

Lemma 4. If one uses logistic regression and mixture sampling, then

b)) [Ap+2A10/A £ XA/ k-1
BER= 3R mom AoA; — A2 T4,

Note: The above is true whether 7y is known or unknown.




3. Mixture vs. Stratification for Logistic Discrimination

In this section, we assume that we want to use the logistic discrimination approach.
Depending on m; being known or unknown, Theorem 1 gives the relative efficiency of
mixture sampling to stratified sampling. Two corollaries are derived. We will then use
them to compare mixture sampling versus stratified sampling.

Theorem 1. (i) If m; is unknown, then the relative efficiency of mixture sampling to
stratified sampling for logistic regression is

Q - EFFi + (k- 1)EFF,

EFF, = , 3.1
2 07 (h=D) (3.1)
where o
o713
EFF| =
Tl =m)(Qs—R+1)
T1m0Q%
EFF = —-+0%¢
(1 — 71*)Q4
and Qs—R+1
— 3 — .
°="0

(ii) If 1 is known, then (3.1) is valid with R = 0.
Proof: We consider two cases:

Case (i): 71 is unknown. From Lemmas 4 and 2, we see that

m1mo(Q3 + (k- 1)Q7)

BT = )@ 71— Bt (k- 10

We can rewrite it as a weighted average of the relative efficiencies when & = 1 and
k = co. Hence (i) is proved.

Case (ii): my is known. From Lemmas 2 and 4, we see that EFFy, is obtained by taking
R =0 in Case (i). O

Anderson (1972) suggested that 7* = 1/2 is intuitively reasonable. The conjuncture
has been somewhat confirmed by Kao and McCabe (1986). Here, we are interested in
making comparison between both sampling schemes when n* = 1/2. It is easy to see the
following.

Corollary 1.1. Assume that #* = 1/2. (i) If 71 is unknown, then

Q-EFF, + (k—1)EFF,,
Q+(k-1) ’

6
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where

A2/ AN AL

(Ag 4 2XA1/A + N2A/A?) ’
EFFOO = 47T17TOA0/A8,

EFF; =

and

(Ag + 20A1/A + N2 Ay /A2) A
(AoAz — AY) '
(ii) If 7 is known, then (3.2) is valid with R = 0.
This corollary implies that EFF < 1, if we take 7* = 1/2. In other words, in this

case, the stratified sampling is preferred to mixture sampling. Figures 1 and 2 give plots
of relative efficiencies with respect to ny, for 7* = 1/2, m; = .5(.005).995 and A = 2, 4.

Q=

In case 7* # 1/2, we make comparisons by varying all possible 7* according to =.
We obtain the following Corollary 1.2. Assume that #* = 7y, (i) If 71 is unknown, then

Q-EFF, + (k- 1)EFF,

EFF, = A , (3:3)
where R_1
BFR =1+ o—%7,
EFF, =1,
and Qs—R+1
°C o

(ii) If 7y is known, then (3.3) is valid with R = 0.

From Corollary 1.2, we have

EFF, {

VIIA

b1 R{§}1

In other words, we have
EFR{Z}1 it R{Z}1

Figures 3 and 4 give plots of relative efficiencies with respect to m; for 7* = 7,1 =
.5(.005).995 and A = 2.4. If R < 1, then there exists 7* such that EF Fy (in the formula
(3.1)) is less than or equal to 1. This can be justified by Theorem 3.2 (Kao and McCabe
1986). Here we note that EFFy < 1 if R < 1, and EFF} < 1 with strict inequality for
some 7y if R = 1. In this case, stratified sampling is preferred. Now if R > 1, then the
mixture sampling plan provides more information on 7; than the additional sample of size
m. Therefore, mixture sampling is preferred.
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4. Mixture vs. Stratification for Normal Discrimination

In this section, we assume that we want to use the normal discrimination approach.
Theorems 2 and 3 give the relative efficiencies of mixture sampling to stratified sampling for
the case when m; is unknown and known respectively. Based on the two derived corollaries
and Theorem 3, we suggest a choice between the two sampling schemes.

4.1 7; unknown.

Theorem 2. If m; is unknown, then the relative efficiency of mixture sampling to stratified
sampling for normal discrimination is

Q- EFF, + (ki — 1)EFFo,

EFF, = O+k_1 ! (4.1)
where . o
BEE = 7r*(10—17r*) Q1 e
To™1 5
EFF,, = %Tf):ﬂ—)%—z
and O1+1-R
Q= 0,

Proof: From Lemmas 1 and 3, we see that

mom1 (@1 + (k- 1)@3)

BEFF, = m(1—7){Q1+1—-R+ (k- 1)Q2}

We can rewrite this expression as a weighted average of the relative efficiencies when
K =1 and K = 0o. Hence the theorem is shown O

Here, the same comment just after Theorem 1 follows. It is straightforward to obtain

Corollary 2.1. For n* = 1/2, the expression (4.1) holds with

mimo [A? + 4(1 + A2/2)X2/A? + R/(mimo)]

EFF, =
YT OAJA+ M1 —2m) + (1L + 2821 mg) A2 /A2 17
. 7T071'1(4 + AQ)
EFFOO - 1+ A27T17T0 '
Q- A2/44+ X1 —2m1) + A2(1 + 2A%71,7m0) /A2 + 1

1+ A271'17T0

From corollary 2.1, it is easy to show that if 7* = 1/2 then EFF.,, < 1, where
the inequality can be strict for m; # 1/2. Therefore, in this case, stratified sampling is
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preferred to mixture sampling for normal discrimination. Figures 5 and 6 give plots of
relative efliciencies with respect to 7, for 7* = 1/2, m; = .5(.005).995 and A = 2, 4.

For the case 7* # 1/2, again we make comparisons by varying all possible 7* according
to my.

Corollary 2.2. For n* = 71, we have (4.1) with

Q1
Qi+1—-R’
FFF, =1,

EFF =

and
_Q1+1—R

°="0

Recall that R = lim n/m, in condition (A) of section 2. from the above corollary,

m,n—oo
it follows that
EFF, {g} 1 ifR{g} 1.

that is,
EFFk{§}1 ifR{§}1.

Figures 7 and 8 give plots of relative efficiencies with respect to ny, for 7* = 71, m =
.5(.005).995 and A = 2,4. If R < 1, then there exists 7* such that EFF}, (in the formula
(4.1)) is less than or equal to 1. This can be shown from Theorem 3.1 (Kao and McCabe
1968). Here we note that EFFy, < 1if R < 1, and EFF), < 1 with strict inequality for
some 7y if R = 1. In this case stratified sampling is preferred. Now if R > 1, then the
mixture sampling plan provides more information on 7; than the additional sample of size
m. Therefore, mixture sampling is preferred.

4.2 m; known.

Theorem 3. If 71 is known, then the relative efficiency of mixture sampling to stratified
sampling for normal discrimination is

Q-EFF, + (k—1)EFF,,

EFF, = (4.
; Q+k—1 ’ (4.1)
where -
T1To
FF; = .
EFF (1l —m*) W'’
1T Q5
FFFo = ——— . 2=
& m™(1—7*) Q’
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and

Proof: From Lemmas 1 and 3, we have

mymo[W* + (k — 1)Q3]

P e+ - D@

We can rewrite this as a weighted average of the relative efficiencies when £ =1 and
k = oco. Hence the theorem is proven. O

From Theorem 3.1 by Kao and McCabe (1986), there exists optimal 7* in (0,1) sat-
isfying
1 \ . 1
W* +(k-1)Q3] <

71'*(1—"/1'*) Ty

(W + (k- 1)Q2),

where the inequality can be strict for some 7;. In this case, therefore, we have EFFj < 1.
In other words, stratified sampling is preferred to mixture sampling.

Figures 9, and 10 give relative efficiencies with respect to my, where 7* is optimally
obtained as in Theorem 3.1 of Kao and McCabe (1986) for m; = .5(.005).995, and A = 2,4
for m; = .5(.005).955,

5. Suggestions

Suppose that the underlying distributions are multivariate normal with different

means and common covariance. Recall that R = lim n/m, in condition (A) of sec-
7,M—» 00

tion 2. If one has a choice between mixture sampling and stratified sampling, then we
suggest the following two decision rules on making a choice between them.

(i) If 7y is known, then it is better to use stratified sampling.

(ii) If m; is unknown, then stratified sampling is preferred to mixture sampling if ® < 1,
and mixture sampling is preferred to stratified sampling if R > 1.

The above holds no matter which approach (i.e. normal or logistic discrimination)
you want to use. It also show us the robustness by using the logistic regression approach.
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Appendix

Proof of Lemma 1. (i) Assume that 7 is unknown. From Theorem 3.3.1 (Kao, 1982),
we note that the MLE of 3, 82 has asymptotic covariance matrix,

. 1
Liktn)e(htr) ,”*(1 _ 7T*)
- A2 Rr*(1—7* A * ~
A Erlom)  _A(1-2m) 0 0
—2(1—-2r*) 142A%7*(1—7%) 0 0
X 0 0 1+ A%r*(1 — %)
I 0 0 1+ A2r*(1 — %) |
(A.1)
The expected error rate is ”1¢(d) {h(m) + 2= R 1 where
1 A? A2

h(r*) = {—+)\(1—27r) 14 2A%0* (1 — 7*)]

Az[
+ (k= D)1+ A%r*(1 - 7*)]}.

(1 — 7*)

(i) if 7y is known, then it follows from Corollary 3.3.1 (Kao, 1982) that the asymptotic
covariance of Bg is obtained by taking R = 0 in 7. Therefore, the expected error rate is

m¢(d)h(n*)/[2An]. =

Proof of Lemma 2. From Theorem 6.4 (see Kao and McCabe, 1983) the M-estimator of
B, Bsr exists and has the asymptotic covariance matrix

Ji =J 7 — En/{=*(1—7%)},

where

Ay AT 0 - 0
A* A2 0 -~ 0
J=m*(l-nx*)| 0 0 45 0 ,

0 0 0 ... A inemen
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and

= 9ERS) f o exp(—a?/2) L
L Vor m* exp(Az/2) + (1 — 7*) exp(—Az/2)
1 = 0,1, 2. Therefore

Jro_ 1
L™ (1 — o)
- Al — A7 B
e — 1 s 0 0
A()Az—ﬁ}*2 AoAi:Alz
* _* 1 * * *0 * O 0
AoAz_A12 AoAz“Al2 1
0 0 a0 (A.2)
1
L 0 0 0 AS d

(i) Suppose that 7y is unknown. From theorem 6.6 (see Kao and McCabe, 1983), we note
that the adjusted M-estimator of 3, sz has the asymptotic covariance matrix

R

Jr +
L rom

. E]_]_. )

The expected error rate is
{h(m1, 7*) + R/(mom1) }m18(d) /[24n],

where
1 {A3+2(A/A)A{+>\2A3/A2 14 k—l}
(1 — m*) A Az — A2 Ay

(ii) Suppose that 7y is known. From theorem 6.5 (see Kao and McCabe, 1983), the adjusted
M-estimator of 3, Bsr has the asymptotic covariance J;. Therefore, the expected error

rate is D
f%i—)(h(m,ﬂ*)). O

h(my, %) =

Proof of Lemma 3. (i) Assume that 7; is unknown. From theorem 3.3.3 (see Kao 1982),
we note that the MLE of 3, B u has asymptotic covariance >y, which is obtained from the
matrix £} in (A.1) by replacing m; for 7* and taking R = 1. Therefore, referring to the
proof of Lemma 1, the expected error rate is

m1¢(d)
2An

{h(ﬂ'l) + 1/7’(’071'1},

12



where )
A(my) = ——{A%/4+ A(1 = 2m) + 32/ A’[1 + 2A%m o]
140
—l— (k — 1)(1 + A27T17T0)}.

(ii) If 7y is known, then it follows from Corollary 3.3.3 (see Kao 1982), that the asymptotic
covariance of By is obtained from the matrix ¥} in (A.1) by replacing 71 for 7* and taking
R = 0. Hence, referring to the proof of Lemma 1 again, the expected error rate is

m1¢(d)h(m1)/[2An]. O

Proof of Lemma 4. from Theorem 5.3 (Kao and McCabe 1983) or the Lemma 3 by
Efron (1975), the M-estimator of 8, Barr has asymptotic covariance,

1
Jpt=
L T1To
- Ay — A 0 -
AgAr—AZ  AgAy—A?
v - 0 0
AgAz—AZ  AgA,—AZ
0 0 += 0
.0 0 0 -
The result follows from (2.3). a
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Figure Titles and Legends

Relative efficiencies for n* = .5, m; = .5(.005).995, when A = 2.0 in section
3. Read below from “|”: EFF, for (1) R = 1.2, (2) R = 1.0, (3) R = .8, (4)
R=.6,(5)R=.5,(6) R=.4,(7) R=.2 (8) R=0; and (9) EFF...

Relative efficiencies for m* = .5, m; = .5(.005).995, when A = 4.0 in section
3. Read below from “|”: EFF; for (1) R =12, (2) R=1.0, (3) R = .8, (4)
R=6,(5)R=.5,(6) R=.4,(7) R=.2,(8) R=0; and (9) EFF.

Relative efficiencies for 7* = my,m = .5(.005).995, when A = 2.0 in section
3. Read below from “|”: EFF; for (1) R=12, (2) R=1.0, (3) R = .8, (4)
R=16,(5)R=.5,(6) R=.4,(7)R=.2,(8) R=0; and (9) EF F.

Relative efficiencies for 7* = w1, 7 = .5(.005).995, when A = 4.0 in section
3. Read below from “|”: EFF; for (1) R=1.2, (2) R=1.0, (3) R = .8, (4)
R=.6,(5) R=.5,(6) R=.4, (7) R=.2, (8) R=0; and (9) EFF...

Relative efficiencies for n* = 5,71 = .5(.005).995, when A = 2.0 in section 4.1.
Read below from “|”: EFF; for (1) R = 1.2, (2) R = 1.0, (3) R = .8, (4)
R=.6,(5R=.5,(6) R=.4,(7) R=.2, (8) R=0; and (9) EFFy.

Relative efficiencies for 7* = .5, m; = .5(.005).995, when A = 4.0 in section 4.1.
Read below from “|”: EFF; for (1) R =12, (2) R =1.0, (3) R = .8, (4)
R=.6,(5)R=.5,(6) R= 4, (7) R=.2, (8) R=0; and (9) EFF...

Relative efficiencies for n* = mp,m = .5(. 005) 995, when A = 2.0 in section
4.1. Read below from “}”: EFF; for (1) R=12,(2)R=1.0,(3) R=.8, (4)
R=6,(5)R=.5(6)R=.4, (7) R=.2, (8) R=0; and (9) EFF..

Relative efficiencies for #* = w1, 7 = .5(.005).995, when A = 4.0 in section
4.1. Read below from “|”: EFF; for (1) R=1.2, (2) R=1.0, (3) R= .8, (4)
R=6,(5)R=.5,(6) R=.4,(7) R=.2, (8) R=0; and (9) EFFy,.

Relative efficiencies for given 71, the optimal 7* vs. w3 = .5(.005).995, when
A = 4.0 in section 4.2. Read below from “|"”: EFFy for (1) k=1, (2) k = 3,
B)k=5 A k=175 k=09,(6) k=11, (7) k =13, (8 k = 15; and (9)
k=17, (10) k = 19, (11) k = 21; and (12) ko

Relative efficiencies for given 71, the optimal 7* vs. m = .5(.005 ) 995, when
A = 4.0 in section 4.2. Read below from “|”: EFFy for (1 ) k=1,(2) k=3,
B)k=5 A k=705 k=9 006)k=11,(7) k=13, (8) k = 15, and (9)
k=17, (10) k =19, (11) k = 21; and (12) ke
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