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1. INTRODUCTION

We examine the problem of estimating the mean vector § of a normal random vector
X with covariance matrix I,. Stein [9] has given an unbiased estimator

p+ D(5, X)

for the risk
R(0,6) = Es||6(X) — 0]}

of an estimator 6 of #. A standard method for showing that one estimator §(1) dominates
another §(2) is to show that
D(6W, X) < D(6™, X)

for all X (with strict inequality on a set of positive measure). Brown [4] shows that such
a technique will always fail for certain inadmissible estimators such as the James-Stein
positive part estimator

8e(X) = (1 = 1om5) X (e,00) (11 X112)

IIX |2
For p—2 < ¢ < 2(p—2), Brown shows that there is no estimator é satisfying the inequality
D(8,X) < D(5., X)

for all X (with strict inequality on a set of positive measure). One might suspect that
there is an admissible estimator which satisfies the inequality not necessarily for all X
but at least for all X with ||X||? > ¢. Theorem 3 shows that this too is impossible for
p—2<c<2p-2).

In general we examine estimators § which are required to have small Bayes risk r(, 6)
with respect to a prior density m, yet which are not necessarily Bayes rules. For instance,
we consider the robust Bayes estimator of Berger [1] of the form

2(p — 2)

— - X
X —RIF)

65(X) = Io 4y (1% = 1l[2)8x(X) + Taro0) (11X — wI?)(1 ~

where A = 2(p — 2)(1 + %) and where 6, is the Bayes rule for 6 based on the normal
prior m with mean u and covariance matrix 72I,. Berger shows this estimator cannot be
dominated by a generalized Bayes rule § with r(r,6) < r(7, 6p) satisfying

(*) D(6,X)<0
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for all X (with strict inequality on a set of positive measure). Theorem 3 shows that even
if we require the inequality of (*) to hold for just those X with ||X — u||* > A (with strict

inequality on a set of positive measure), there is still no generalized Bayes rule § with
r(m,6) < r(m,6B).

The James-Stein positive part estimator and Berger’s robust rule are special cases of
“pseudo-Bayes” rules. They have the form

6(X) =X+ Vinm(X)

where m is a positive function called a pseudo-marginal density. (If 6 is actually a Bayes
rule, then it can always be written in this form where m is the Bayes marginal density for
X.) Properties and characteristics of “pseudo-Bayes” rules are described in Section 2.

For each pseudo-Bayes rule 6™, Section 3 describes a class of rules Cj,, which contains
all the admissible and generalized Bayes rules dominating §™. Section 4 describes proper-
ties of certain pseudo-Bayes rules which are formed from a given Bayes rule in the following
fashion: The pseudo-marginal density is defined to be equal to the given Bayes marginal
density m,(X) when mg(X) is large. When mg(X) is small, the pseudo-marginal density
is defined to be a larger function of X.

2. PSEUDO-BAYES RULES

Let X ~ N(0,1,) and estimate § by § with loss function
L(0,6) = 116 - 0]F%,
where 6 is in RP. Define the conditional risk of an estimator 4 to be
R(6,0) = Eo[||(x) - 6],

An unbiased estimate of the risk function was given by Stein [1]:

Define

| D(6,X) = ||6(X) — X|]? + 2V - (§(X) — X).
Then
Eo[p+ D(6,X)] = R(6, 5)

for all § when 6 is “a.e. differentiable”. (See the appendix for a definition.) It is assumed
that

Eo“b—?{—,-[&(X) - Xill| <o0,i=1,...,p

and .
Egl|6(X) — XI]2 < 00.

The function D is useful for comparing the risks of two estimators §(!) and 6(). For
instance, assume that for all X,

DM, X) < D(§P, X)
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with strict inequality on a set of positive measure for X. Then 6(1) dominates §(2) and for

all 0,
R(8,6(M) < R(0,6®).

Furthermore, under the density « for 8,6(1) is preferable to §(?), i.e.
r(7r,6(1)) < r(w,62)

where . -
r(m,6%) = E.[R(0,6D)].

If m, is the marginal density of X, we define
r*(mg,6) = {D(6, X) + p}m(X)dX
Rr

where

m(X) = /R (o) (am) P2 HIX 01 gp.

Clearly, r*(mg,8) equals r(m, §). The Bayes rule §™ for the prior 7 is closely related to the
marginal density m, since it has the form

§"(X) =X+ Vin my.
For a proper prior density m(f), there does not exist § such that
D(6,X) < D(67,X)

for all X with strict inequality on a set of positive measure under m,. (That would imply
that

r* (Mg, 6) < r*(mg,6"),
a contradiction to the fact that
r*(mg,6™) < r*(my, 6)

for all §.)

We will examine other estimators 6™ which are not Bayes (or generalized Bayes) but
which have similar properties for the function D. We call §™ a “pseudo-Bayes” rule and

define
6"(X) = X + Vin m(X)

where m is a positive real-valued function such that
r*(m,8™) = {D(6™,X) + p}m(X)dX
Rp
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is finite. We refer to the function m as a “pseudo-marginal density”. We call it a “strict
pseudo-marginal density” if it cannot be written as

m(X) = _/|;p p(a)e"%llx_enzda

for a positive real-valued function p. (If it could, then 6™ would be a Bayes or a generalized
Bayes estimator.) Define Cj}, to be the class of a.e. differentiable estimators é such that

r*(m,6™) < r*(m,$).
Clearly there is no 6§ in C}, satisfying
D(6, X) < D(6™, X)

for all X (with strict inequality on a set of positive measure). Brown [4] shows that
there are no estimators § with that property for many reasonable 6™. In Section 3 we
will examine what estimators are in C}, and see that in many cases it includes all the
admissible or generalized Bayes estimators that dominate ™.

3. DESCRIPTION OF C;,

In this section we examine C}, a collection of estimators which contains the admissible
and generalized Bayes estimators dominating the pseudo-marginal estimator. The remark
that follows Lemma 2 shows that in many cases the class contains all generalized Bayes
rules with bounded risk. We conclude with an example of a common form for the pseudo-
marginal density m when X is large.

It is convenient to examine a subset of C;, which we call Cy,. The rules 6 in C,, are
defined to satisfy

V-(m(6—-6m))dX =0
RP
and are a.e. differentiable. It can be shown that C,, is contained in C}, because Theorem
1 shows that r*(m, §) > r*(m, ™) for all 6 in C,,. Corollary 1 shows that no § in C,, has
smaller unbiased estimate of risk function than §™ has. (This has been shown by Brown

[4].)
THEOREM 1. Let m be a positive real-valued function on RP such that
Vin m is a.e. differentiable

and
§™(X) =X+ Vin m.

Define C,, to be the class of estimators § such that § ts a.e. differentiable and

V - [m(6 — 6™)]dX = 0.
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Then
r*(m,8) — r*(m, 6™)

= [ lls - &miFm(x)ax

if § is in Cp.

Proof: Recall that
D(6,X) = ||6 — X||2+2V- (6 - X).

Thus
D(8,X) — D(6™,X) = |I5 - X|[2 - [l — X|* +-2V - (56 — 6™)

= |6 — &™||* + 2m~{V - [m(6 — 6™)]}
(since Vm = m™1(6™ — X)).
This implies

r*(m,8) —r*(m, ™) |
= | {D(6,X) - D(§™, X)}m(X)dX
Rp

=/m(na—5m||2m+2v-[m(5—5m)])dx
=/ |[6——6m||2de—|—2/ V- [m(6 — 6™)]dX
Rr Rp

= / 116 — 6™|2m dX
RP

(because 6 is in Cp,). ]

The next corollary follows immediately from the theorem and shows that there is no
estimator 6 in C,, whose unbiased estimate of risk is always smaller than that of §™.

COROLLARY 1. Under the conditions of Theorem 1 there does not exist é in Cyp,

with
D(6, X) < D(§™, X)

for all X with strict inequality on a set of positive (m) measure.

The results that follow further describe the classes of rules C}, and Cy,. Also, the
particular case that the pseudo-marginal density m is a function of a quadratic form in X

is examined more closely.

LEMMA 1. Fix the vector p and the positive definite matrix B. Suppose that for all

X with (X — p)B(X — p) sufficiently large, we have
(X —p)tB(6 —6™) > 0.
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Then if 6 is a.e. differentiable it is in C..

Proof: Because (as in the proof of Theorem 1),
D(5,X) — D(6™, X) = |6 — 6™|[* + 2m~1{V - [m(6 — 6™)]},

we have
r*(m,6) — r*(m,6™)

=f||5-5'"||2m+2/V-[m(5—5"')]

and it suffices to show
/v.[m(a—am) >0

in order to show [r*(m, 6) — r*(m,6™)] is nonnegative.

Gauss’ Divergence Theorem implies that

/ V- [m(6 — §™)]dX

= lim V- [m(6 — 6™)]dX
370 J(X—p)t B(X—p)<a?
o m(X)(X - 1)*B(6 - 5™)

| —dX.
3= J(x—pyeB(X-m=a> {(X —p)'B(X —p)}=

Since m > 0, this is clearly nonnegative if for some a sufficiently large,
(X —n)fB(6~-6m) 20

for all X with (X — p)tB(X — p) > a®. |

A slightly weaker condition on § combined with a condition on m insures that § is in
C), in Lemma 2.

LEMMA 2. If 6 is a.e. differentiable and if for all X with ||X|| sufficiently large we
have

[|6 — 6™|| < do < o0,
then § is in C,, provided
lim m(X)dX =0.

e JIX]l=c



Proof: As in the proof of Lemma 1,

| /R V- [m(8 - ™)X

X)dX
< lim Xt (5 — m)| X)X
c—00 ||xl|=cl ( ) 11X

< lim [|6 — 8™||m(X)dX

= JIX =
< dp lim m(X)dX
e Jxl|=e

=0. O

REMARK: Suppose ||6™ — X|| is bounded and
lim m(X)dX = 0.

gl X]l=c

Then any generalized Bayes rule é§ with bounded risk (i.e. sup R(f,6) < 00) is in Cp,.
¢

Proof: Brown [3] shows that ||§ — X|| is bounded if and only if sup R(6,6) < oo (in
]

his Corollary 3.3.2). Thus ||6™ — || is bounded since ||6™ — X]|| and ||6 — X]|| are. The
conditions of Lemma 2 are now satisfied. O

Note: (See Brown [3]) sup R(6,6) < @ only if the closed convex hull of the generalized
6

prior for 6 is RP.

LEMMA 3. .
r*(m,8) —r*(m,6™) — / |16 — ™| |PmdX

=2/V-[m(6—X]dX—2/V2de.

Proof: By definition,
r*(m,68) — r*(m,6™)
- / (D(6,X) - D(6™, X}m(X)dX.
As in the proof of Theorem 1,
D(6,X) — D(6™,X) = |6 — 6™|* + 2m~{V - [m(6 — 6™)]}.
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Thus,
(x) = * (m, §) — r*(m, §™) — / 116 — 6™|[2m(X)dX
- 2/ V- [m(6 — X)]dX — 2/ V- [m(8™ — X)]dX.

Because

/ V. [m(6™ - X)|dX = / V2mdX,
we have the result. d
It is clear that we can show § is in C,, using Lemma 3 if we show
/Vzde =0 and /V -[m(§ — X)]dX = 0.

The next lemma considers the case where § depends on a quadratic form.

LEMMA 4. If an a.e. differentiable estimator 6 has the form
5(X) = X+ h((X = p)B(z — u)) B(X - 1)

for some real-valued function h, then
/ V - [m(6 — X)]dX =0

if and only if
lim ah(a?) / m(X)dX =0

a— 00
a

where
Do ={X: (X — u)!B(X —p) = a*}.

Proof. We may write

() = / V- [m(6 - X)]dX

= lim V- [m(6 — X)|dX
200 J(X—p)* B(X~p)<a?

— lim (Xp):B(6 - X)m(X)dX
o= Jp, {(X — u)!BX(X — n)}*

by Gauss’ Divergence Theorem. Thus,

(¥) = lim -h(a®)- [ {(X —u)'BA(X — w)}im(X)dX.

a—oo D
a




The integral is bounded above and below by

abpf m(X)dX and abl/ m(X)dX
Da

a

where b, and b; are the largest and smallest eigenvalues of B, respectively. Thus (*) is
zero if and only if

lim ah(a?) m(X)dX =0. O

a—00 D
a

Theorem 2 and its corollaries which follow consider the case when the pseudo-marginal
density m is a function of a quadratic form.

THEOREM 2. Suppose the pseudo-marginal density m(X) has the form
m(X) = ¢((X — p)'B(X — p))

for a positive definite matriz B, a fized vector u and a positive real-valued function ¢.
Assume that the estimator 6(X) is a.e. differentiable and has the form

5(0) = X+ (X ~ W)*B(X — w)B(X - )
Then
/ V- [m(6 — X)]dX =0

if and only if
alim #(a*)h(a®)a? = 0.

Proof. Observe that
/ m(X)dX = ¢(a?) / dx
De Do
= ¢(a?)K'aP™!
(where K’ is independent of a). Thus

”~

h(aD)a / m(X)dX = (a?)h(a?)a? K",

a

and this yields the result when we apply Lemma 4. (]

COROLLARY 2. If the pseudo-marginal density m(X) has the form

m(X) = ¢((X — u)'B(X — u))



for a positive definite matrix B, a fixed vector 4 and a positive real-valued function ¢,
then ,

/ VimdX =0
if and only if

¢'(a*)a? — 0.
a—+00

Proof: Setting 6(X) = 6™(X) in Theorem 2 we have
h(a?) = ¢'(a*)/$(a*)
so that
¢(a®)h(a®)a? = ¢'(a”)a”
and the result follows. O

The next corblla.ry follows from the use of Theorem 2 and Corollary 3 in Lemma 3.

COROLLARY 3. Define
d® = (X — p)*B(X — )

for a fixed positive definite matrix B and vector u. Let the pseudo-marginal density m(X)
have the form

m(X) = ¢(d?),

with lim ¢'(a?)a? = 0, and assume the a.e. differentiable estimator § has the form
a—CcO

6(X) = X + h(d®)B(X — p).

Then
r*(m,6) — r*(m,6™)

=/||5—5"=||2m(X)dX

if and only if :
lim ¢(a?)h(a?)a? =0,

a—roo

(assuming the integral and the r*’s are finite}.

In the following corollary we consider a common form for the value of the pseudo-
marginal density m when X is large.

COROLLARY 4. Consider the estimator

To (X)
d2

5(X) = X — B(X — )
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where rg is a real-valued function and p is a fixed vector and B is a positive definite matrix
and where

d® = (X — p)*B(X — p).
For fixed vector 9 and the positive definite matrix C, define

= (X -n)'C(X —n).

For large f2, define

m(X) = ?If—J
(Note that we have not defined m for small values of f2.)
(a) If ro is bounded, then § is in Cp, if j > £52.

(b) If ro(X) = ro(d?), then § is in Cp,

if lim r(az)ap_z_zj =0.
a—oo

Proof. The result in (a) follows from the condition that lim aP~2~% be zero. Now
a—+CO
we show (b). Set h(d?) equal to (ro(d?)/d?). For
e? = (n— p)'Cn — u),

we ha.ve'

(g—€)? < f2<(g+¢)?
where

g* = (X - p)*C(X — ).

Now assume d is sufficiently large so that

(dtF —¢)? < (9 - )?

and N
(g+e)? < (dtf +¢)%,
since
t1d? < g% < tpd>.
Thus

K
< mX) < ——.
(def + ) (@eF — o)

Define D, = {X: (X — p)tB(X —p) = a?}.

11



This implies

K
—— [ ax< [ max< [ ax,
(dig +¢)? JDa a (dtf +¢)? /Da
i.e. - :
PR < [ m(x)ax < (R,
dtZ +e a dt? —e
Thus

a—00

lim ah(a2)/1; m(X)dX =0

lim h(a?)a?~% =o0.
a—00

if and only if

The conditions of Lemma 3 are satisfied if fR,, V2mdX = 0. By Corollary 3, for 5 >
(p — 2)/2, we have [, V?mdX = 0. O

4. ADJUSTING BAYES RULES

In this section a special kind of pseudo-Bayes rule is described. They arise from
proper Bayes rules 6™ which are changed only for certain values of the observations. For
instance, the form of the estimator might be changed when the proper Bayes marginal
* density m,(X) is very small. In particular, a new function m(X) is substituted for m,(X)
for certain values of X. The resulting rule is a pseudo-Bayes rule with the properties
described in previous sections. Special cases of such rules are given by versions of the
James-Stein positive part estimator and the approximate restricted Bayes rules of Berger
[1] and Chen [5]. See also the work of George [7], Spruill [8] and DasGupta and Rubin [6].

Let m be a proper prior density for 6 in RP and let m, be the corresponding proper
marginal density of X. The Bayes rule is given by

5™(X) = X + Vin mg(X).

Define A to be a closed convex set and consider the following adjustment to 6™ for
X outside of A. (Perhaps m(X) is very small for X outside of A.) For X outside of A4,
we replace m, by a larger function m so that m and Vin m agree with m, and Vin m,,
respectively, on the boundary of A. Thus, for X outside of A, 6™ is changed to 6™ where

6™(X) = X + Vin m(X).

We extend the definition of m and ™ to all of R? by making them equal to m, and 67,
respectively, for X in A. The careful matching of the estimators at the boundary of A
insures that the unbiased estimate of risk for 6™ exists and agrees with that of 6™ for X
in A, i.e.

D(6™,X) = D(6", X)

12



for all X in A.
We know from Corollary 1 that there is no é in C,, with
D(6,X) < D(6™,X)

for all X (with strict inequality on a set of positive measure in X). The next theorem
considers the case of § in C,, that satisfies the inequality above, not for all X, but just
for all X outside of A. It is' shown that r(m,6) > r(7,6™). (Recall that under the

condition that 6™ has bounded risk and lim [ m(X)dX is zero, we can show that
a—Co
[|X]|?=a
all the bounded risk generalized Bayes rules are in C,,, and these include all admissible
estimators dominating 6™.) ’

- THEOREM 3. Let m(X) be a proper marginal density with respect to the prior
density m on 0. For the closed convez set A in RP, let A° be the closure of the complement
of A. Define the function m such that

(i) m: A° — Rt and Vin m is a.e. differentiable in A°¢, and
(1) m(X) > mg(X) for all X in A°, and

(#%¢) for all X in the boundary of A,m(X) = m(X) and Vin m(X) = Vin m.(X), where
Vin m ts defined on the boundary of A by continuity.

Extend the definition of m to all of RP by setting
m(X) = mg(X), for all X in A,

and define
6™(X) = X + Vin m(X), for all X in RP.

Then there ts no 6 in C,, with
r(m,6) <r(mw,6™)

and
D(6,X) < D(6™,X) for all X in A°.

Proof. Suppose such a 6 exists. Then
r(m,6) —r(m,6™)
— / (D(6, X) - D(5™, X)|mar(X)dX

= / [D(6, X) — D(6™, X)}m(X)dX
A
+ [ [D(6, %) - D(6™, X)|m(X)dX
"
+ [ 1D(6.X) =~ D™, X)) (s ~ m)aX.

13



Because m(X) equals m,(X) for X in A,

r(r,6) —r(m,6™) = r*(m,6) —r*(m,6™) + . [D(8,X) — D(6™, X)|(mr — m)dX.

Since (my, —m) and [D(6, X) — D(6™, X)] are nonpositive on A°, their product is nonneg-
ative on A° and

[D(6, X) — D(6™, X)](ms — m)dX > 0.

> r(r,6) —r(m,6™) > r*(m,6) — r*(m, ™).
But Theorem 1 implies that
r*(m,8) — r*(m,6™) > 0.
Tlius r(n,8) — r(m,6™) > 0, a contradiction. O
Note: The conditions of the theorem also imply that there is no 6 in C,, with
r(m,8) <r(m,6™)
and
D(6,X) < D(6™,X) for all X in A°

with strict inequality on a set of positive m — m, measure in A°.

REMARK: To apply Theorem 3 we need to show that m,(X) < m(X) for X outside of
A, or equivalently that
In mo(X) < In m(X)

for X outside of A. When m, m, and A are defined in terms of || X||?, it suffices to show
that

In mg)

d o
_ S |
Ay ) < g e

for X outside of A (since In m, = In m on the boundary of A). Because (6™ — X) =

gﬂ%l-l-;(ln‘m)ZX, we have

o o
—_—— <
3T U ™) < g

(In m)

if and only if
(6™ — X)X < (6™ — X)*X.

If m(X) = k/||X||* for X outside of A and we write 6 in the form

r(x) = (1 — "UXIFE)

14



the last inequality is equivalent to
2 .
r(I1X11%) = 23
for X outside of A. A similar sort of argument holds when m,,m and A are defined in

terms of a general quadratic form in X.

In the next example we consider the James-Stein positive-part estimator.

EXAMPLE 1. A prior distribution that puts all mass on the zero vector yields an
estimator which is the zero vector. Adjusting this estimator to make it minimax leads to
the James-Stein positive part estimator

be(X) = (1 - W)I(c,oo)(llxnz)X'

See Bickel [2] for ¢ = 2(p — 2). Brown [4] has shown that for p — 2 < ¢ < 2(p — 2) there is
no estimator é§ with
D(6,X) < D(6., X)

for all X. Theorem 3 and the remark that follows can be used to show that even if we look
among estimators that satisfy the above inequality just for ||X]||? > ¢, we are still unable
to find a generalized Bayes or admissible estimator dominating 6. if p—1 < ¢ < 2(p — 2).
(We use the fact that bounded risk generalized Bayes estimators § have ||§ — X|| bounded
to show that they are in C,,.) It can also be seen that no estimator of the form

r(X)

5(X) = (U~ 17

)X

(where r is bounded) will dominate . for p — 2 < ¢ < 2(p — 2) and satisfy
D(é,X) < D(6., X)
for || X||2 > e.
These results may be seen by noting that
r(w,6) = R(6 = 0,6)
and noting that the pseudo-marginal m(X) has the form K/||X]|® for large ||X]|, as con-

sidered in Corollary 4.

EXAMPLE 2. Consider the normal prior 7 for § with mean p and covariance matrix
72I,. The minimax robust Bayes estimator ép considered by Berger [1] has the form

_ 2(p-—2)

X
X

85(X) = Iio,a) (11X — l*)8™(X) + I(a,00) (I1X = ") (1

15



where A = 2(p — 2)(1 + 72) and 6™ is the Bayes rule. Note that all the bounded risk or
minimax generalized Bayes rules are in the class C,,. Theorem 3 implies that there is no
generalized Bayes rule § satisfying

D(6,X) < D(6B, X)

for || X — u]|®? > A and
r(mw,6) < r(mr,6p).

(Note that D(6p,X) = 0 for || X — u||? > A.)

EXAMPLE 3. This is a generalization of the previous example to the case of a normal
prior 7 for § with mean % and covariance matrix T'. Then the marginal density m,(X) is
a function of the quadratic form

f2=(X-n)fCc(X—n)

discussed in Corollary 4 with
C=[I,+7T]%

A pseudo-Bayes rule of the form discussed in Corollary 4 is

5™(X) = T P87 (X) + Iz )X = 5O (X = )]

with 7 > -(l’-;i). Thus there is no generalized Bayes rule § satisfying
D(6,X) < D(5™, X)

for f2 > 24 and ’
r(m,6) < r(m,6™).

Similar results might be developed for the case where we look at estimators satisfying

r(m,8) < r(m,éB) +c.
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APPENDIX

Definition: A function h : RP — R is a.e. differentiable (Stein [9]) if there exists a

function Vh : RP — RP such that for all Z in R?,

h(X + Z) — h(X) = /1 Z'Vh(X +tZ)dt

for almost all X in RP. A function §(X) : RP — R? is a.e. differentiable if each component
6;(X) is a.e. differentiable.
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