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Summary

We give sufficient conditions under which a continuous local martingale remains a
continuous local martingale under a simultaneous initial expansion of the filtration of o-
fields and change to an equivalent probability law. In particular this gives a method for a
Brownian motion to remain a Brownian motion under such a double transformation. The

classical example of K. It is treated in detail.
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The connections between the theory of the expansion of filtrations and Girsanov’s
theorem have long been intriguing. The relationship is problematic, however, as T. Jeulin
and M. Yor originally pointed out in 1979 [5]. Nevertheless we show here that in some
cases one is able to “undo the damage” done by an expansion of the filtration, with a

change to an equivalent probability measure.

We assume given a complete probability space (2, ¥, P) with a filtration F = (#):>0

satisfying the usual hypothesis: # = {| %, each t > 0, and % contains all the P-null sets
s>t
of 7. We let G = (Gt):>0 denote a filtration containing F. Typically G will arise by the
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initial expansion of F. For example, if Z is an F-measurable random variable, one might

define G by
Gi=[{% Vva(2)}.

s>t
It then often happens that if M is an (F, P) continuous local martingale, M is a (G, P)
semimartingale with the (unique) decomposition

i t

(1) M; = (M; —/ L, d{M,M),) +/0 Ly d({M, M)),

0

t
= Mt+/ L, d{M,M),
0

for a certain G-predictable process L = (L¢)¢>0. The now classical example of K. 1td [2]
for a Brownian motion B = (B¢)o<t<1 is a case in point:

here §: = n{?}, vV o(B1)} and

8>t
i
B1 - Bs

By =B;—
t t . 1— s

ds, 0<t<1.

(This formula holds as well for Lévy processes; see [4]). Recently Jacod [3] and Yor [7]

have given general sufficient conditions for a decomposition such as (1) to hold.

THEOREM. Let M be an (F, P) continuous local martingale, My = 0, and let G be
an ezpansion of the filtration F such that there exists a G-predictable process L making

t
M; = M; — / L, d{M, M),
0

a (G, P) continuous local martingale. Suppose further E{exp(% f;" L2 d(M,M))} < oo
for some to. Then there exists a probability Q equivalent to P such that M is a (G,Q)

continuous local martingale, 0 < t < tg.

Proof: Let t be less than to (to can equal o0). Define
A t ~
M; =/ —Ls dM,.
0

Then M is a (G, P) continuous local martingale; the stochastic integral is well defined for

t < tp as a consequence of Novikov’s condition, since (]\;I , M), computed under (G, P),
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is equal to (M, M), computed under (F, P); this is because the quadratic variation of a

continuous local martingale M can be written

nli’m Z (Mt-‘+1 _Mt.')z = <M’M>t
tiemw,[0,1]
where lim mesh (7,) = 0 and convergence is in probability (that is, it is computed
n—00
PP to
without involving the filtration). In this case E(ez(M:M)w) = E(e% I = d(M’M)“) and

Novikov’s condition is satisfied for M.

Next define N = (Ni)o<i<t, to be the solution of
t
Nt=1+/ N, dM,,
0

the stochastic exponential of M. By Novikov’s theorem (see [6]) we have E(N;) =
E(Ny) =1,0<t<ty. Wedefine Q by

dQ = Ny, dP.

Then Q is equivalent to P (that is, @ has the same null sets as does P). Under Q the

process M is still a (G, @)-semimartingale, and it has a decomposition
. - t 9 ~ toq -
N, = (1T, _/0 - AN, 1)) +/O - A, 1),
by the Meyer-Girsanov theorem (cf [1, p. 238]). In particular M; — f; = d(N,M),; is a

(G, Q) continuous local martingale. However

t 1 . t 1 " ~
= AN, M), = | — N.d(,
/0 - AN, ) /0 + Nod(¥, 1),

t
N, I
= —(—L,)d{M, M),
| o,
We conclude that
. toq -
M; —/0 ﬁ; d(N, M),
t t
= (M —/ L, d(M,M),) — (—/ Ls d(M,M),)
0 0



is a (G, Q) continuous local martingale, and therefore so is M. O

For an example we can apply the theorem to Itd’s classical example mentioned earlier.

Fix to < % and let v > 0 be such that E{e'7(B;)2} < 0o, where B is a standard Brownian
1

motion and B = sup |Bs|. Any 4 < 5 can be taken. Let G be the filtration §; =
0<s<1

N {% V &(Bi1)}. Then B; = B; — g Bi=Be g5 = B, — fot L, ds is a (G, P) martingale.

>t

Moreover

By [ 12 d(B,B).)) = Bews( [ <u) 4s)}

1—-s
st () 0

Since sup (B — Bs)? has the same distribution as (B}, )2, the above is less than
0<SStQ

E{exp(v(B})*)} < oo,

by our choice of 4. Therefore the hypotheses of the theorem are satisfied and we conclude
there exist a law @ equivalent to P such that B is a (G, Q) continuous local martingale.
However (B, B); = t under (G, Q) as well as under (F, P), hence by Lévy’s theorem B is

also a (G, @) Brownian motion, for 0 < ¢t < tg < %

One can apply the theorem as well to diffusions. For example let Z be an #-measurable

random variable and let B be an (#)¢>0 Brownian motion. Let §; = N {% Vv 0(Z)} and
s>t

suppose Z is such that B; = B; — fot Ls ds is a (§t, P)-local martingale. Suppose also
E{exp(%f; L? ds)} < oo, some a > 0. Let X be a solution of

i t
X:=Z+ / F(X.) dB, + / 9(X.)ds.
0 0

Since X has an anticipating initial condition it cannot be an (F, P)-diffusion. However
by the Theorem B is a (G, Q) Brownian motion and ZeGo. Thus X is a (G, Q) diffusion.

This allows for the consideration of a theory of expansion of filtrations for diffusions.
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