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1. Introduction

Consider the polynomial regression model in g variables, of degree n, on the g-cube.
Thus it is assumed that for each z = (zy,...,z,) in the g-cube

X={z:|z;|<1, i=1,...,q4} (1.1)

a random variable Y (z) with mean £X 4, f:(z) = f(z)'0 and variance o2, independent of
z, can be observed. Here the regression functions f;(z) are known functions of the form
l'[.ff:l:c;-n" where m; are nonnegative integer with sum < n. It is well known (e.g. Scheffe

(1958)) that the number of such functions is ntq

A design £ is a probability measure on X. The information matrix is given by

) = [ 1(a) 1) €(da). (1.2)

If the design is implementable and N uncorrelated observations are taken, then the covari-
ance matrix of the least squares estimates 8 of 8 is given by

Var (0) = —M~1(¢). (1.3)

Much of the ”Kiefer type” optlma.l design theory is concerned in minimizing some func-
tional of M~1(¢) over &.

The basic criterion of design optimality we shall use here is that of D-optimality (or
D,-optimality) developed largely by Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959,
1960). The D-optimality criterion is known, by the celebrated Kiefer-Wolfowitz theorem,
to be equivalent to the G-optimality criterion. So, the design ¢* is D-optimal iff the
variance function d(z, £*) < K for all z € X, where d(z, ¢*) = f(z)’ M~1(¢£*) f(=).

In the case where interest is in only s of the K parameters in 8, it is customary
to decompose f into f' = (f{, f;) where fa corresponds to the s parameters of interest.
Similarly the information matrix is decomposed into

My, Mm)
M = )
(le M,

The covariance matrix of the s parameters is proportional to the inverse of

To(€) = Mag(€) — M2 (§) M3 (€) Mus ().

(Here we must interpret M. 1—11 as a generalized inverse if rank (Mj;) < K— s.) Correspond-
ing to the Dg-optimality criterion, we have the following theorem (Kiefer (1961), Karlin
& Studden (1966b) and Atwood (1969)).

Theorem 1.1 If M(¢*) is nonsingular, then the following assertions:
(1) the design £* maximizes |Z,(€)|
(2) the design ¢* minimizes max, d,(z, £), where dy(z, £) = d(z, &) — f1(z)! M7 (¢) fi(z)
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(3) max,ds(z,&*) =s
are equivalent.

To find the maximum of | ¥,(£) |, we use the result that

_ M9 |

| Z:(8) |= TMu(d) |

(14)

The model under consideration is invariant or symmetric with respect to the group
consisting of permutations and sign changes of the coordinates. The invariance theorem
( Kiefer (1959), (1961) and Giovagnoli, Pukelsheim and Wynn (1987) ) which concludes
that there exists a symmetric D and Dg-optimal design is a very important tool for ob-
taining D and D,-optimal designs either theoretically or numerically. All of the designs
we consider will be symmetric with respect to the above group.

An outline of this paper is as follows. In Section 2 we discuss the case n = 2. Kiefer
(1961a), Kono (1962) and Farrel, et al (1967) give a complete description of a symmetric
D-optimal design. We give a similar analysis for estimating only the quadratic terms and
simplify the corresponding geometrical considerations. In Section 3 we give some numerical
results for ¢ = 2,3 and n = 3,4, 5. These results support the general idea that the D and
D;-optimal design are “close to” product designs. Thus for the cubic regression in one
dimension we use 4 support points in our design while for ¢ = 2 the D-optimal design is
on a nearly rectangular grid of 16 point! This motivated the use of product designs in
Section 5. Through the use of certain canonical moments we are able to describe more or .
less explicitly the D and D,-optimal product design. These turn out to be fairly efficient.
Section 4 has some preliminary discussion and lemmas regarding the canonical moments.

2. Quadratic Ds-optimal Design.

Kiefer (1961a), Kono (1962) and Farrell, et al (1967) give a rather complete description
of the D-optimal design when n = 2 and ¢ is arbitrary. Further considerations of a similar
nature are included in Lim, Studden and Wynn (1986) where an example involving a
factorial model of type 3927 is analyzed. Here we describe the details for estimating all of
the quadratic terms. The analysis used here originates with Kiefer (1961). Our analysis
of the resulting geometrical considerations are somewhat simpler.

The regression vector is f'(z) = (f{(a:),fé(z)), where fi{(z) = (1,21,...,2,) and
fa(z) = («3,...,22, 21%3,.. . Tg_174). The vector f,(z) contains all the quadratic terms.

By the invariance theorem, there exist D and D,-optimal designs which are symmetric
with respect to permutations and sign changes of z;’s, + = 1,...,9. Both d(z, &) and
ds(z, &) are quartic functions when considered as functions of each variable separately.
Moreover they are symmetric with positive coefficient for z7, so that their maximum can

occur only at x; = £1 or 0. Thus the symmetric optimal design must be supported on E,
where E = {z :| z; |= 0 or 1}.

For symmetric designs supported on E, we let
u= /sz(dz) = /m‘f&'(dz) and v = /x%x%f(ds). (2.1)
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It is then easy to show (see Kiefer (1961a)) that

AM(E) | _ aen
[ M1 (8) |

Some algebra shows that | X,(£) | is maximized at

o (2 +q+5)+(g—1)v4¢® +49+9

4(¢*+q¢+2)

PRGIE (u— ) (u+ (g~ v — qu?). (2.2

(2.3)

2¢%2 — ¢+ 3)u* — ‘
and v*:(q q;qz)fz (¢+1) (2.4)

For 1 =1,2,...,q, let E; be the subset of F consisting of those ;1 - 2¢ elements

with ¢ — ¢ components of £ being equal to zero. The following theorem characterizes those
sets of the form U?=1Er,- which can support a symmetric Ds-optimal design.

Theorem 2.1 The set U3_, E,, supports a quadratic Ds-optimal design for quadratic
regression on the g-cube if and only if

* *

v
—<rys<q—-1, rz=gq. (2.5)

0<r<(g-1)- =

Proof. For ¢ supported on E the space of possible (u,v) is the convex hull of

{(:’,'-,5'%3%’;), i=1,...,q} sincew =0 o & £(E;) and v = 11 {0 E(E;). Tt is not

clear at this point that «* and v* in (2.3) and (2.4) are of this form.
Let z; = % and 2z, = qigu)j Then

29 = qzz— !
2 q—11 qg—1

21. (2.6)

Consider 2; as a random variable on [0,1] and let ¢; and c2 be the lst and 2nd moments

of z;. The set of all possible values or moment space of (¢, q%l-cz —- = 1c1) is the convex

-{—lz% — q_%zl. Note that zg = 1 for z; = 1 and 2z, = 0 for
z1 = 0 or 1/q. The possible values for (u,v) are a subset of these corresponding to z;
having mass only on z; = ¢/q, ¢=0,1,...,q. Figure 2.1 provides a sketch of both sets
when ¢ = 4. :

hull of (2z;,2;) where zo =

Figure 2.1 goes here.
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Since u* > (¢ — 1)/q, we have to choose r3 to be g, which corresponds to (1,1) in
the moment space. Let L be the line which passes through (1,1) and (u*,v*) and uo be
the abscissa of the intersection point of L and the lower boundary of the moment space
(e1, q?_—lcz — ﬁcl)- Then

;1 <uo < ’q (2.7)
iff (u*,v*) is in the convex hull of {(Z L, r;(?—ll)) (2,2 (ra— 1)) (1,1)}. Thus there exists

_g
g’ q(q-1)
a symmetric D;-optimal design on E,, U E,, U E,. It can be easily checked that

g—1u* —o*

= — . 2.8
“o qg 1-—u* (28)
By substitution of (2.8) into (2.7), we get
u* *
0<r;<(¢—1) g ST» T3=4
Substitute (2.3) and (2.4) into =% and use \/4¢2 + 4¢ + ¢ < 2¢+ 1+4/(2¢+1). Then
it follows that
vt —v* <1
1—u*

Thus ro < ¢ — 1, which assures the existence of a symmetric D;-optimal design on Ey U

The weights for a symmetric D,-optimal design with r; = 0 and r, = g — 1 are listed
in Table 2.1 for 2 < ¢ < 5. These would be beneficial if fewer points in the design are
desired. For comparison purposes, included are the weights for a symmetric D-optimal
design from Kono (1962) and Kiefer (1961a). For estimating all of the quadratic terms
only, more weight is on the center and E;_; and less weight on the corners of the g-cube.

Table 2.1 Weights for a symmetric D- and Ds-optimal design
on E with a minimal support for quadratic polynomial regression
on the g-cube.

D-optimal design Dg-optimal design
& (E2) 538 101
=2 | &*(E) 321 539
£* (Fo) .096 270
& (Es) 510 239
=3 | ¢&(E,) 424 528
¢*(Eo) .066 233
& (Eq) 451 241
q=4 | ¢*(Es) 502 577
¢*(Eo) 047 182
£*(Es) .402 230
q=5 | &*(E4) 562 625
¢* (Eo) .036 145




3. Numerical D;-optimal designs.

In this section we consider some numerical results for ¢ = 2,3 and n = 3,4,5. For
convenience we shall call £* a ‘numerical’ D,-optimal design if sup, d,s(z, £*) is found to
be < s to five significant digits. The five digits is somewhat arbitrary. The results were
obtained on a CDC 6500 using single precision.

For ¢ = 2 and n = 3 Farrell, et al (1967) considered a symmetric design ¢ which put
mass wy /4 at (£1,+1), wy/8 at (+1,+a) and (+a,£1) and the remaining (1 — w; —w5)/4
at (b, +b) and showed numerically that | M (&) | was maximized at

a=.3588, b= .4800, w; =.3677 and ws = .4610.

For this design £*, they also computed sup, d(z, £*) numerically and found sup, d(z, £*)
to be < 10 to five decimal places.

We have done a similar analysis for the 4-th and 5-th degree regression on the 2-cube.
Resulting ‘numerical’ symmetric D-optimal designs are listed in Table 3.1. We include the
cubic case for completeness and comparison with Table 3.2. In Table 3.1 a typical point is
indicated. The full design is obtained by taking permutations and sign changes of typical
points. The divisors in the weight column are the number of symmetric points.

In each case we considered a ‘perturbed’ symmetric product design. For example with
g = 2 and n = 4 we use a design with a set of typical points {(1,1), (1,a), (1,0), (b,d)
(¢,0), (0,0)}. For n = 5, we use {(1,1), (1,a), (1,b) (c,¢), (d,d), (e, f) }. In each case the
symmetry allows us to block the information matrix according to the parity of the power
of each component. For ¢ = 2 we divide f into 4 groups while we get 8 groups for ¢ = 3.
Forg=2andn=14

f(’l) :(1,15%,13%,27%33%,17‘11,-'5‘21), fzg) =(331,$1$§,$?),
f(’3) =(z2, T2z2, 23) and fz4) =(z122, 7173, 2325),

The determinant in each case was maximized on the CDC 6500, by using the Newton-
Raphson Algorithm, as a function of the 8 or 10 parameters involved, which gave the
design ¢£* in Table 3.1. Sup.d(z,£*) was computed numerically and found to be < 15
or 21 to five decimal places. As n increases, numerical problems increase dramatically.
For n = 5 an initial starting design was even hard to obtain. For this a program ACED
(Algorithms for the Construction of Experimental Designs by W. J. Welch, see American
Statistician 1985, p. 146) was used to distribute 30 observations on a grid of 681 candidate
points on [—1,1] X [~1, 1]. For n = 6 the ACED seemed to give a reasonable starting design.
However, based on this starting design, our optimization algorithm failed to produce an
optimal design.

Similarly, we get numerical D, -optimal designs for the highest order terms for n =
3,4,5 and ¢ = 2 and those are listed in Table 3.2. Comparing Table 3.2 with Table 3.1,
we note that the design points inside the 2-cube move toward the 4 corner points and the
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weights ‘shift’ toward the inside design points.

Table 3.1 Numerical symmetric D-opti-
mal designs on the 2-cube.

Design Point Weight
(1,1) 3677/4
n=3 | (1,3588) 4610/8
(.4800,.4800) | .1713/4
(1,1) 2473 /4
(1,.5811) .3508/8
n=4 | (1,0 1582/4
(.6442,.6442) | .1203/4
(.6854,0) .0722/4
(0,0) .0512/1
(1,1) 1785/4
(1,.7039) 2500/8
n=5 | (1,.2549) 2453/8
(.7574,.7574) | .0939/4
(.3208,.3208) | .1079/4
(.7446,.1963) | .1154/8

Table 3.2 Numerical symmetric Ds-opti-
mal designs for the highest order coeffi-
cients on the 2-cube.

Design Point Weight
(1,1) 26064
n=3 | (1,.3680) 4665/8
(.5207,.5207) | .2729/4
(1,1) 1596/4
(1,.6170) .3382/8
n=4 | (1,0) 1516/4
(.6876,.6876) | .1814/4
(.7453,0) .0891/4
(0,0) .0801/1
(1,1) .1089/4
(1,.7336) 2263/8
n=>5 | (1,2775) .2265/8
(.7951,.7951) | .1406/4
(.3393,.3393) | .1521/4
(.7829,.1922) .1456/8

Two further cases were considered. The D-optimal design for n» = 3 and ¢ = 3 and
D,-optimal design for the two highest order coefficients for n» = 3 and ¢ = 2 are given in
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Table 3.3 and Table 3.4.

Table 3.3 Numerical symmetric D-op-
timal design for n = 3 and ¢ = 3.

Design Point Weight
(1,1,1) 3142/8
(1,1,.2970) .3942/24
(1,.4215, .4215) .2649/24
(.5012, .5012, .5012) .0267/8

Table 3.4 Numerical symmet-
ric D-optimal design for the two
highest order coefficients for
n=3and q=2.

Design Point Weight
(1,1) 3241/4
(1,.3360) 4490/8
(.4579,.4579) | .2269/4

We remark that a symmetric numerical D-optimal design £* for g =2 and n = 3 is
unique. As in Farrel, et. al (1967), this can be shown by checking that {z : d(z,&¢*) — 10 =
0} is exactly the support of £* and a 27 x 16 matrix ||¢;(x,)||, where ¢;(z) is of the form
Hg=1:1:;n" with 1 < 3%, m; <6,m; > 0 and x; € support ¢*, has full column rank. But
for n = 4 and 5, the D-optimal design may not be unique since the matrix ||¢;(x;)|| does
not have full column rank.

4. Canonical Moments

In this section we describe some results concerning canonical moments used in the
next section.
For an arbitrary measure £ on [-1,1] let ¢ = f_ll z*d¢(z). For a given finite set of

moments €o,...,¢i—1, let ¢§ denote the maximum of the i-th moment _1 zd€(z) over
1 1

the set of all measures { having the given set of moments ¢co,...,c;—1. Similarly let c;
denote the corresponding minimum. The canonical moments are defined by

=% i-1,2,... (4.1)

+_ —
C; —¢

The canonical moments p; range freely over [0,1] and permit easy maximization of
| M(€) | when ¢ = 1. The remainder of the problem is converting the optimum p; either
to the support points and the weights in the corresponding design. Most of the proofs of
the following lemmas are in either Studden (1982) or Lau (1983).

Lemma 4.1 The design ¢ is symmetric iff pa;q = % for all 1.

7



Let po = 0 and define ¢; =1 —p;, ¢ > 0. Also define

G = 9i—1Di, 1= 1,2,"' (42)

Let a sequence of polynomials Wy(z),£ > 0 be defined by taking them orthogonal to d¢.
Then the recursive relation for the orthogonal polynomials We(z) with leading coefficient
1 is given as follows:

Lemma 4.2 Let Wo(z) = 1 and W;(z) = z. Then the orthogonal polynomials W(z)
for £ > 2 satisfy the recursive relations

We(z) = (2 4+ 1 — 26202 — 2¢20—1)Wp_1(z) — 43‘22—35‘22—2‘We—2($)- (4.3)

The following lemma expresses the L; norm of an orthogonal polynomial Wy(z) in
terms of the canonical moments.

Lemma 4.3 For £ > 1,

1
/ Wi(z)dz = 2% - ¢q1ga.. . ae-162e. (4.4)
-1

Using Lemma 4.3, it can be easily shown that

1
| M(€) |=Teeo [ WR(a)de(e) = 2" DML (essad ™™ (49

for ¢ = 1.

There is a considerable amount of literature concerning the relationship between the
sequence of canonical moments {p;} and the corresponding design &. ( See Studden (1982a,
1982b), Lau (1983)). We state here only those results that are pertinent to some of the
D,-optimal product design problem. The next lemma follows from similar arguments to
Lemma 2.3 in Studden (1982a).

Lemma 4.4 (a) The design corresponding to (1/2,p2,1/2,1) concentrates mass
a, 1 —2a, o on the points -1, 0, 1, respectively, where o = p2/2. (b) The design
corresponding to (1/2, ps, 1/2, py, 1/2, 1) concentrates mass @, 1/2 — o, 1/2 — a, « on
the points —1, /1, v/, 1, respectively, where a = p2p4/(2(q2 + p2p4))), t =pagqs. (c)
The design corresponding to (1/2, p2, 1/2, ps4, 1/2, 1) concentrates mass oy, as, 1 —
201 — 20, a2, a; on the points —1, v/, 0, v/t, 1, respectively, where oy = p2p4p6/(2(1—
t)), ca = pagaga/(2t(1 — t)), t = p2gs + page.

5. Ds-optimal product designs.

Let
By ={& x €% ...x & : & is a design on [—1,1]}.
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Consider an arbitrary design n = & X ... x &, in B;. Foreach j =1,...,q, let Wiy ()
be the orthogonal polynomial of degree ¢ W1th the leading coefficient 1 Wlth respect to ;.

Define
_(f+m

Also denote My, (n) by the information matrix of a design # for the n-th degree polynomial
regression model on the g-cube.

Lemma 5.1

1
| M (n) [= 25T T | W () o) e (5.2

where K, g = 2¢- X i+ Ng_1,n—i.
Proof. Recall that f(z) is the vector of N, , monomials :z:‘l51 . ..zﬁq,z 14 < n.

Let g(z) be the vector of length Ny, 4 monomials Wy, (1)(z1) ... We, (g) (24), E 14 < n.

Then it can be easily checked that there exists an Ng,n X Ny n lower trlangula.r matrlx A
with | A |= 1 such that g(z) = Af(z). S

| Maln) |=| / (@) £(@)' dna)|
= I/ g(z)’ dn(z) | . (5.3)

Note that [g(z) g(z)'dn(z) is a diagonal matrix since f_ll Wiiiy(z5) Wiy ()
§i(dz;) = O for any j and £ # ¢. Also there exist Ng_;,n—; components of g(z) like
Wi (50) (%50 ) Mo We; () (z5) since T, Wy, (jy(2;) is a monomial of degree < n — ¢ with
g — 1 variables. Thus

1
M) [T T2 [ W () )
12 22 [ W o) ) e
_22(12 ‘qu 1,n—i H H‘L 1[/ 1(]) dé‘](x)] q—1l,m—i

Theorem 5.1 The D-optimal product design over the class of produce designs B is

Mg = Eng X +ee X f,*;,q, (5.4)

in which the canonical moments of €,,q are given by

1

P2i—-1 =§, 1=1,...,n,

g+n—1 .
=——— =1,...,n—1 5.5
P2 g+ 2(n — 1’) ’ ’ s ( )

and pg, =1.



Proof. By Lemma 5.1,

1 Nq—l n—1
| My(n) |= 25~I}_, 17, [/_1 Wi (2)d; (-'0)] '
Note that

Nq—ln t
E?’la'}éqng 1 1 1 [/ 1.(]) dEJ( ):|

max I U W2(z)de( z)]Nq_l'n—lr.

So it suffices to find a design £ , which maximizes II}[f W2 (z)d¢(z)]NVe-1»—¢ and
then, the D-optimal product design is

n:,q = f;';’q X ... X fz’q.

It can be easily checked that N, ; = Z;-=0 Ny 15 ( Scheffe (1958) ) Using this and
(4.4), we get
1

= (¢1¢g) Va1 (¢1¢2¢a¢q)Natm—2 (€162 -+ - Can—162n) V10
= (3‘13‘2) ant (§3§4) “n=2 (§2n—1$‘2n)Nq’°
(P1Q1P2) @t (42P3(J3P4) or=2 . (@2n—2P2n—192n— 1P2n)N“’° (5.6)

Simple algebra shows that (5.6) is maximized at

1 .
P2i—1 :E, 1=1,...n,
Ng i g+n—1 )
P2 = : = - i=1,....,n—1
" Ngn—i+Ngn_(ir1) g+2(n—1)’ T
p2n:1-

The uniqueness of the D-optimal product design comes from p,, = 1.

For ¢ = 2 case, we get pa; = (n — 1+ 2)/2(n — ¢ + 1), pai—1 = 1/2 and pa, = 1 from
Theorem 5.1. In the following examples we illustrate the D-optimal product design for
2 < n <4 and ¢ =2 by using Lemma 4.4.

Example 5.1 Suppose n = 2. Then p, = 3/4 and p; = 1. By Lemma 4.4, the
corresponding design is
-1
S,z = l 3 ]

8

NN e]
00]e0 =t
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and 175,2 = 55’2 X 65,2 is the D-optimal product design.
Example 5.2.  Suppose n = 3. Then ps = 2/3, ps = 3/4 and ps = 1. By Lemma
44,
-1 =L 1L 3
. V6 V6
53,2 =
3 2 2 3

and 773 5 = &3 5 X &3 5 is the D-optimal product design.

Example 5.3. Suppose n = 4. Then p, = 5/8, py = 2/3, ps = 3/4 and pg = 1. By

Lemma 4.4,
—1 /2 0 2 1
{12 = [ 1 1 * 1 126
r 3 6 [3

1
6

1
and nj 5 = €4 5 X &; , is the D-optimal product design.

We consider the usual D-efficiency defined by

| M(©) | ] - .

DO =\ 13 |

where £* is a D-optimal design,and the G-efficiency defined by

K
sup, d(z, §)
to see how good D-optimal product designs are for ¢ = 2.

Let R;(z) be the orthonormal polynomial of degree 7 with respect to €n,2- By using
(4.3) and (4.4) it can be easily checked that

G(¢) = (5.8)

Ro(:l:) :1, Rl(:z:) = -

1 1 $26—3620—2
and Ry(z) =z ———o-=Ry_1{(x) — | Z—/—"=Ry_o(z), £>2. 5.9
¢(z) 2 /[S2e—1¢2¢ e-1(2) V $20—1€2¢ e-2(2) (5:9)

From .(4.2) and (5.5), ¢1¢2 = (n +1)/2n and ¢2p—1¢2¢ = 1/16 for £ > 2. So

2n 2n n+1
=1, Ry(z)=4/—2_ =24/ 2 _gq.
Ry(z) =1, 1(z) — lz, R,(z) - 11: 5

and Ry(z) =2zRp—1(z) — Re—2(z), £>3. (5.10)

Since the variance function is invariant under linear nonsingular transformation of f(z),
x’ .
d(z,n;, ) can be written as

d(z,n}, 5) = Z R¥(z1)R}(z2), (5.11)
L
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which can be calculated easily by using the recursive relations (5.10). Sup d(z,n;, ;) was
computed numerically on VAX 11/780. The D- efficiency for 3 < n < 5 was based on
a numerical D-optimal design which was found in the previous section. As mentioned in
Section 3, the optimization algorithm would not produce numerical D-optimal designs for
6 < n < 12. Therefore we could not get values for the D-efficiency in these cases. However,

by using the inequality
1-G(¢) }
D(&) > exp {—
in Kiefer (1962b), a lower bound of the D-efficiency for 6 < n < 12 is given in Table 5.1.

(5.12)

Table 5.1 Efficiency of D-optimal product designs when ¢ = 2.

degree n [ (27 ,,25,,)* |d(z] ,,25,) |K |G-efficiency | D-efficiency
2 0,0) 7000 |6 | 8571 0052
3 (1,.3103) 10.2260 10 9779 9937
4 (0,0) 17.2500 15 .8696 .9922
5 (1,.6989) 22.1270 21 9491 9928
6 (0,0) 31.3333 28 .8936 .88T78**
7 (1,.8366) 38.0338 36 9465 9451%*
8 (0,0) 49.3750 45 9114 9074**
9 (1,.8980) 58.0581 55 9473 9458%*
10 (0,0) 714000 |66 | .9244 0214**
11 (1.,9303) 81.2191 78 9487 .9506**
12 (0,0) 97.4167 91 9341 9319%*

*d(z?,n’ zg,n) = 8UPy, ,z, d((zl’ .’Dz), 77:1,,2)
**3 lower bound

In the case where interest is in only the (n — m) highest order terms, i.e., (m + 1)-th,
...,n-th degree terms, we give a similar analysis.

Theorem 5.2 The D,-optimal product design for the (n — m) highest order terms over
the class of product designs E; is

me =& X .- X &5,

in which the canonical moments of £ are

1.
p2i—1=§, z=1,-.-,na
Nq n—i — Ngm—i
s = ) 1) i = 1 m 5-13
b NQ:”—i - Nq,m—i + N, n—i—1— Nq,m—i—l ’ s s M, ( )
g+n—1 .
 =———, t=m+1,...,n-1
D2 q+2(n—z)’ ) s ,
and pp, =1. Here Ny, is given by (5.1).
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Proof Recall the computation formula for | £(n) | and use (5.2). Then

_oKn—Kn | Ma(n) |
| 2ln) [=2 Mo (n) |

=2 Kn—Km j=1 imalf Wiy (=) dé; ()| Vamms
;1'=1 H:n=1[f Wiz(j) (z)dfj(z)]N -1,m—1

q m
~o%o~n T [ Wiyl @) e-snms—emsins
j=1%1i=1

[T 1f Wiy (e t@aerns (5.14)

t=m+1

The rest is the analogous to the D-optimal produce design case.

As special cases, first we consider m = n — 1, i.e., all the highest order terms. By the

substitution of m = n — 1 into (5.13) and then, simplification of the resulting expression,
we get

g—14+n—2 .
; = 1<i<n—-1 5.15
p2'l. q—1+2(n_‘2)’ _i_n ( )

and py, =1.

For the ¢ = 2 case, interestingly the canonical moments correspond to the D-optimal
design for the n-th degree polynomial regression on [-1,1]. For m = n — 2, i.e., all the
highest and second highest terms, (5.13) is simplified to

» _2(n—1)*+3(¢—5)(n—i) + (¢ —1)(¢ - 2)
2 " 4n—0)2+4(g—2)(n—1) + (¢— D)(q— 2),

qg+1
P2(n—1) =7+2 and pz, = 1. (5.16)

1<i<n-—2,

For ¢ = 2 case; (5.16) reduces to py; = (2(n —1) +1)/4(n—1), 1 <7 <n—1and ps, = 1.

The Dg-efficiency of the product design for g =2, m =n—1,3 < n <5 are .9727,
9569, .9605, respectively. Also the Ds-efficiency for ¢ =2, m =1, n = 3 is .9902. All the
D,-efficiency are based on numerical D -optimal designs in section 3.

13



References

[1] C. L. Atwood. (1969). Optimal and efficient designs of Experiments. Ann. Math.
Statist., Vol. 40, 1570-1602.

[2] R. H. Farrell, J. Kiefer and J. Walbran. (1967). Optimum multivariate designs. Proc.
Fifth Berkeley Symp., Vol. I, Univ. of California Press, 113-138.

[3] V. V. Federov. (1972). Theory of optimal experiments. Translated by W. J. Studden
and E. M. Klimko, Academic Press, New York.

[4] A. Giovagnoli, F. Pukelsheim and H. Wynn. (1987). Group invariant orderings and
experimental designs. (To appear in J. Statist. Plann. Inference).

[5] S. Karlin and W. J. Studden. (1966a). Tchebycheff systems: with applications in
analysis and statistics. Interscience Publisher, New York.

[6] S. Karlin and W. J. Studden. (1966b). Optimal experimental designs. Ann. Math.
Statist., Vol. 37, 783-815.

[7] J. Kiefer. (1959). Optimum Experimental Designs. J. Roy. Statist. Soc. Ser. B, Vol.
32, 272-319. '

[8] J. Kiefer. (1961a). Optimum designs in regression problems, II. Ann. Math. Statist.,
Vol. 32, 298-325. ‘

[9] J. Kiefer. (1961b). Optimum experimental design V, with applications to systematic
and rotatable designs. Proc. Fourth Berkeley Symp., Vol. I, Univ. of California Press,

381-405.

[10] J. Kiefer. (1974). General equivalence theory for optimum designs (approximation
theory). Ann. Statist., Vol. 2, 849-879.

[11] J. Kiefer and J. Wolfowitz. (1959). Optimum designs in regression problem. Ann.
Math. Statist., Vol. 30, 271-294.

[12] J. Kiefer and J. Wolfowitz. (1960). The equivalence of two extremum problems. Canad.
J.Math., Vol. 12, 363-366.

[13] K. Kono. (1962). Optimal designs for quadratic regression on the k-cube. Mem. Fac.
Sci. Kynshu Univ. Ser. A., Vol. 16, 114-122.

[14] T. S. Lau. (1983). Theory of canonical moments and its application in polynomial
regression. Technical Report 83-23, Purdue University.

14



[15] T. S. Lau and W. J. Studden. (1985). Optimal designs for trigonometric and polynomial
regression using canonical moments. Ann. Statist., Vol. 13, 383-394.

[16] Y. B. Lim. (1986). Optimal designs in multivariate polynomial regression and polyno-
mial spline regression. Ph.D. Thesis, Purdue University.

[17] Y. B. Lim, W. J. Studden and H. P. Wynn. (1986). A Note on approximate D-optimal
designs for G x 2™. (to appear in Statistical Decision Theory and Related Topics IV).

[18] H. Scheffe. (1958). Experiments with mixtures. J. Roy. Statist. Soc. B, Vol. 20,
344-360.

[19] W. J. Studden. (1980). Dg-optimal designs for polynomial regression using continued
fractions. Ann. Statist., Vol. 8, 1132-1141.

[20] W. J. Studden. (1982a). Some robust-type D-optimal design in polynomial regression.
J. Amer. Statist. Assoc., Vol. 77, 916-921.

[21] W. J. Studden. (1982b). Optimal designs for weighted polynomial regression using
canonical moments. Statistical Decision Theory and Related Topics III, Academic
Press, New York.

[22] W. Welch. (1985). ACED: Algorithms for the Construction of Experimental Designs.
The American Statistician, Vol. 39, 146.

15



