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Abstract

The problem of simultaneous estimation of survival or hazard rates and the means in the
scale parameter family is considered under the general weighted quadratic loss Zp: w05 (6; — n;)?
where (71, ...,7,) are the functionals estimated and 6,,...,0, are the scale par:;nleters. The best
equivariant estimator is typically proved to be inadmissible for p > 2. The region of the parameter
space where the improved estimators provide the maximum improvement in risk is identified and

expressions for the maximum percentage risk - improvements are derived. Fairly extensive numerical

studies have been made.



1. Introduction.

Let X;,1 < ¢ < p, have independent scale-parameter distributions ,,l—ifi():—f),X; > 0,60; > 0.

P
The best scale-invariant estimator of § = (61, ...,0,) under the loss L(§,a) = > wif* (0; —a;)? is
=1

8o(z) = (60,1(2), .. -, b0,p(x)), where 6 i(z) = %%{% - X;. It follows easily from Brown (1966)
and Brown and Fox (1974) that 8(z) is an admissible estimator of § under the aforementioned loss
for p = 1. It follows from a general nonparametric theorem in DasGupta (1986) that under the
special squared-error loss, fo(z) is inadmissible for p > 2 and a dominating estimator is &;(g) =
8o(z) +c- HXJ% - 1, where c is a suitable positive number and 1 = (1,...,1). In this paper we
obtain a tv;o-fold generalization of the above result. There is a good amount of literature on
simultaneous estimation of location/scale parameters. Stein (1959), Farrell (1964), Brown (1968)
are some of the earlier works on this topic; more recently, Berger (1980), DasGupta (1984, 1986),
Shinozaki (1984) have obtained improved estimators in the context of simultaneous estimation
of several location/scale parameters under various losses. Two interesting parametric functions
of great importance in clinical trials and reliability studies are the so-called survival and hazard
rates, where the survival rate is defined as Sy(¢) = Py(X > t), and the hazard rate is defined as
Ap(t) = %, where t is an arbitrary number, and f stands for the survival density. The survival
rate Ag(t) may be interpreted as the conditional survival density of a patient given that the patient
has survived for time ¢. When the original survival distribution f comes from the scale-parameter
family (e.g., if f is Exponential, Gamma, Weibull etc.), then the functions Se(t) and Ay(t) very
often assume the form t70° for suitable values of v and s. Of special interest is the value t = ,
where z is the observed value of X in the sample. In this paper, with this motivation, we address the
problem of simultaneous estimation of p functionals )67, 1 < 7 < p, where X!s are independently
distributed with scale-parameters 0;; since §;* is again a scale-parameter for X, we can assume

i
without any loss of generality that s; = 1. The loss is assumed to be zp: w05 (27 0; — a;)2. In the
next section, we derive the best estimator of z}0; of the form a;X X +11—;1we then show that subject
to the existence of certain moments of the X;’s, this best scale-invariant estimator is inadmissible
for p > 2 and we obtain explicit improved estimators. In section 3, the direction along which
these new estimators provide the maximum improvement in risk is identified and the amount of
maximum percentage risk-improvement is obtained. In section 4, some general remarks about a few

related problems are made; section 5 gives numerical figures for the percentage risk-improvements

for a variety of scale-parameter distributions and different values of ¢; in the loss function.



2. Improved estimators.

We first introduce the following notation:

let m; o = EXJ,
EX?

BXE” &y

ri)a 1ﬂ =

whenever such expectation are finite, and where E(-) denotes expectation under § = 1. We will

first state a few Lemmas for subsequent use in the course of derivation of the improved estimators.

?
Lemma 1. Under the loss L(§,a) = Y w0 (z)*0; — a;)?, the best estimator of °6; of the form
=1

a,-X;-y""':l is given by 80,:(X;) = 74 2+;,1,27i40 Xi-
Proof: Easy.

P .
Lemma 2. For any ¢;,5 =1,...,p, |] 6 5},20‘;’.
=1 7=1

Proof: Follows from the arithmetic mean-geometric mean inequality.
Lemma 3. 7;:4,: is an increasing function of ¢ for s > 0, and a decreasing function of ¢ for s < 0.

Proof: We will only consider the case s > 0; the proof in the other case is similar. Note
) p

that the density h;(z,t) = ::;' (:)dz is MLR in z; consequently, by a well known result, for

8> 0,E(X?/X ~ hi(z,t)) = rit+s,4 s increasing in t.

We will now prove the inadmissibility of the best scale-invariant estimators of z]*0;; the proof
and the algebra are most transparent for the squared error loss case, which we treat in the following

theorem.

Theorem 1. Consider the problem of estimating (z]'01,...,p"p) under the sum of squared-error

losses. Let §o(X) denote the best scale-invariant estimator and

v5+1

p
let §(X) =6o(X)+¢ - | [I X7 | (22)
Jj=1

where ¢ = (c1,...,¢p)’, and ¢; = csgn(~y; + 1) for a suitable ¢ > 0 (see (2.5)). For p > 2, R(4,§) <
R(8, §o) for every §, where R(-,-) denotes the risk function, and hence §o(X) is inadmissible.
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Proof: By familiar calculations,

A(Q) = R(Q}é) - R(Q’QO)
2 2 %(’Yj+1)
=pe* (TIms 25+1) | - (T103
; ;

+2¢ Zri,2'1.'+1,2'7.'+2 . r,-,(,,,.+1)(1+%),1.-#sgn(7,- +1)g

%

Hm-77‘+1 . Ho;jjl
J

‘R
J p

' ¢+1 v+ 1 Ak
—2cz: rim(l_f_%)_l_%’ﬂ;isgn(’ﬁ + 1) . Hmj, Jp . H0j * . (2.3)
t ) J

it
mi, =5~

Note that it follows from Lemma 3 that € > 0. It now follows from (2.2), (2.3), and Lemma 2, that

. 1 1 1 i+ 1
Let € = min [{mi,'ﬁ(l + ;) + o M (+1)(1+ ;)r¢,27‘+1,2q‘+2} X sgn(—'y-l-_)J . (2.9)

for ¢ > 0,

v5+1
B3

2 i+ 1 .
A(g) < c?- Hmj, ;(’7,- +1) | —2ce Hm,-, 7’: ZBZ"H . HBJ <0
J \ J 3 ]

v+l

for0<c< 2 Hm,-,
;

/ l__[m,-, 3(7,- +1) . (2.5)

Remarks, generalizations, and discussion of the assumptions

1. For v; =0, the problem is one of simultaneous estimation of 4y, ... ,0,. Theorem 1 implies that

in the general scale-parameter family uniform mean squared error improvement can be obtained by

i
shifting by multiples of the geometric mean t = [[ X ; Whenever p > 1. This was first obtained in
;
DasGupta (1986). Shifting by the geometric mean in a scale-parameter problem is much like shifting

by the arithmetic mean of the coordinates in a location problem because it is well known that if
z;’s have a scale parameter family of distributions, then log z;’s have a location parameter family
of distributions. It is also interesting that Theorem 1 holds even if the coordinate distributions do
not come from the same parametric family, because the functional form of the density of X; was

allowed to depend on 1.

2. Several generalizations of Theorem 1 are fairly easily obtained. First, the vector 1 in the

improved estimator can be generalized to an arbitrary positive vector ¢. This will enable us to
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give unequal shifts in different coordinates. This scope of choice in the vector ¢ also leads to the
natural question of selecting an ¢ that best suits the available prior knowledge on § so that good

risk-improvements would be obtained in that part of the parameter space where 4 is likely to lie.

Next, the statement of Theorem 1 holds for more general losses of the form (a —8)'Q(8) (2—9)
where Q(0) is any positive definite matrix such that i%f Amin(@) > 0 and sup Apez(Q) < 0o where
- 0

Amin; Amaz are the minimum and the maximum eigenvalues of Q.

3. The estimators in Theorem 1 are somewhat loss-robust, but not immensely so (for a beautiful
treatment of the problem of constructing loss-robust estimators in the normal (and some others)
distribution, see Hwang (1983); however, robustness with respect to such a large class of losses may
often be unachievable and is perhaps also a conservative formulation of the problem). Consider
first the case of @ = I and «; = 0; the allowed range of ¢ in (2.5) is

b

12
0 < ¢ < 2¢q, where cg =¢ - Hrj,— -
pp
Taking ¢ = co, one will have uniformly smaller frequentist risk for the estimate 6o(X) + cotl under
squared-error loss. It is natural to ask if one can still achieve uniform domination with this same
estimator when the loss is (¢ — §)'Q(a — §) where Q is not necessarily the identity matrix. We have

been able to prove that uniform domination can be obtained by using the same estimator described

above for all @ such that
tr@

- (2.6)

/\m'in Z

Comparable loss-robustness was achieved in Berger (1976) for estimating a multi-normal mean. It
was proved in Berger (1976) that if X ~ N(, I), then for estimating § under loss Lg (8, a) = (a—§)’
Q(a — §), the usual James-Stein estimate continues to be minimax for p > 3, if

2trQ
p+2

Amaz(Q) < (2.7)

Both (2.6) and (2.7) essentially mean that the eigenvalues of @ should not be very scattered. Thus

a moderate amount of loss-robustness can be achieved with our estimators.

4. Asmentioned in section 1, the survival and hazard rates are of the form £76° for many standard
scale-parameter distributions. The following table gives expressions for these functionals in some

standard cases.



Table 1

Distribution Density Se(z) - Aﬂ__(ﬁ)_
Pareto 287 (z > 9) 0z -
Uniform T(0 <z<9) 1-—z6-1 ﬁ(*)
Exponential fe=b=(z > 0) e (%) 61
Weibull %x“‘le_“z/ﬁ (z>0) e_%a"(*) zo~19-1

Note that Theorem 1 will not apply to the cases marked (*) in the table above, although it

will apply to a large number of other cases.

P
We now state a generalization of Theorem 1 for the more general loss L(0,a) = > w0 (a; —
=1
£]78;)2. The proof of this result is similar to that of Theorem 1 and is omitted.

Theorem 2. Consider the problem of estimating (z]'01,...,z,70,) under the loss L(§,a) =
Z w7 (a; — z770;)*.

=1

vt+1+ 4 i+ 1+ %

Let € = rrl}n[{mi,7e - = + T =My, Vi1 — —2- " Fi 2y +1,27+2 |

sgn(r; + 1 + 3 ]
Yit+1+3

m;, P

Let §0(X) be the best scale-invariant estimator and let §(X) = (61(X),...,8,(X)), with

Gy [T . Bit1+ 3
8i(X) = 80,:(X) + bsgn(v: + 1+ )X II Xj—p— , (2.8)
Jj=1

2pe (mjnw,-) (H my, %TJ—)
i :

where 0 < b < ?

(2.9)

2(vi+1+4 2(vit+14 4 " +1+ %
S ) (H"‘ - )

i

For p > 2, R(4,8) < R(8, 8o) for every § and hence §o(X) is inadmissible.

3. Component Risks and Maximum Risk Improvements

In this section we study the component risk behavior of the estimators given in (2.2) and in

2.8) when f;(z) = f(x),s=1,...,p. In this case, we take r; o, g = ro g and m; = m.
) lﬂ lﬂ

The following theorem gives the maximum improvement of the estimator of the form (2.8)
when <; =0 and b is the midpoint of the interval in (2.9); we also find the direction at which this

maximum attains.



Theorem 3.  Suppose X; is distributed with pdf fo,(z;) = 3-f(=/8:),s = 1,...,p. Assume that
¢; = ¢ and w; = 1 in the loss L(0,a); consider the estimator defined in (2.8) with +; = 0 and

b = erh 30/72(a+p),2a, Where o = H};%,ﬂ = —%, and ¢ is as defined in Theorem 2. Then the
maximum improvement in risk is attained when the 6;’s are equal, say to #, and the amount of

improvement is

€2r2a,2(a+ﬂ)m¢2xpp00+2/m2a- (31)

Proof: The difference in risk for the ith component is A;(8) where

A,(ﬂ) = R(5o,i, 01) - R(siagi)

= —0s[E{6*XP ] X2 — 2bX7 [[ X2 (rv,0X: — 0:)}]
J J
0c[b2 2(°=+ﬂ)(n(a))zmgamz(a+ﬂ)/m2a

- 2b0iﬁ+a+1("(a))mg{ma+ﬂ+1"l,2/ma - ma+ﬁ/ma}]

(where n{%) = HG;")
J#i

—02[6267 ) (0 ()2l ro(at ) .20

+8+1(, (a
— 2607+PH (7Y )m d]. (3:2)
Substituting b in (3.2), we obtain

A;(6) = 62[2r"

a,2o

(e/T2(0t8) 2005 P emEn %)

o 2({x
— (2 /7R ) ,20) €2 (1) 207 PV mE o) 2]

_0:+2 2r7'a 2am {0ﬂ+a -1 (a)(2 0ﬁ+a 1,’_1‘))} (3.3)
2(a+8),2a

From (3.3) it follows that the maximum improvement occurs when

gartB—1,() _ 2(ct+a+pB+1)
77_.. -
c+2(a+p)

Since this is true for each 1 = 1,..., p, the maximum overall improvement occurs when all 8;’s are

equal, say to §, and the total improvement by summing (3.3) over 17 is
€2r2a,2(a+ﬁ)m¢2fpoc+2/mx2)a' (34)

This completes the proof of the theorem.



We note that summing (3.3) over ¢ yields the total improvement of § for general 8. The

component risk associated with & is clearly 6; +2(1 — m2/m,) whence the total risk for & is
2
mi c+2
1— —)3e5T=, .
(1- Tyze; (55)

If we define the percent relative improvement in risk as

— R(0a50) _ R(0,5)

i R(0,50)

X 100, - (3.6)

then in the case where all §; are equal, (3.6) is independent of § and equals

g? Moy (ma)??

. . 3.7
1-— gi m2(a+ﬁ) (m2a)p ( )

Consider now the limiting value of PI as p — oco. If EX*#~1) < oo for some ¢ > 0, then
lim (mg,) Pm2P = 1. Since a = (1 — B)/p, this implies that the limit of (3.7) that as p — oo is
p—o0

equal to
(mpy1r1,2 — m)?
1-— m1r1,2 )

(3.8)

If the density f is Gamma with a shape parameter «, then (3.8) equals 1 and if f is Pareto with
a shape parameter a, then (3.8) equals Ia_—lﬂf ; these indicate that encouraging risk-improvements
are possible, approaching 100% as p — oo, in the Gamma case and also in the Pareto case for o

close to 2.

4. Remarks, discussions, and generalizations.

As pointed out in section 2, under ordinary squared-error loss, the best scale-invariant estimator
§o(X) of (z7*61,...,2370,) can be uniformly dominated by estimators of the form §,(X) + ¢ -
v5+1

P
I1x ; ° | - @, where g is an arbitrary positive vector. It is natural to ask if ¢ can be chosen
Jj=1

to maximize the risk-improvement in some desirable parts of the parameter space or perhaps to
minimize the Bayes risk against a certain prior. It is relatively easy to show that if 8y,...,8, are
iid, then the Bayes risk is minimized by choosing ¢ to be proportional to 1 = (1,...,1)’; when
01,...,0, have an arbitrary joint distribution =, the minimizing @ can be found by using a sequential
algorithm. For both of these results, see DasGupta (1984). For related works on minimization of
Bayes risks among minimax estimators, see Berger (1982), DasGupta and Berger (1986), DasGupta
and Rubin (1986), DasGupta and Bose (1987), Marazzi (1985), Kempthorne (1987) etc. Essentially

similar uniform domination results hold for simultaneous estimation of linear combinations of the
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scale parameters. For details, see Dey and Gelfand (1986). The main result of this paper implies
the surprising fact that the estimates for the gamma scale-parameters proposed in DasGupta (1986)
are robust and work equally well for arbitrary scale-parameters. In a recent paper, Klonecki and
Zontek (1987) prove that in the gamma case, linear estimators LX of § which cannot be uniformly
dominated by estimators of the form (2.2) are admissible under squared-error loss; in fact, this is
a characterization of all linear admissible estimates in the gamma case. In the light of this result
and our present article, it certainly seems plausible that a similar striking result may hold in the
entire scale-parameter family. Finally, note that although the results proved in this article consider
only the case of a single observation from each coordinate distribution, the multiple observation
case, theoretically, is included in our article if one restricts attention to Y7, ... ,Yp, where Y; is the

Pitman estimate of 8; based on a sample of size n; from f;.

5. Numerical Studies

In this section, we study PI as in (3.6) for our improved estimators (2.8) in two cases. We take
v: =0 and ¢; = c in both cases. As noted before, in (3.7), # = —¢/2 and a = -1-':—%. The improved
estimator considered is

8i(X) = 8o,i(X) + bX; /2 ] xP+/D1, (5.1)
where b is the midpoint of the interval (2.9).

Example 1. F-distributions. Suppose S = ($4,...,S5,) and T = (T4, ,,.,Tp) are independent

where S; ~ a2x,,, and T; ~ T,-zxfm,i = 1,...,p. Our problem is to estimate §; = o7 /7%,i =

1,...,p. The best scale-invariant estimator of § = (0y,...,0,) is §°(X) where
(X)) =a;Xii=1,...,p, (5.2)

with X; = 8;/T; and a; = (ng; —4)(n1; +2)" 1, =1,...,p.

For convenience we set ny; = nj,n2; = ns; note that
Ni1\o ni N9 n1 no
.= T (== — T(=—=I'(=2 5.3
mi = (S (3 +Q)P(F - )TN (5.3

provided - n1/2 < a < nz/2. Thus for a given §, we can readily evaluate (3.3), (3.5), and
ultimately (3.6). In Table I we present PI for various p, ¢, and (ni,n;) combinations. 0 was
created by selecting each coordinate randomly within the given range. The results for a typical

value are presented along with the maximum P1I using (3.7).
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Example 2.  Reciprocal Beta.  Suppose Y; is distributed as #; - Be(2 + ¢,1),e > 0,5 =

1,2,...,p, and we seek to estimate n~! = (171_1, . ,17;1). For convenience we transform to X; =
Y;"'; taking §; = n; ! we have at 6; = 1, f(X) = (24¢)-X~(3+¢). The best invariant estimator of §;
is (14¢)~'eX;. Using (5.1) and noting that m, = (e +2— o)~ (e+2),a < 2, it is straightforward
to calculate (3.8) which becomes, for ¢ > -2,

(1+¢/2)> (e+2)(e+2+¢)
(T+c/2+€)2 (e+2+¢/2)2 °

(5.4)

Using (5.4) we see that for p large if either € or ¢ — oo, PI — 0 while if € and ¢ are close to 0
nearly 100% improvement is possible. Table II displays results for small to moderate p using (3.6)

with 6 as in the previous example.
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p=2
(0,12)
0; equal
P=5
(0,12)
0; equal
p=10
(0,12)
0; equal
p=30
(0,12)
0; equal

p=2

Table I
F-Distributions

Percent Relative Improvement in Risk

c=0
n1=5 11,1210 n1=20 n1:5 n1=10
ng=>5 ng =10 ne = 20 ny = 10 ng = 20
25.23 9.75 4.82 10.94 6.20
25.31 9.78 4.84 10.97 6.22
39.90 18.24 9.23 21.54 12.20
53.24 24.33 12.32 28.74 16.28
44.24 21.06 10.72 25.43 14.33
64.21 30.52 15.57 36.91 20.79
49.85 24.28 1241 29.80 16.70
72.07 35.11 17.95 43.09 24.14

c=1
29.80 17.92 9.93 19.83 12.65
30.02 18.05 10.01 19.98 12.74
33.81 24.25 14.38 27.37 18.60
57.17 41.00 24.31 46.28 31.46
34.02 25.77 15.59 29.09 20.27
66.02 50.02 30.26 56.45 39.34
35.62 28.05 17.19 31.51 2241
71.54 56.34 34.53 63.29 45.01

c=2
n1=5 n1=10 n1=20 n1=5 n1=10
n2=5 n2=10 n2=20 n2:10 n2=20
17.91 23.14 15.01 24.55 18.96
18.14 23.44 15.51 24.87 19.20
15.78 20.97 15.82 19.31 19.01
34.87 46.35 34.97 42.68 42.01
12.57 19.84 15.72 15.60 18.48
33.96 53.59 42.45 42.13 49.90
10.07 19.64 16.12 12.64 18.59
29.53 57.98 47.60 37.33 54.90
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Percent Relative Improvement in Risk

p=2
(0,12)
0; equal

pP=5

p=2
(0,12)
0; equal
pP=35
0,12)
0; equal
p=10
(0,12)
0; equal
p=30
(0,12)
6; equal

p=2
(0,12)
0; equal
pP=5
(0,12)
0; equal
p=10
©12)
0; equal
p=30
(0,12)
0; equal

Reciprocal Beta

Table II

c=0
e=.01 e=.1 e=1 e=10

75.95 56.36 10.21 0.22
76.20 56.54 10.24 0.23
68.74 56.00 14.43 0.41
91.74 74.03 19.25 0.55
65.57 54.43 15.28 0.47
95.16 79.00 22.17 0.68
67.18 . 56.36 16.65 0.54
97.13 81.49 24.07 0.78

c=1

g =.01 e=.1 e=1 e=10

61.16 52.46 16.07 0.48
61.61 52.84 16.19 0.49
50.91 44.68 16.68 0.68
86.08 75.55 28.20 1.15
46.82 41.48 16.41 0.73
90.87 80.50 31.84 1.41
46.58 41.49 17.01 0.78
93.55 83.33 34.14 1.60

c=2
1.91 14.16 18.51 0.81
1.93 14.34 18.75 0.82
32.81 30.34 15.14 0.86
72.50 67.05 33.45 1.89
30.13 27.77 13.92 0.86
81.37 75.01 37.72 2.31
29.14 26.87 13.68 0.88
86.03 79.33 40.38 2.61
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