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1. INTRODUCTION

In any practical Bayesian analysis a prior distribution for a continuous parameter can-
not be specified in complete detail. To do so would imply infinitely many prior probability
judgements. Instead, only a few judgements are actually made. The prior specification is
then usually completed by assuming a reasonable, and preferably tractable, form of dis-
tribution which fits the judgements that have been made. Furthermore, the judgements
that are required are often not prior probabilities but complex functions of them, such as
prior means and variances. We consider here a scenario of prior specification which does
not require the fitting of a specific distribution to the prior judgements. The user assigns
his prior probabilities for the parameter lying in each of the intervals Iy, I,. .., I,,, which
are contiguous and partition the real line; this amounts to asserting m — 1 points of the
prior c.d.f. of the parameter. We then assume only that the prior distribution 7 lies in
some set IT of distributions all of which agree with the stated prior probabilities over the
intervals {I;}. The posterior distribution 7* then lies in a corresponding set IT*, and we

consider what bounds are thereby implied for relevant posterior probabilities.

Ezample 1. In Martz and Waller (1982), Example 5.1 supposes that two engineers
are concerned with the mean life § of a proposed new industrial engine. The two engineers,
A and B, quantify their beliefs about 8 in terms of the probabilities given in Table 1 for
being in specified intervals. Note that A has substantially more precise beliefs than does
B.

Table 1. Specified Prior Probabilities of Intervals

i Interval I, pf =Pr(0€L]A) p? = Pr(d€ I|B)
1[0, 1000) 0.01 0.15
2 [1000, 2000) 0.04 0.15
3 [2000, 3000) 0.20 0.20
4 [3000, 4000) 0.50 0.20
5 [4000, 5000) 0.15 0.15
6  [5000, co) 0.10 0.15

Either of these probability specifications determines a class of prior distributions ,

namely

M= {r:p;=Pr(d € I) = /1 n(d8) for all i} (1.1)
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Berliner and Goel (1986) determine the ranges of the posterior probabilities of the
I; when Ilp is the assumed class of priors. Earlier, DeRobertis (1978) had considered
the related class of priors with Pr(§ € I;) > «; for all . For both this class and I,
the ranges of the posterior probabilities are often quite large because the classes include
discrete distributions concentrated at “least favorable” configurations. The engineers in
Example 1 might well deny that such discrete priors are plausible reflections of their prior
beliefs for a continuous parameter, and might insist that they actually have smooth prior
densities. Indeed, it would not be uncommon to encounter the belief that II is actually

unimodal, leading to a class such as
II; = {unimodal 7 : p; = Pr(6 € L) for all i}. (1.2)

Use of this more realistic class can sharply reduce the variability in posterior answers, as

will be demonstrated in Section 3.

Although maximizations and minimizations over Il; can be reduced to low dimensional
numerical optimization, the algorithm we developed fof doing so is extremely complex.
(This algorithm is discussed in Berger and O’Hagan (1987).) Here we consider a class, 11,
of priors which is similar to II2, but is much simpler to analyze. Evidence is given that
II; can be replaced by this broader class, with little degradation in the answers. Section 2
presents basic notation that will be needed, while Section 3 illustrates the type of answers

obtained, through several examples. Section 4 presents the algorithm for analysis with II;.

Previous work on finding ranges of posterior quantities for classes of priors mainly
dealt with conjugate priors (e.g. Leamer (1978, 1982) and Polasek (1985)). Huber (1973)
was the first to explicitly consider a large “nonparametric” class of priors. He determined
the range of the posterior probability of a set when II is an e-contamination class of priors
having the form = = (1—¢&)mo+¢eg; here mo is a single elicited prior, € reflects the uncertainty
in mp, and ¢ is a “contamination”. Huber considered the case where all contaminations
(even discrete) are allowed. Berger and Berliner (1986), Sivaganesan (1986a, 1986b), and
Sivaganesan and Berger (1986) considered a variety of generalizations, to different classes
of contaminations (e.g. unimodal) and different posterior criteria (e.g. the posterior mean
and variance). DeRobertis and Hartigan (1981) considered a large class of priors specified

by a type of upper and lower envelope on the prior density, and also find ranges of posterior

3



quantities of interest. Each of these classes is plausible as a model of prior uncertainty.
Classes such as Iy and II; perhaps have the advantage of being the simplest to understand -
and elicit. Other work dealing with similar classes of priors includes Bierlien (1967), Kudo
(1967), West (1979), Manski (1981), Lambert and Duncan (1981), Cano, Hernandez, and
Moreno (1985), and Lehn and Rummel (1987). Related analyses for testing situations
can be found in Edwards, Lindman, and Savage (1963), Berger and Sellke (1987), Bergér
and Delampady (1987), Casella and Berger (1987), and Delampady (1986). Other related
works include Kadane and Chuang (1978), Wolfenson and Fine (1982), Berger (1984, 1985,
1987), and Walley (1986). These latter works of Berger and Walley also include general

review and history of the subject.

2. NOTATION AND THE FORMAL PROBLEM

Prior information is to be stated for an unknown, continuous parameter 8 € [ag, |
by giving
pi = Pr(0 € I) = Pr(a;—1 < 0 < a;)

for + = 1,2,...,m. The intervals partition the parameter space [ag,an,] and their end-
points a;, as, ..., a,,_1 are arbitrary, possibly even specified by the user. Infinite parameter
spaces are included by ap = —o0 and/or a,, = 0o. It is assumed that there is an underlying
prior density m(f) on [ao,am] constrained by
as '
/ r@)dd=p; (i=1,2,...,m). (2.1)
Qg—1

Data are obtained, yielding a likelihood function £(6). We will assume that £(6) is

unimodal, with mode 65. For an arbitrary prior density =, the posterior density n* is, by

Bayes theorem, .
x*(0) = m(0)£(9)/ / w(2)0(t) dt. (2.2)
Of interest is some set
C = Uieal;, (2.3)

where {1 is some subset of the indices {1,2,...,m}. We will seek bounds on Pr*(C), the

posterior probability of the set C. The two cases of most common interest will be C = I;
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and C = U;<pnI;; for the latter case, Pr*(C) is the posterior c.d.f. evaluated at a;. Sets,
C, more general than (2.3) can be considered (see Section 4.2), as could quantities such as

the posterior mean, but the analyses then become messier.

For a given C and class of priors, II, we seek the range of the posterior probability of

C as 7 ranges over II. Specifically, we will calculate

P(C) = sup Pr*(C), (2.4)
Pp(C) = inf Pri(C). (2.5)

We assume that the prior is asserted to be unimodal. This is poésible, of course, only
when the specified p; are compatible with unimodality. This will be the case when the

constants

2 = pi/(ai — ai—1), 1=12,...,m (2.6)

(defined to be zero if the denominator is infinite) satisfy

1<q0< ... < Q> Qi1 >tz - > dm (2.7)

for some k. Note that ¢; is the uniform density on I; which has mass p;. We will henceforth

assume that (2.7) holds, and that the prior mode is known to be in I.
In addition to Il and II; defined in (1.1) and (1.2), we consider the quasi-unimodal
class II; defined as follows. First, let

mi(0) = 7(0)x,, (6), i=1,2,...,m, (2.8)

where x, denotes the indicator function on the set I. Then 7 = ), 7y, and =; isolates that

part of 7 which is in I;. Now unimodality of 7 implies that

wi(a;) < miyi1(as), 1=1,2,...,k—1 |
mi(a;) > mip1{ai), t=k+L,k+2,...,m. (2.9)
These constraints at the boundaries “tie together” the intervals when dealing with II.,

making numerical optimization complex. We shall define II; by slightly relaxing these

constraints at the boundary.



Consider, for instance, the interval I when k > 3. Unimodality implies that w5 is
increasing. Furthermore, since m; must also be increasing it is certainly the case that
m1(@1) > ¢1. Similarly 73(az) < ¢3. This suggests replacing the constraints in (2.9) by the
weaker constraints

m2(a1) > q1, w2(az2) < gs.

This simplification will greatly reduce the complexity of the numerical optimization, and
will be seen to have only a minor effect on the answers. Table 2 results from applying this

reasoning to each interval.

Table 2. Bounds on 7; Imposed by Unimodality

Interval number Conditions
1<:1<k-2 m increasing, mi(ai—1) > gi—1, mi(a:) < git1
i=k—1 7; increasing, m;(ai—1) > gi—1
1=k 7y, unimodal, mx(ax—1) > qr—1, Tx(ax) > qry1

t1=k+1 m; decreasing, 7;(a;) > gi+1
k+2<i<m m; decreasing, m;(a;—1) < ¢i—1, mi(as) > ¢is1

Let II(;) consist of all m; satisfying the conditions for interval ¢ in Table 2, and also satisfying

the probability condition (2.1). Define the quasi-unimodal class to be
My ={7: mellyy, ¢=12,...,m}. (2.10)
Note that the truly unimodal class ig
Il = {w: = €ll; and (2.9) holds}.

Note also that IT; C II; C Ilo, so that the posterior ranges (P} (C), P(C)) will be nested

in reverse order for these classes.

3. EXAMPLES

We delay the discussion of the algorithm for analysis with II; until after the presen-
tation of several illustrative examples. In these examples we calculate the range of the -
posterior probabilities of the intervals I;, and also of the c.d.f. evaluated at the a;. The
format used for each example is to present the range of the posterior probability of the
relevant set C as the interval (P}(C), Py(C)). For each example, the classes Tl and II,

defined in Section 1, and the class II; defined in Section 2, will be considered.
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Ezample 1 (continued). Data becomes available in the form of two independent life-times
which are exponentially distributed with mean . The observed life-times are 2000 and

2500 hours, leading to a likelihood function

£(6) = 672 exp(—4500/6).

Tables 3 and 4 present the ranges of the posterior probabilities of the intervals I;
for engineers A and B, respectively. Tables 5 and 6 present the ranges of the posterior
c.d.f.s evaluated at the a;, for A and B respectively. For engineer B we make the natural
assumption that the prior mode is specified to be ax = 3000 (see Table 1) in calculations
with IT; and II,. For engineer A, the probabilities in Table 1 lead to no natural restriction
on the prior mode, other than that it be in the interval [3000,4000). The calculations with

IT; and II; allow an arbitrary mode in this interval.

Table 3. Posterior Ranges for C = I;, Engineer A

I; D; I, 11, I,
[0,1000) _ 0.01 (0,0.006) (0.001,0.004) (0.001,0.004)
[1000,2000) 0.04 (0.019,0.057) (0.037,0.049) (0.037,0.049)
[2000,3000) 0.20 (0.214,0.291) (0.222,0.260) (0.225,0.260)
[3000,4000) 0.50 (0.476,0.613) (0.512,0.584) (0.517,0.584)
[4000,5000) 0.15 (0.106,0.164) (0.121,0.147) (0.121,0.147)
[5000,00)  0.10  (0,0.083) (0,0.071) (0,0.071)

Table 4. Posterior Ranges for C = I;, Engineer B

I; Pi ITo IT; II,
[0,1000) 0.15 (0,0.111) 0.020,0.023) 0.020,0.023
[1000,2000) 0.15 (0.088,0.255) (0.171,0.197) (0.172,0.197

— p— p— p—

( )
(0.17 )
[2000,3000) 0.20 (0.235,0.391) (0.282,0.327) (0.283,0.327)
[3000,4000) 0.20 (0.197,0.349) (0.247,0.288) (0.248,0.288)
[4000,5000) 0.15 (0.125,0.233) (0.149,0.175) (0.149,0.175)
[5000,00)  0.15 (0,0.146) (0,0.121) (0,0.121)

Table 5. Posterior Ranges for C' = [0, a;], Engineer A

a; Ho Hl Hz
1000 (0,0.006) (0.001,0.004) (0.001,0.004)
2000 (0.0194,0.062) (0.038,0.053) (0.039,0.050)
3000 (0.241,0.341) (0.262,0.310) (0.265,0.308)
) )
) )

4000  (0.769,0.886) (0.794,0.871)  (0.800,0.870)
5000 (0.917,1 (0.929,1 (0.929,1)




Table 6. Posterior Ranges for C' = [0, a;], Engineer B

a; ITo I, I,
1000 (0,0.111) (0.020,0.023) _ (0.020,0.023)
2000 (0.096,0.327) (0.191,0.221)  (0.192,0.221)
3000 (0.388,0.623) (0.474,0.547)  (0.476,0.547)
4000 (0.659,0.860) (0.725,0.830)  (0.728,0.830)
5000 (0.854,1) (0.879,1) (0.879,1)

Note first that II; and I, yield usefully small ranges of posterior probabilities, in all
cases. For instance, if engineer A ié willing to assume unimodality as well as the given
i, then he knows that his posterior probability that 8 € [3000,4000) lies between 0.517
and 0.584, while his posterior probability that § < 2000 lies between 0.039 and 0.050. For
engineer B, the corresponding ranges are 0.248 to 0.288, and 0.192 to 0.221. These ranges
are small enough that the engineers can probably make decisions on this basis, obviating

the need for more detailed prior specification.

Note also that II; and II; tend to yield very similar answers, so that the relaxation
from unimodality to quasi-unimodality does not seem to matter greatly. On the other
hand, I, yields substantially broader intervals (typically 2 to 4 times larger than II;, say),

indicating that imposing unimodality or quasi-unimodality has a pronounced effect.

A secondary point of interest is the very small interval of posterior probabilities that
is obtained for interval I; of engineer B when II; and II; is used. The reason serves as a
warning about casual assumption of the unimodality constraint. It is easy to see that, when
two adjacent intervals have equal ¢; (as do I; and I, for engineer B), then any unimodal
prior must have its mode in one of the intervals or be uniform over those intervals. In
Table 4 the mode could only be between 2000 and 4000, so all priors in II; and II; are
uniform over I and 3. Thus there may be little variation in the prior (over II;) under the
unimodality assumption if certain of the adjacent ¢; are nearly equal (the central intervals

excepted).

Ezample 2. As a second example, we illustrate the methodology on a standard type
of Bayesian example. Suppose subjective elicitation yields the following intervals and

corresponding prior probabilities, p;, for a normal mean 4.
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Table 7. Intervals and Prior Probabilities: Normal Example

I, (—0,-2) (2,1) (5,0) (01 (1,2) (2,00)
Pi 0.08 0.16 0.26 0.26 0.16 0.08

A “textbook” Bayesian analysis would be to notice that the p; are a good match
to a N(0,2) (normal, with mean 0 and variance 2) prior distribution. Suppose now that
z = 1.5 is observed from a N(f,1) experiment. Then usual conjugate prior Bayesian theory
would be employed, resulting in a N (1,2/3) posterior distribution. The resulting posterior

probabilities of the I; are listed in Table 8 as p}.

As an indication of the robustness of the p} to the prior normality assumption, we
can calculate the ranges of the posterior probabilities of the I; for the various classes of

priors we are considering. These results are given in Table 8.

Table 8. Posterior Ranges for C = I, Normal Example

I; p; 1o Iy I,
(—o0,—2) .0001 (0,0.001) _ (0,0.0002) __ (0,0.0002)
(-2,-1)  .007 (0.001,0.029) (0.006,0.011) (0.006,0.011)
(-1,0) 103 (0.024,0.272) (0.095,0.166) (0.095,0.166)
(0,1) 300 (0.208,0.600) (0.320,0.447) (0.322,0.447)
(1,2) 390 (0.265,0.625) (0.355,0.475) (0.357,0.473)
(2, 00) 110 (0,0.229) (0,0.156) (0,0.156)

The p; are reasonably robust, except possibly for p§. Also of interest is the now very
dramatic difference between the Ilp ranges and the ranges for the unimodality classes;
their sizes differ by roughly a factor of 4. This provides further evidence of the value of
incorporating the unimodality assumption (if subjectively warranted). Of course, these
are but two examples, and situations can be constructed where there is little difference
between the results for IIy and IT;, but our general experience in looking at a variety of

examples is that incorporation of unimodality typically has a substantial effect.

One final comment: the degree of robustness in situations such as Example 2 will
typically depend strongly on the data z. In particular, as = gets extreme, so that the
likelihood and the prior clash, substantially less robustness will be observed (cf. Berger

and Berliner (1986) and Sivaganesan and Berger (1986)).



4. OPTIMIZING OVER THE QUASI-UNIMODAL CLASS

Here we describe the algorithm for maximizing or minimizing Pr*(C) over = € II;.
Note that

Pri(C) =) wif > ws
1€Q i=1

Y owi]™

1EQ

Sowi|

1€Q

=1+ (4.1)

where .
wi = / 7:(0)£(0)do.
a
Hence

Ph0) = [1+ &

Pr(C) = |1+ =—

where

W; = sup w;, w;= inf w;.

mEMN () m€ll(;)
The reduction to independent optimizations over each interval is the great simplification

that results from use of II;.

Fori# k—1, kor k+1, w; and w; are achieved at 7; which are either uniform (equal
to ¢;) or single step functions (with step heights of ¢;—; and g;1+1). This is established
by the arguments used in the Appendix of Berger and O’Hagan (1987). For i =k — 1 or
t = k+ 1, 7; can be unbounded above, and it is easily seen that @; (or w;) are achieved
at step functions which degenerate into a uniform segment plus a point mass at ax_; or
ay, respectively. The interval Iy is another special case, and can yield a point mass at any
point in the interval. Following through with arguments similar to those in the Appendix
of Berger and O’Hagan (1987), and defining L(z,y) = [ £(6)d0, one finds that in each

interval the optimizing prior is one of the following seven types.
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Uniform (denoted by U); On I,
7!','(0) = d{q;.

Full step (denoted by S): On I,

m_ Jai-1 a1 <0<s;
mi(0) = {Qi+1 if s; < 0 < ay,

where

8i = (qi+10; — gi—18i—1 — pi) [ (Gi+1 — Gi—1)-

Limited step right (denoted by V): On I;

. _ qi—-1 if a;—1 S_ (/] S 0-;"
mll) = {fi* if v; <6< ay,

where
fi = min(f;, ¢iy1),
fi = {Pi - Qi—l('vi - ai—1)}/(a,' - 'v,'),
vy = min(v;, s;),

and v; is the solution in (a;_1,00) to the equation

(a; — v;)€(vi) = L(v;,ay).

Limited step left (denoted by W): On I;

b ifa1 <0< w
mi(0) = { ¢i+1 if wf <0< a;,

where
g; = min(gs, ¢i—1)

9i = {pi — qiy1(a; — wy)}/(wi — a;i—y),

w;-“ = max('w,-, s,-)

11

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
(4.9)
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and w; is the solution in (o, a;) to the equation
(ws — a;_l)Z(w,-) = L(aj—1,w;).
Point mass right (denoted by R): On I;
m(0) = gi—1,
plus a point mass at § = a; with probability
ri = pi — gi—1(ai — ai—1).
Point mass left (denoted by L): On I;
7i(0) = gi+1,
plus a point mass at § = a;_; with probability
li = pi — giv1(ai — ai—1).

Point mass center (denoted by C): On I;

. _ qdi—1 if a;_1 S 0 < 00
7[',(0) - {‘Ii+1 if o <0<ay,

plus a point mass at § = 0y with probability

¢; = pi — ¢i—1(0o — ai—1) — giy1(a; — 6o).

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Table 9 below identifies which of the seven types is optimal for each interval. A “Max”

interval is one for which @; is sought; a “Min” interval is one for which w; is sought (see
1 J —_1

- (4.2) and (4.3)). Also, “likelihood form” refers to whether £(6) is increasing, decreasing,

or both (called modal) in the interval. In the modal interval (note that there can be only

one), it is necessary to distinguish between three cases, depending on a comparison of the

values of the likelihood at the endpoints with the average of the likelihood over the interval.
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Table 9. Optimizing Interval Classification

Intervals
Likelihood Form Class Iy to Ix—o Ix—y Iy Ixy1 Ix4e to I,

Increasing Max T R R U U

Min U U L L T

Decreasing Max U U L L T

Min T R R U U

Modal:

(i) L(a,-_l,a,-) S é(ai_l)(a,- - a,,-_l) Max U U C W A%}
Min w R R U U

(ii) L(ai—1,a;) < L(as)(a; — a;—1) Max A" V C U U
Min U U L L A\

(iii) otherwise Max \% vV C W W
Min w R * L A\

The only case not given by Table 9 is for interval I when the likelihood is modal in
I, both £(a;—1) and £(a;) are less than L(a;—1,a;:)/(a; — ai—1), and the interval type is
“Min”. This is shown in Table 9 as a “*” because here the optimal 7 is either type R or

type L, but depends on a complicated criterion. The optimum is type L if
(ax — qr—1)€(ax) + (gr+1 — qx)€(ak—1)
> (qr+1 — qr—1)L{ax—1,ax)/(ar — ax_1);
otherwise it is type R.

Table 9 together with equations (4.4) to (4.22) explicitly define the optimizing 7 € II;,
and the corresponding posterior density is defined by (2.2). The @; and w; in (4.2) and

(4.3) can even be given explicitely, according to the type of ;, as follows:
Type U : w; = ¢;L(a;—1, as);
Type 8 : w; = gi—1L(ai-1,8:) + ¢i+1L(ss, a:);
Type V : w; = gi—1L(ai—1,v}) + fFL(v}, ai);
Type W : w; = g7 L(a;—1,w}) + ¢iy1L(w], a;);
Type R : wi = ¢i—1L(ai-1,a:) + ril(a:);
Type L : w; = giy1L(ai—1, a;) + li€(a;—1);
Type C : w; = g;—1L(ai—1,00) + ¢i+1L(00, a:) + ¢:£(0o).
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This explicit solution is much easier to compute than the solution for II; in Berger
and O’Hagan (1987). Since II; D IIp, the bounds it provides on Pr*(C) will in general
be wider than those for II;, but the numerical examples presented in Section 3 indicated
that the difference is typically small. Indeed, the optimal 7 € II; may actually lie in II;,

in which case the bounds will be the same.

4.2 Analysis for Arbitrary Intervals c

If C = [e1,¢z] with ¢; or ¢z (or both) being unequal to any a;, a simple modification
of the algorithm in Section 4.1 allows for calculation of P (C) and P*(C): simply create

a new partition by including ¢; and ¢, with the {a;}.

The only hitch is that, if say I; is separated into (a;—1,¢;] and (c;,a;], one must
determine how the mass p;, allocated to I;, is to be divided up between the two new
intervals. The answer is conceptually clear: give as much mass as possible, subject to »

maintaining the prescribed unimodality constraints (i.e., ordering of the ¢;), to that interval

in C (not in C) if P (C) (P*(C)) is desired.

Clearly, this method will generalize to quite arbitrary sets C.

REFERENCES

BERGER, J. (1984), “The Robust Bayesian Viewpoint (With Discussion)”, in Robustness
of Bayesian Analyses, ed. J. Kadane, Amsterdam: North-Holland.

BERGER, J. (1985), Statistical Decision Theory and Bayesian Analysis, New York:
Springer-Verlag.

BERGER, J. (1987), “Robust Bayesian Analysis: Sensitivity to the Prior,” Technical Re-
port #87-10, Department of Statistics, Purdue University.

BERGER, J. and BERLINER, L.M. (1986), “Robust Bayes And Empirical Bayes Analysis
With e-Contaminated Priors”, Annals of Statistics, 14, 461-486.

BERGER, J. and DELAMPADY, M. (1987), “Testing Precise Hypotheses,” To appear in

Statistical Science.

14



BERGER, J. and O'HAGAN, A. (1987), “Ranges of Posterior Probabilities For Uni-
modal Priors With Specified Quantiles,” To appear in Bayestan Statistics III, eds.
J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith. |

BERGER, J., and SELLKE, T. (1987), “Testing a Point Null Hypothesis: The Irrecon-
cilability of Significance Levels and Evidence”, Journal of the American Statistical

Association 82, 112-122.

BERLINER, L.M., and GOEL, P. (1986), “Incorporating Partial Prior Information:
Ranges of Posterior Probabilities”, Technical Report No. 357, Department of Statis-
tics, Ohio State University.

BIERLEIN, D. (1967), “Zur Einbeziehung der Erfahrung in Spieltheoretische Modelle,” Z.
Oper. Res. Verfahren III, 29-54.

CANO, J.A., HERNANDEZ, A., and MORENO, E. (1985), “Posterior Measure Under
Partial Prior Information,” Statistica 2, 219-230.

CASELLA, G., and BERGER, R. (1987), “Reconciling Bayesian And Frequentist Evidence
in the One-Sided Testing Prdblem”, Journal of the American Statistical Association,

82, 106-111.

DELAMPADY, M. (1986), “Testing a Precise Hypothesis: Interpreting P-Values From a
Robust Bayesian Perspective”, Ph.D. Thesis, Purdue University, West Lafayette.

DE ROBERTIS, L. (1978), “The Use of Partial Prior Knowledge In Bayesian Inference”,
Ph.D. Thesis, Yale University, New Haven.

DE ROBERTIS, L., and HARTIGAN, J.A. (1981), “Bayesian Inference Using Intervals of
Measures”, Annals of Statistics, 1, 235-244.

EDWARDS, W., LINDMAN, H., and SAVAGE, L.J. (1963), “Bayesian Statistical Infer-
ence for Psychological Research,” Psychological Review, 70, 193-242.

GOOD, 1.J. (1983), Good Thinking: The Foundations of Probability and Its Applications,

Minneapolis: University of Minnesota Press.

HUBER, P.J. (1973), “The Use of Choquet Capacities in Statistics”, Bulletin of the Inter-
national Statistical Institute, 45, 181-191.

15



KADANE, J.B., and CHUANG, D.T. (1978), “Stable Decision Problems”, Annals of
Statistics, 6, 1095-1110.

KUDO, H. (1967), “On Partial Prior Information and the Property of Parametric Suf-
ficiency,” Proceedings of Fifth Berkeley Symposium on Statistics and Probability, 1,

Berkeley: University of California Press.

LAMBERT, D. and DUNCAN, G. T. (1986), “Single-Parameter Inference Based on Partial
Prior Information,” Canadian Journal of Statistics 14, 297-305.

LEAMER, E.E. (1978), Specification Searches, New York: Wiley.

LEAMER, E.E. (1982), “Sets of Posterior Means With Bounded Variance Prior”, Econo-
metrica, 50, 725-736.

LEHN, J. and RUMMEL, F. (1987), “Gamma minimax estimation of a binomial proba-

bility under squared error loss,” Statistics and Decisions 5.

MANSKI, C.F. (1981), “Learning and Decision Making When Subjective Probabilities
Have Subjective Domains,” Annals of Statistics, 9, 59-65.

MARTZ, H.F., and WALLER, R.A. (1982), Bayesz'an Reliability Analysis, New York:
Wiley.

POLASEK, W. (1985), “Sensitivity Analysis for General and Hierarchical Linear Regres-
sion Models”, in Bayesian Inference and Decision Techniques with Applications, eds.
P.K. Goel and A. Zellner, Amsterdam: North-Holland.

SIVAGANESAN, 8. (1986a), “Robust Bayes Analysis with Arbitrary Contaminations”,
Technical Report No. SMU-DS-TR-198, Department of Statistical Science, Southern
Methodist University.

SIVAGANESAN, S. (1986b), “Sensitivity Of The Posterior Mean To Unimodality Pre-
serving Contaminations”, Technical Report No. SMU-DS-TR-199, Department of
Statistical Science, Southern Methodist University.

SIVAGANESAN, 8., and BERGER, J. (1986), “Ranges Of Posterior Measures For Priors
With Unimodal Contaminations”, Technical Report #86-41, Department of Statistics,

Purdue University.

16



WALLEY, P. (1986), Rationality and Vagueness, Manuscript in preparation.

WEST, S. (1979), “Upper and Lower Probability Inferences for the Logistic Function,”
Annals of Statistics, 7, 490-413.

WOLFENSON, M., and FINE, T.L. (1982), “Bayes-Like Decision Making With Upper
And Lower Probabilities”, Journal of the American Statistical Association, 77, 80-88.

17



