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Summary

Let 2 be a simply connected planar domain which is not the entire plane, and let Z;,
t > 0, be two dimensional Brownian motion started at a point of () and either conditioned
to exit §) at a given boundary point or conditioned to hit a given point of 1 before exiting
Q. Let 7 be the lifetime of Z. We study 7, fr f(Z;)dt, and f(f(Zt),g(Zt)) -dZ;. Tt is shown
that Z behaves almost independently in tv(\)'o Whitney sqlfares of {2 which are far apart in
the sense of P. Jones, and that Var 7 < ¢6(f2) area (2, where §(2) is the supremum of the

areas of the discs contained in 2.
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1. Introduction. This paper studies standard complex Brownian motion started at a
point z in a connected Greenian domain of the complex plane C and either conditioned
to exit I' at a given point y of its Martin boundary or conditioned to hit a point y in T
before leaving I'. We use Z(z,y,T) = {Z(z,y,T),0 <t < oo}, to designate either of these
processes. Formally, Z(z,y,I') is the h process with h respectively Kr(:,y) and Gr(-,y),
where K is the Martin kernel function of I' and Gr is the Green function of I'. These are
the two basic h processes in I'; all h processes in I' are mixtures of them. An extensive
discussion of h processes and their uses in potential theory may be found in Doob [6].
See Durrett [7] for an elementary account as well as a description of some of the ways
h processes arise in connection with complex variables and partial differential equations.

There is more detail on h processes in the next section of this paper.

If A is a Borel subset of C, the area, closure, diameter, complement, and boundary of
A are respectively denoted 0(A), A, diam(A), A°, and A, and the (minimum) Euclidean
distance between A and another Borel set B is written d(A, B). The lifetime of Z(z,y,T) is
denoted 7(z,y,T). In [4] Cranston and McConnell answer a question of Chung by proving

there is an absolute constant K such that
(1.1) Er(z,y,T) < Ko(T).

Here we study the processes Z(z,y,T’) under the restriction that I' is simply connected.
Several of our results are related to (1.1). Throughout this paper 1 stands for a simply
connected domain which is not the entire plane, that is, which has a Green function, and we
suppress z, Y, and {1 in the notation by putting Z = Z(z,y,Q) and 7 = 7(z,y, ). We use

¢, C, ¢y, etc. for positive absolute constants, not necessarily the same at each occurrence.

If Q is a square contained in 02 we call it a Whitney square (for Q) if diam(Q) <
d(Q,0°) < 4 diam(Q). See [13] for a proof that 0 is a union of Whitney squares Q;,1 <
1 < oo, which have disjoint interiors. Such a collection of squares is called a Whitney
decomposition of . If Q and R are both Whitney squares we define, after P. Jones [11],
p(Q,R) =0if Q = R, and if @ # R, p(Q, R) is the smallest integer n such that there exist
Whitney squares S,S52,...,Sy, satisfying S;NQ # ¢,S, N R # ¢, and 5; N S;41 # ¢,1 <
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t < n. If Q is a Whitney square we denote f I(Z.:eQ)dt, the total time Z spends in Q, by
0

Tq, and let Py stand for the probability Z ever hits Q. If Q;,1 < ¢ < oo, is a Whitney

decomposition of 1,7 = LTqg,. Now the main results of the paper are stated.

Theorem 1.1. Let Q be a Whitney square. Then

(1.2) ETQ S C.PQO‘(Q)

If furthermore either y is a boundary point or one of z,y is a distance at least diam(Q)/2

from @, then
(1.3) ETqg > cPQo(Q).
Most of this paper is devoted to proving the following theorem.

Theorem 1.2. If @ and R are Whitney squares then

(1.4) |Cov (T, Tr)| < Ce=?@R)5(Q)o(R)(Pg + Pr).

The following theorem is derived from Theorem 1.2, using the inequality Var (£X;) < X

Var X;+ ) [Cov(X;, X})|. Let 6(2) be the supremum of the areas of the discs contained
1#£j
in . This quantity has appeared in several contexts in the analysis of simply connected

domains. See, for example, [9] and [12]. We prove

Theorem 1.3. If §(2) < oo then either P(r = 00) =1 or ET < co. If ET < co then
(1.5) Var 7 < Cé6(N) Er.

We also show there is a constant ¢ such that if §(2) < oo, there exist z and w in

satisfying
(1.6) Var 7(w, 2,0) > ¢6(Q)E7(w, 2,0).

Of course (1.5), together with (1.1), implies Var 7 < C6(Q)o(Q2). It is known that P(r =
0o) is either 1 or 0, whether or not §(f2) < oo (see [6]).
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We remark that Var 7 has an analytic formulation. Assume that y €  for simplicity.
Let fi(z,-) be the transition density of Brownian motion killed when it hits 91, that is,
the fundamental solution of the heat equation with boundary values zero. Put h(t) =
fi(z,y) and r(t) = h(t)/ ?oh(t)dt = h(t)/Ga(z,y). Then r(t) is the density of 7, so Var
T = [J0(t — p)ir(t)dt, wlfere p = [;°r(t)dt. Especially, if Var 7 is small, the graph of h

looks more or less like a spike at pu.

The proofs of Theorems 1.1 and 1.2 can be easily altered to treat other functionals
of the paths of Z. We now give several examples of this. If f is a real valued measurable

function on  and Q is a square contained in 0 put f*(Q) = sup..q|f(2)|,

TS = / F(Z)I(Z;eQ)dt, and
0

wl = / F(Z)I(Z:eQ)d X,
0

where X; is the real part of Z;. The following inequalities, which hold for @ and R
Whitney squares, are proved in Section 5, or more precisely, it is pointed out how the
arguments of Sections 2, 3, and 4 can be altered to prove them. Note that (1.7) below
follows immediately from (1.2). Also, we use f*(Q) here for brevity. In Section 5 we point
out that f*(Q) can be replaced in the following four inequalities by quantities which are

sometimes much smaller.

(1.7) E|T{| < cPof*(Q)o(Q).

(1.8) |Cov (TS, Tf)| < Ce=*# (@) 1(Q)f*(R)o(Q)o(R) (Pq + PR)-.

(1.9) EW}| < cPof*(Q) diam(Q).

(1.10) |Cov (W1, W{)| < Cem*P(@R) *(Q)f*(R) diam(Q) diam(R)(Pq + Pg).

Note that (1.1) implies that, for any 2z in T,
P(r(2,y,T) > 2Ko(T)) < Er(z,y,T)/[2Ko(T)] < 1/2,
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which, upon using the strong Markov property for conditioned Brownian motion (see [6]

and the next section) gives

P(r(z,y,T) > (j + 1)2K0o(T)|7(z,y,T) > j2Ko(T)) < 1/2,5 =0,1,2,...
implying
(1.11) P(r(z,y,T) > m2Ko(T)) <27™,m =0,1,2,...

(o]
Putting K, = Y. 2 ™~1(2Km)?, (1.11) gives
m=1

(1.12) Er(z,y,T)? < K,o(T)?,p > 0.
This proof of (1.12) is known. Similar extensions of the weakened versions of (1.2), (1.7),
and (1.9), in which Pg is replaced by 1, follow in the same way. More precise information

concerning the tail of the distribution of 7(z,y,T’) may be found in [5].

A different proof of (1.1) appears in [2], and (1.1) has been generalized and extended
in a number of ways. See [3] for references and a discussion. With the exception of (1.3),
which will be seen to be trivial, and of course (1.1), if we alter the statements of the results
stated earlier by dropping the condition that 2 be simply connected, none remains valid.
Also, no reasonable analog of any of these results except Theorem 1.1 holds for arbitrary

simply connected domains in R™.

2. Notation and preliminaries. With one exception, indicated below, the notation
introduced in the first section is retained. If 4 and v are measures on the same o-algebra
Fu<v méans p(A) < v(A),A € . If X is a complex valued random variable on the
probability space (M, A,7) and H € A then n(X, H) stands for the Borel measure « given
by

a(B) =n({X € B} n H), B a Borel set,

and if H = M the “H” is omitted, so that n(X) is the distribution of X. Furthermore if f
is a nonnegative Borel measurable function on C and v is a Borel measure on C then fv

stands for the Borel measure 8 given by

p(8) = [ fav.
B
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As we mentioned, we use ¢,C, ¢, ¢2,. .. for absolute positive constants, and with enough
extra work we could replace every one of these constants by an explicit number. The
constants ¢, C may be different in each occurrence. Sometimes, it is helpful to keep track
of constants locally, and when this is the case we use ¢1, ¢z, etc. If a positive constant has
properties in addition to being positive, for example being an integer or being less than

one, it is designated by some letter other than c.

The letters z and y are not used indiscriminately but solely to designate starting and
ending points of conditioned motions. Without loss of generality we assume from now on
y € 1, and so the theorems of the first section will be proved only under this assumption.
The proofs are readily altered to handle boundary points y, or, the results for a boundary
point may be proved from the analogous results for each of a sequence of interior points

approaching the boundary point. We shorten G to G.

The symbol A designates a cemetary or trap state a distance 1 from all points of
C. Following‘ Doob, Z;,t > 0, denotes a generic stochastic process with right continuous
paths having limits from the left (r.c.l.l.), or, more precisely, our underlying sample space
is always the set W of r.c.L.l. functions on [0, co) which take values in C U {A}, and
Zi(w) = w(t), if w € W. When Z; # A we use X; for ReZ; and Y; for ImZ;. Different
processes arise from different probability measures on W. A subscript but no superscript
as in Py, E;,Varg, etc., where z € C, or Py, E,, etc. with u a probability measure on C,
designates the measure on W which makes Z;,t > 0, standard complex Brownian motion,
started, respectively, at z or with initial distribution u. A subscript, which still designates
an initial position, together with a superscript which is a superharmonic function of 1, as
in PJ, denotes the h process in {1 with function g. The subject of the rest of the paper
is thus P,,-G (%) This combination of sub- and superscripts occurs so often we delete them
both, so that P stands for pPg ("y), E stands for ES Cy ), etc. In any case, the superscript
G(-,y) is always abbreviated to y, that is pEtY) — PY. This slightly changes the notation
of the first section, in that for example we no longer talk about Z(z,w,) or, as will be

seen, about 7(z,w, (1), although abbreviated notations such as P(Z; € A) and ET mean

the same in both schemes.



The o-fields 7(u) of subsets of W are defined by 7(u) = 0(Zs,s < u), and stopping
times will be F(t),¢ > 0, stopping times, that is, defined in terms of the paths of the
process, so that they make sense simultaneously for all processes considered. We define
T = nf{t : lime+Z, = y} (always inf § = oo0), and observe that, with P probability
1, 7 is the lifetime of Z (see [6]). If R C C we put 7g = inf{t : Z; € R°}. The shift
operator from W to W is defined by 6;(w)(s) = w(s +t),w € W. We always omit the
qualifier a.s.. The strong Markov property is abbreviated to sMp, and sMp(v) means
the sMp is to be applied at the stopping time v. If f is a nonnegative function on an
interval I satisfying 0 < [, f (i)dt < 00, its normalization, that is, the function on I given
by f(u)/ [ ; f(t)dt, will be denoted N (f). The normalization of a finite positive measure
p is defined analogously and denoted N(u). We will make frequent use of the conformal
invariance of Brownian paths, and the conformal invariance of harmonic measure. See [7]
for more detail on these topics. Next we discuss P, that is, we discuss the started at =
and conditioned to hit y before leaving {1 process. Under P, Z is a strong Markov process

with stationary transition densities given by

(2.1) pi(z,w) = fi(z,w)G(w,y)/G(z,y),

where f; is the density of standard Brownian motion killed upon leaving {1, that is, if A
is a Borel subset of 2, P,(Z; € A,t < 1q) = fA Ji(z,w)do(w). For eacht > 0,P(t > 1) =
1— [, pi(z,w)dw > 0,and Z; = A if t > r. If n is a stopping time and A € 7(n) then

(2.2) P(AN{n<r}) = / G(Zy,4)dPs |Gz, ).
An{n<rg}

This is equation (2.1) on page 672 of [6].

Now Theorem 1.1 will be proved. We have, using (2.1),

(2.3) EYTg = /Q fpt(z,w)dtda(w)

=/ G(w,y)/ft(Z,w)dth(w)/G(z’y)
Q 0

_ /Q G(w,y)C(z,w)do(w) /G2 y),
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where p; and f; are as in (2.1).

First we prove (1.2). It suffices to show that
(2.4) E¥Tg < Co(Q),z€ Q.
For let v =inf{t: Z; € Q}. If (2.4) holds then the sMp(~) gives

ETg = EE%_YTQI(W <7)< ECo(Q)I(y< 1) =Co(Q)Pg.

To prove (2.4), suppose first, and throughout this paragraph, that
d(y,Q) > diam(Q)/4. Harnack’s inequality then implies

¢ < G(w,y)/G(z,y) < C,w,z € Q,

so that, using (2.3), we have
(2.5)
c/ G(z,w)do(w) < EY¥Tq < C/ G(z,w)do(w), if z € Q and d(y, Q) > diam(Q)/4.
Q Q

Now

(2.6) /;)G(a, w)do(w) = E,Tg,a € Q.
Furthermore, there is an absolute constant € < 1 such that
(2.7) P,(Tg > 0(Q)) <e,a €.

An argument involving conditioning on the first hitting time of @ and using the sMp
shows that it suffices to prove (2.7) for ¢ € @, and we see that 1 — ¢ may be taken as
the probability that standard Brownian motion makes a loop enclosing the disc of radius
5 diam(Q) around its starting point by time o(Q), for if this starting point is in @, then
parts of this loop must lie outside {1, since @ is Whitney. Now (2.7) and an argument

similar to the one which gave (1.11) yields

Po(Tg > mo(Q)) <e™,a€Q,m=12,...,
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so that
(2.8) EaTQ S CO‘(Q),

and (1.2) in the case d(y,Q) > diam(Q)/4 follows from (2.8), (2.6), and (2.5).

To complete the proof of (2.4) we now handle the case d(y, Q) < diam(Q)/4, which
is assumed throughout this paragraph. Since Q is Whitney, d(y, 2¢) > (3/4) diam(Q) so

if z € @, Harnack’s inequality gives

G(w,y) < ¢G(z,y) if |lw — y| = min (|z — y|/2, diam(Q)/4),
implying, by the maximum principle, that

G(w,y) < ¢G(z,y) if |lw — y| > min (|2 — y|/2, diam(Q)/4).

Similarly,

G(w,2) < ¢G(z,y) if |w — 2| > min (Jz — y|/2, diam(Q)/4).
Thus, since either |w — y| or |w — 2| is at least as large as |z — y|/2, we have
G(w,y)G(2,w)/G(2,y) < ¢[G(w,y) + G(2,w)],
and (2.6), (2.8), and the symmetry of G imply
E¥Tq = /ﬂG(w,y)G(z,w)dw/G(z,y) < Co(Q).

This finishes the proof of (1.2).

Now we turn to the proof of (1.3). The time reversal of Brownian motion conditioned
to go from z to y in 0 is Brownian motion conditioned to go from y to = in N (for the
precise statement see page 682 of [6]), so we may and do assume with no loss of generality

that d(y, Q) > 1 diam(Q).
It suffices to prove that
(2.9) EYTq > co(Q), if z € Q and d(y, Q) > i diam(Q),
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for if z is not in Q we can condition on the first hitting time of Q@ and use the sMp. Using

(2.5), we see that (2.9) is equivalent to

(2.10) /Q G(z, w)do(w) > ¢o(Q), if z € Q and d(y, Q) > % diam(Q).

Let © be the disc of radius diam(Q) about 2. Then Geo(z,w) < G(z,w), and direct
computation gives fQ Ge(z,w)do(w) > co(Q), proving (2.10) and thus (1.3).

3. Some harmonic analysis. In this section we use an old technique of studying
harmonic measure in subdomains of an infinite strip and then translating these results to
{1 by conformal mapping. If z is a point in a domain T, harmonic measure with respect to
I’ and the point z, that is P,(Z,.), the distribution of the exit position from I' of a standard
Brownian motion started at z, will be denoted uL. We put § = {2 : -1 <Imz < 1},
L, = SN {Rez = a}, areal, R, = SN {—a < Rez < a}, a > 0, and H, = S N {Rez <
a},a > 0. For —1 < s < 1 and ¢t > 0, the function on (—1,1) which is the continuous
version of the density, with respect to linear Lebesgue measure, of P;s(Yr,, ,{Xr, =t}),
is denoted f, ¢, and we put kg = N(f,,:) (recall that N stands for normalizatidn), so that
hs,: is the density of the imaginary part of the point where a standard Brownian motion
started at zs exits Ry, given that the exit position is on the right side. For ¢ > O,ug" (Lq)

is the probability that Brownian motion started at ¢s exits H, on its right side. We have
Lemma 3.1. Let n be a positive integer. If ¢ > n and —1 <s < % then ug“ (Lg) <277

Proof. Clearly, by symmetry,

1
Pytiv(Xt —u =1 for some t suchthat Y, —v<1if s <t) = .

Thus ug’_‘:,: (Li41) £ 3,0<k <00, —1 < s < 1, since the range of imaginary values in

S is 1. Together with the sMp this gives

(31)  Pu(Z

THE41

€ Li41|Zry, € Ly) < é,k > 1, and Piy(Zy,, € Ly) <

[
B

and since {Z,,, € Lo} C {Z,, € Ly} if a > b > 0, (3.1) and induction give ug"-(Ln) <
2~",n > 1, which implies p,g" (Lg) <277, if ¢ > n. m|
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With a little more work, the 2~" in the statement of Lemma 3.1 could have been

replaced by o™, where o = pf*(L;) < %

Lemma 3.2. There is an absolute constant n < 1 such that, if n is a positive integer,

g>n,and —1 < s < 1, then

(3.2) (1 =n")ho,g < hoyg < (1 +n")ho,q.

Proof. Let D be the unit disc. Let ¥, = ¥ be a function analytic in B; which maps R,
univalently and continuously onto D, which maps 0 to 0, and which maps ORy N {Rez >
0} = N, onto 8D N {Imz > 0} = M. Then ¥(Lo) is the interval (-1,1) of the real axis,
since the points of Lo are the only points in R, such that pia (Ng) = 1/2, and similarly the
points of (-1,1) are the only points in D such that u2 (M) = 1/2, and harmonic measure

is preserved under conformal mapping.
Now ¥(L,) = A, is an arc of the unit circle which is of the form
Ag={e?:m/2—a, <0< 7/2+ag}.
To show this it suffices to show that
V(dR, N {Imz =1/2, Rez > 0}) and ¥(OR, N {Imz = —1/2, Rez > 0})
are arcs of the same length; this follows from the fact that by symmetry ug (ORN{Imz =

1/2, Rez > 0}) and pl* (ORgN {Imz = —1/2, Rez > 0}) are the same, that ¥(0) = 0, and
that uf is normalized length on 8D.

Now ud(4,) = ug"(Hq). Thus, by Lemma 3.1, we have 0 < a; < 727", Lemma 3.2
is a statement about harmonic measures and ratios of harmonic densities, both preserved
under conformal mapping. Also, uzD is of course the measure on @D which has density
with respect to df/2m given by the Poisson kernal P(z,e*) = (1 — |2|?)/|z — €*°|%. Thus
Lemma 3.2 is equivalent to the statement that there is a constant n < 1, not depending

on ¢, such that if *’ € A4 and z is real,
w/2+aq
(3.3) (1—17")(2ay) ! < P(z,¢%)/ / P(z,e"%)d8 < (1+n™)(2a4)7".

w/2—aq
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This readily verified from the equation for P(z,e‘o), and the fact that 0 < a; < 727",
O

From now on, n will be a number less than one, which satisfies (3.2). If U,(t),s €
I,t € J is a nonnegative measurable (as a function of (s,t)) function on I x J, where I and
J are intervals, and « is a measure on the Borel sets of I, then [, W,(t)dv(s) = ¢(¢),t € J,

is called a mixture of the functions ¥,.

Lemma 3.3. Let ¥,,s € I, and g be as above and suppose all these functions have

positive and finite integrals. If o and § are functions such that o < N(¥,) < 8,s € I,
then « < N(g) < 8.

The proof of this lemma is easy and omitted.

Now define ¢, ; and A, ; exactly as f, ; and h, : were defined except that R; is replaced
by H;. That is, ¢, ; is the density with respect to Lebesgue measure of P;, (Yeg, 1 {Zrg, €

Lt}) and As,t = N(¢s,t)-

Lemma 3.4. Let n be as in Lemma 3.2. If n is a positive integer and ¢ > n then,

(3.4) (1—=n"Yhogq < Asg < (1+n")hog,—1/2<s<1/2, and

3.5 1—0%)hok < Asqg < (X +0%)hok,1 <k <n.
’ »q )

Proof. Recall we denote ReZ; by X;, and put
To =0,
Ty = inf {t > 0: |X;| = ¢},
To= inf {t > T, : X; =0},
T2i+1 = T1(01,,),7 > 1, and
Tait2 = T2(0r,,),¢ > 1.

Let v; = Pis(Z71,;,{T2i < 7s}). Since ¢, 4 is the density of

Z Pia (Ymin(T§;+1,rs)a {T2i <Ts, Zmin(T2;+1,1's) € Lq})
1=0
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and since min(T2i4+1,7s) on {To; < 75} is the first time after Ty; that Z exits R,, we have,
by the sMp, that ¢, , is a mixture of the functions f, , —% <r< %, the mixing measure

being 3 +;. Now (3.4) follows from Lemmas 3.2 and 3.3

i=0
We prove (3.5) for k = 1 only, the other cases being similar. Let ¢ = inf {t : Z; €
Ly} Hz=(¢q—1)+ia€ Lq_l,Pz(qu,{Z,-Hq € L4}) has density f,; on (-1/2, 1/2).
The sMp (¢) implies ¢, 4 is a mixture of the functions f,1,—1/2 < a < 1/2, the mixing
measure being P;,(Ye, {€ < 75}). Now (3.5) follows from (3.4) in the case ¢ = 1, and
Lemma 3.3. a

The next two lemmas concern images of Whitney squares under conformal mappings

of 2 onto S. Rodrigo Bafiuelos has pointed out to us that both follow from the results of

8].

Lemma 3.5. Let ¢ be a univalent conformal mapping from ? onto S. Let @ be a

Whitney square and put ¢ = max {Rez : z € ¢(Q)} and b = min {Rez : z € ¢(Q)}-

Then a — b < c.

Proof. Let A be the circle of radius diam(Q)/2 around the center of Q and let B be the
circle of radius diam(Q) around the center of Q. Let € > 0 be the probability that the path
of a standard Brownian motion started inside A makes a closed loop, which contains the
interior of A and which lies between A and B, before it hits B. This probability does not
depend on the starting point inside A, nor does it depend on Q. We have P,(Z;,0 <t < 7q,
makes a closed loop enclosing Q) > ¢, z € Q. This implies that

(3.6) Py(Z;:,0 <t < 75, makes a closed loop around ¢(Q)) > €,w € ¢(Q).

Lemma 3.5 now follows from the observation that, by Lemma 3.1, for any w in S,
Py, (maxo<i<r, (Xt — Rew) > n) < 27", since if w € ¢(Q) and Rew = b, (3.6) and this
last inequality implies that ¢ — b < a, where « is the smallest integer such that 27 < ¢.

a

Lemma 3.8. There is a positive number ¢; and a positive integer k, both absolute

constants, such that if f is a univalent conformal map of S onto 2, if @;,1 <7 < oo, is
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f(I) N Q; # ¢ for at most k of the Q;.

Proof: Let h be a fixed one to one conformal map of the unit disc D onto S such that
h(0) = 0, and put v = |h’(0)| > 0. Now f(h(z)) maps D univalently onto 2 so Koebe’s
Theorem (see [9]) shows that

IF'(0) [y = [£(h(0))'| < 4d(f(R(0)),0°) = 4d(f(0), 02°).
Similarly, repla,cing/ h in the above by h + a, we get
(3.7) |f'(a)] < 477 1d(f(a),0°), a real.

Now define g on the real line by g(r) = d(f(r),0°). Then ¢'(r) < |f'(r)| < 477 1g(r), by
(3.7), implying g(r) < g(a)e*(*=2)/7,r > a, so that

(3.8) g(r) < eg(a) if 0 < r — a < /4, a real.
Now, for a fixed, define W,(r) = ¥(r) = |f(r) — f(a)|. Then
U'(r) <1f'(r)| < 4g(r) /7 < 4eg(a) /1 f O < r —a < /4.
Thus
(3.9) U(r) = /ar V'(s)ds < g(a)/2if0<r—a< /8.

Now if w € 1, the number of squares @; which can touch the disc of radius d(w,2¢)/2
about w is at most 7r(6.5)2 200 < 27,000. For the diameter of any such square is at most
4-(3/2)d(w,2°) and at least d(w,2°)/10, so all the squares are contained in the disc of
radius (6.5) d(w,2°) around w, and have area at least d(w,2°)?/200, and are disjoint.
Thus (3.8) and (3.9) imply we may take the ¢; of Lemma 3.6 as /8¢ and the k as 27,000.
0.

4. Covariance. In this section Theorem 1.2 is proved. The following lemma essentially

handles the case where p(Q, R) is small.
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Proposition 4.1. If Q and R are Whitney squares then

|Cov (Tq, Tr)| < ca(Q)o(R)(Pq + Pr).

Proof. As was mentioned in the first section, the proof of (1.12) from (1.1) can be easily

adapted to use (1.2) to prove that if G is a Whitney square
(4.1) EYTE < ¢,0(G)?,0 < p < 00,z € N.

Conditioning on {7y < 7}, where v = inf {t : Z; € G}, the sMp(v) and (4.1) in the case
p = 2 gives
E(TE|y < 1) < e20(G)3,
so that ETZ < ¢20(G)2P(y < 1) = ¢c20(G)%Pg.
Thus |Cov (T, Tr)| < (ET3)/*(ET3)Y/?

< ¢30(Q)o(R) (PoPg)'/?

< ¢20(Q)o(R) (Pq + Pr). O
Now let U,V be Whitney squares and suppose ¥y = ¥ is a conformal mapping of 2 onto
S such that both ¥(U) and ¥(V) contain points of the real axis. Suppose that the two
intervals {Rez : z € ¥(U)} and {Rez : z € ¥(V)} are a distance 15m or less apart, where
m is a positive integer. Then there is an interval of the real axis, of length at most 15m+2c,
which contains points of both ¥(U) and ¥(V'), where c is the same constant ¢ appearing in

the statement of Lemma 3.5. Thus, by Lemma 3.6, p(U,V) < [(15m +2¢)c7 ' + 1]k < Cm,

so we have the following lemma.

Lemma 4.2. There is a constant c¢s such that if @ and R are Whitney squares, if m is a

positive integer, and if p(Q, R) > c2m, then if ¢ maps 1 univalently onto S and ¢(Q), ¢(R)

both contain points of the real axis there is a real number o such that one of ¢(Q), ¢(R)

neither of ¢(z), #(y) belongs to that part of S lying between Lo_; and Ly43m+1-

The following proposition, together with Proposition 4.1, proves Theorem 1.2.
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Proposition 4.3. There are absolute constants ¢ and C such that if 2 is the ¢ guaranteed

by Lemma 4.2, and @ and R are Whitney squares satisfying p(Q, R) > ¢om for a positive

integer m, then

(4.2) Cov (Tq,Tr) < Ce °"0(Q)o(R)(Pq + Pr).

Proof. Several lemmas will be needed in the course of this proof. We let ¢ and o be a
function and number (both of which may be considered fixed) with the properties described
in the statement of Lemma 4.2. We also assume without loss of generality, by symmetry,
that both ¢(z) and #(Q) lie to the left of Lo_;. Define the curve K; C Q by Ky = ¢~ (Ly).
We say a point z € (1 or set A C () is to the left or right of K; if ¢(2) or #(A4) is to the
left or right of L; in S.

Define the stopping times v and € by v = inf {t : Z; € Koym} and & = inf {t :
Z; € Kayom}, Put Yo = 0,72i41 = Y(03,),% > 0, and vz; = £(02i-1),7 > 1, and let
u; = min (y;,7),7 > 1. We also put

Ag = f I(Z; € Q)dt,
U

o]

A,:/ " I(ZieQ)dt,i> 1,
u

2i—1

and

U2i+1
U, = / I(Z; € R)dt,i > 1,
172

23

so that (recall that z is to the left of K4—;) we have
o0 oo
TQ == ZA,; and TR = Z\I’i.
1=0 1=1
In the following two lemmas the constant 7 is the same one that appears in the

statements of Lemmas 3.2 and 3.4, and we put n* = (1 +7)/(1 — n).

Lemma 4.4. Let j be an integer exceeding 2 and let a;,as,...,a; be real numbers such

J
that a; = aj,a;41 # @i, 1 <1< j,and Y |a; — a;—1]| = B is an integer. Suppose also that

=2
|Red(2) —a1| > 1. Put To=0,T; = inf {t > T;—1:2Z; € K,,},1 <i<j. Then

(4-3) PY(Zz;, {T; < 7}) < 0*2 P PY(Zr,, {T1 < 7}).
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Proof. First note that (4.3) is equivalent to
(4.4) Po(Zr;, {Tj < 1a}) < 0n*27PP,(Z1,,{T1 < 7a}),

for multiplying (4.4) by G(-,y)/G(z,y) gives, via (2.2), (4.3). The conformal invariance of
Brownian paths implies that if So = 0,S; = inf {t > Si—1: Z; € Lo, },1 <1 < 7, then
(4.4) is equivalent to

(4.5) P¢(z) (Zsj,{Sj < TS}) < n*Z_pP¢(z) (Z,gl,{Sl < Ts}).

Assume that z lies to the left of a; without loss of generality. Let b; = |Re¢(z) —
ail,b; = |a;—a;—1],2 <7 < j. Put v = Im¢(2),and let Uy = 0,U; = inf {t > U;_;: Z; =
1

)" b,}. Translations of Brownian paths are Brownian paths, so
n=1

(4.6) P¢(z) (Y'S1 ,{Sl < Ts}) = P,;,,,(}’U1 ,{U1 < TS}).

Recall Y is the imaginary part of Z. If a; > a;, then translation invariance again gives

(47) P¢(z) (YS2,{82 < Ts}) w(YU27{U2 < TS})

and if a3 < a; we can use the fact that Brownian motion started on L,, remains Brownian
motion under reflection around L,,, so that by the sMp (S1), Brownian motion reflected
after Sy is still Brownian motion, to conclude that (4.7) holds. Proceed inductively to

conclude
(4.8) P¢(z)(Y L {S; <1s}) = W(YUJ,{U < 75}).

Now on {Zy = tv}, min (Uj,75) = THpyy, » DOtING f + by = Z b;, where H; is as defined

in Section 3. Thus the densities of Py(;)(Ys;,{S: < 7}),7 = 1,_7, are ¢y, and @y b, +5,

respectively. Of course, since both Py(;)(Zs;,{S; < 7s}),# = 1,7, are concentrated on

{Rez = 0,1} to compare them it suffices to compare the densities of Py () (Ys;, {S: < 75}).

Now f 1/2 Hv,p, (v)du = Py (Uy < 75), and f_léi}z @v,b,+8(v)du = P, (U; < 75). Recalling
= ¢y 1&/_[1/22 ¢y t(u)du, (3.5) with k£ =1 gives

Avpr+8 S (1 +m)hor < [(1+7)/(1—n)]Aop, =0 Avbys
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so that ¢y,b,+5 < n*Piy(U; < 75)/Piv(Ur < 7s)$y,p,. Now the sMp(U;) and Lemma 3.1
give

P;y(U; < 75) < Piy(U; < 75|Uy < 75)P(U, < 75) < 27PP(U; < 73),

50 ¢ub,+8 < 1*27Pdyp,. Thus, (4.6), and (4.8) give (4.5), and the lemma is proved.
O. |

Now for r real and ¢ > 0 let 47 be the probability measure concentrated on L, given
by .
V({r+iy:a<y<bd})= / hoq(s)ds,—1/2 <a < b<1/2,

e
so that ¥ = N(Priq (Za,{a < 75 and Z, € L,})), where a = inf{t: Z; € L, or Lyt2q}.
Define the measure ef on K, by €7(A) = 77(¢(A)). Conformal invariancce of harmonic
measure implies € = N(Pg-1(r+q)(Zp,{8 < 7q and Zp € K.}, where 8 = inf{t > 0 :
Zi € Ky or Kyi2q}. Recall n remains the n guaranteed in Lemmas 3.2 and 3.4, and
n* = (1+n)/(1—n).

Lemma 4.5. Let r be a real number and let z € 2, such that |Re¢(z) —r| > n for a
positive integer n. Let V = inf {t > 0: Z; € K,}. Put g(w) = G(w,y)/G(z,y),w € Q.
Then

(1 =n")/(1+n")IN(9e7) < N(PY(Zv,{V < }))

(4.10) <[+ 7™)/(1 = n™)]N(ge),
and
(4.11) (1/7*)N(gsl) < N(P¥(Zv,{V < 7}) < n*N(gel).

Proof. By (3.4), conformal invariance of harmonic measure, and translation invariance of
Brownian paths, we have
(4.12) (1 —n™)N(er) < N(P:(Zv,{V < ra}))

< (1 +n")N(er).
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Since gP;(Zv,{V < 1a}) = P¥(Zv,{V < r}), by (2.2), (4.10) follows easily, from (4.12),
using no properties of g except its nonnegativity. Inequality (4.11) follows similarly from

(3.5). O

Proof. Under the supposition of the first sentence of Lemma 4.6, let £ = inf {¢t: Z; €
K.},6= inf{t > & :2; € Kyyn}, and &3 = inf {t > &, : Z; € K,}. Now by Lemma
4.4,

P(¢3 < 7)< n*272™P(& < 1) < p*27 %™,
By the placement of = and y,
Py < P(Ez < T) = P(§3 < T) < 77*2_2m.

The proof of the second sentence in the lemma is similar. O

We will finish the proof of Proposition (4.3) by proving

(4.13) |Cov (Ao + A1, Tr)| < Ce ™0 (Q)o(R)(Pg + Pr)
and
(4.14) |Cov (_Z A;,Tg)| < Ce~*™a(Q)o(R)(Pg + Pr).

We begin with the proof of (4.13). We have two cases to consider: y (as well as z) to
the left of K,_; and y to the right of Ky 43m+1. First we assume y is to the left of K,_;.
Lemma 4.6 gives Pp < n*272™, and (1.2) gives ETr < ¢2~2™¢(R) and ETq < cPgo(Q),

implying

(4.15) E(Ao + A1)ETg < ETQETg < C27™0(Q)o(R) Pq.
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Furthermore, again by Lemma 4.6, P¥(Z; € R for some t < 7) < n*272™ if 2 € Kqi2m,
so EYTg < ¢272™g(R) if 2 € Koy 2m, by (1.2), and thus by the sMp, the fact that Ag+A;

is 7(u3z) measurable, and that Z,, € Kut2m on {us < 7}, we have

E(Ao+ A)Tgr = E(Ap + A1) E(Tr|Ao + Ay)
= E(Ao + A1) E[E(Tr|F(u2))I(ug < 7)| Ao + Aq)
< E(Ao + A1)E(c272™0(R)|Ao + Ay)
= ¢27*™o(R)E(Ao + A1)
< ¢27¥™g(R)ETq

(4.16) < ¢27?"¢(R)o(Q) Pr.

Together with (4.15), this proves (4.13) in case y is to the left of K,_;.

Next we prove (4.13) in case y lies to the right of Ko yam+y1. Here P(y2 < 7) = 1. Let
U= inf{t:Z: € Koyam}. Nowalso P(T <7)=1and PY(¥ <7)=11i2z€ Koyom.
Using (4.10), and noting that normalization of the middle term is not necessary in this

case since it is already a probability measure, we get
(4.17) (1= n™)/(L + ™IV (ge?) < PY(Zs) < [(1 +1")/(1 - n™)|N (ge?),

if 2 € Koq2m or z = z (of course PY = P). Now two measures close to the same measure

are close to each other, and from (4.17) we get
(1 =2™)/(1+n™)]*P(Ze) < PY(Zg) < [(1+1")/(1 - n™)]*P(Zg),

implying, since ETg = EE(Tg|Zy) = [ EYTrdP(Zy)(2), with an analogous inequality
for EYTg,

(418) (1= 1")/(L+ ") BTx < BYTe < [(1+97)/(1~ n")|*ETs, 2 € Kasom
Thus

(419)  [@-2")/(A+2™)]ETr < E(Tr|F(72)) <[(1+27))/(1 = n")|*ETx,
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and, since Ao + A; is F(v2) measurable, (4.19) still holds with E(Tg|¥(v2)) replaced by
E(Tr|Ao + Ay). Thus, since E(Ag + A1)Tr = E(Ao + A1)E(Tr|Ao + Ayg), we have, by

(1.2),
]COV (Ao + Al,TR)] = IE(AO + Al)TR - E(Ao + AI)ETRl

< (1 +92™)/@—9™)* - 1)E(Ao + A1)ETr
<([(1+2")/(1-2™)* - 1)ETGETg

<e([(L+2")/(1 —n™)]? — 1)Peo(Q) Pro(R),
from which (4.13) in this case, the last we had to do to prove (4.13), follows.

Finally we prove (4.14). Lemma 4.4 implies
(4.20) P(uzit1 < 7) < 9*27 2™ P(uy; < 7) <n*27 2™ i > 1, and

using the sMp (ug:+1), and (1.2), we have

o0 .
E ) Ay=EEgz,, Tol(uzit1 <7)
k=i41

< co(Q)P(ugit1 < 7)

< e27™(Q),i > 1.

Again using (1.2), we have

(4.21) E(i A)ETR < ¢272™0(Q)o(R) Pr.

The proof of (4.14) will be completed by showing

(4.22) E (i A,-) Tr < Ce~“"0(Q)o(R)(Pg + Pr).

t=2

o0 o0 o0 o0 o0
Now Y ATgr = >, A; (E\I/J) +Z‘I’i( > Aj).Weha,ve
' i=1

=2 1=2 j=t j=t+1

o0
E (Z \Ilj[?'um.) = E%..z,- Tr < ¢Pro(R) on {uz; < 7}, so
j=i
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E(> \I:,-|A,-) < ¢Pro(R) on {A; > 0}, and
j=i

o0 .
EA; Y ¥, < cPro(R)EA; < cPro(R)272m(~Ng(Q).

j=i

Thus

(4.23) E f: A; (i \I:,-) < ¢27?™g(Q)o(R)Pr.

Similarly (this involves also proving an analog of (4.20)) we have
o0 (o 0]

(4.24) EY w | Y Aj] <e27?™0(Q)o(R) Po.
i=2 j=i+1

To complete the proof of (4.22) we will show
(4.25) E (\Ill Z Aj) < Ce_cma(Q)O'(R) (PQ + PR).
=2

We divide the proof of (4.25) into the same two cases we considered earlier. If y is to

the right of K 43m+1, then

E (Z AJ-|.7'(u3)) < E%us To < ¢272™5(Q) on {us < 7},
=2

using Lemma 4.6 and the fact that Z,, on {u3 < 7} and, under our current assumption,
y, are both to the right of Ky4yp,—1 while @ is to the left of K,_;1. This, together with

[o,0]
the 7(us) measurability of ¥;, gives both E( Y A;|¥;) < ¢272™0¢(Q), and
J=2

E(%1)_A;) < E¥e27"0(Q)
=2
< ETRCZ_sz(Q)

< CPro(R)272™0(Q).
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Now we prove (4.25) under the assumption that y is to the left of Ky_;1. Let @& =
min (inf {t : Z; € K,},7) and & = min (inf { > us : Z; € K,},7). Now (4.11) gives
that P(Zg,{@ < 7})/P(% < 7) lies between 1/n* and n* times N(g&}), and also that
P(Zs

(u3)), by which we mean a version of the regular conditional distribution (see
[2]), almost surely lies between these same bounds on {uz < 7}. Due to the placement
of y, P(& < 7) = P(ug < 7) so the regular conditional distributions above are already
probability measures and are not changed by normalization. Since ¥, is 7 (u3) measurable,
we have that P(Z;|¥;) lies between these same bounds on ¥; > 0. Two probability
measures which lie between 1/n* and n* of the same measure are close to each other: We

have

(4.26) (1/n*)2P(Z4|¥1) < P(Zz, {2 < 7})/P(@& < 7) < (n*)?

Now ETg > E/ I(Z; € Q)dt
— EEY, Tol(ii <)

- / EYT@dP(Zs,{i < 7})(2).

Using (4.26), we have, on {¥, > 0}

(4.27) (S Adwy) = B( / " 12 € Q)dt|wy)
_ — E(BY, Tol¥:)
< B [ ByTodP(Z:l91)(2
< (n*)?ETg/P(@ < 7).

By Lemma 4.6, if 2 € K,, and we still assume y is to the left of Ko_1,E¥Tr <
n*2~2"o(R), yielding
EV, < EEy Tel(i <)
< n*2 2 "o(R)P (4 < 7).
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Using (4.27), this last inequality, and (1.2) we get

. oo
E(%, ) A) = BB E()  Ai¥)
i=2 i=

< B, (r") BT /Pl < 7

< (1")*2-*mo(R)ETq

< ¢27*"0(R)o(Q) Py,
and the proof of (4.25), and thus (4.22), is now finished. Together with (4.21), (4.22) gives
(4.14), and this completes the proof of Theorem 1.2.

5. Conclusion. We first prove the following lemma.

Lemma 5.1 If R is a Whitney square then

ET% < ¢cETgro(R).

Proof. Theorem 1.1 gives E¥Tg < ¢10(R), z € 1, and essentially the same argument that
proved (1.11) yields

P (Tg > 2(k + 1)c10(R)|Tx > 2ke1o(R)) < %,k > 0.
This shows that, if 4 = {.TR > 2¢10(R)}, then P (Tg > 2nc10(R), A) < 27"P(A) so tha.t.
ETXI(A) < co(R)2P(A) < cETgI(A)o(R).
Clearly ET2ZI(A°) < cETgo(R) since T < o(R) on A°. O

Proof of (1.5). First we prove that if  is any domain and if @;,72 > 1, is a Whitney

decomposition of Q2 then
n n
(5.1) Var (Z TQ,.> < c5(NE (Z TQ,.) :
1=1 1=1
Note that there is an absolute constant N such that the number of @;,1 < ¢ < o0,

which satisfy %dia,m(Q,-) > d(y,Q;) is at most N. Suppose without loss that the @; of
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Q1,...,Qr which satisfy Zdiam(Q;) > d(y, Q:) are the last ones, that is, there is an integer
ko,ko S k,k — ko S N, such that

(5.2) sdiam(Q;) < d(y, @:),1 < ¢ < ko.
Suppose further, without loss of generality, that
(5.3) PQ.. > PQ:‘+1 , 1 <1 < kp.

Now it is easy to see that the total area of all Whitney squares V' of 2 such that p(S,V) < j
is at most ¢526(Q2), since p(8,V)6(Q)1/2 > ¢d(S,V). Therefore if m is an integer, 1 < m <
ko, (1.4), and, in the last step (using (5.2)), (1.3), imply

ko [ o]
Y 1 Cov(Tq,,To,)I < ) Ce*@mPy o(Qm)o(Q:)
J=m+1 t=m+1
< Pg,.0(Qm) ZC]Ze °75
=1
< CPg,,0(Qm)6(0)
< C'ETg, 6(0).
ko
Thus Y |Cov (T, To;)| < ¢ ) ETq, 6(0).
i<j m=1
1<i,5<ko

Furthermore, using (1.4) in the case where Q and R are the same square, and (1.3),
Var Tg, < c¢Pg,0(Q:)® < ¢§(Q)ETg;,1 < i < ko,

k ko
s0 Va,r(Zo: To,) < c6() > ETg,. Together with Lemma 5.1 and the fact that
i=1 =1

i3 n
Var(Z W,) <n ). Var W;, we get

=1 1=1
k ko k ko k
Var 3 Tg, <2Var » To+2Var Y To, <cY ETQ6(0)+NC ) ETq.5()
=1 t=1 t=ko+1 1=1 1=ko+1
proving (5.1). O
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Inequality (1.5) follows immediately from (1.7). To show, as claimed in Theorem 1.3,
that if 6(2) < oo then E7 < oo implies P(r = oo) = 1, we note that, by Chebyshev’s
inequality, if A;,2 > 1, are random variables such that 4; < A;4; and Var A; < KEA; for
some constant K not depending on ¢, then lim, .o F A, = oo implies lim,_,0An, = 00,

O

1
and observe that, by (5.1), }_ Tg;,¢ > 1, satisfies all these hypothesis if E7 = ETq, =
i=1

j=1
0.

Let R be asquare and let A be the disc of radius diam(R) around the center of R. Then
E, fOTA I(Z; € R)dt < E,7A < co(R). This, together with the fact that fg I(Z; € R)ds is
an additive functional of the path of Z which changes only when the path is in R, were
key to the proofs of (1.2) and (1.4). Now, using the notation of (1.9), (1.10), and (1.11)
we have

E, /0 " H2)1(Z: € R)dt| < ef*(R)o(R).

Furthermore,
1/2

o /0 H(E) (2 € B)axi| < 5 ( /0 f(zt)f(ztezz)dxt>z]

= Ez /Or“(f(zt)I(Zt c R))zdt} 1/2

r A 1/2
< |E; / F(R)*I(Z; € R)dt]
L 0

< [ef*(R)2o(R)]"?

< c¢f*(R) diam(R).
Using these inequalities, (1.8), (1.9), and (1.10) may be proved by straightforward appli-

cation of the proofs of Theorems 1.2, 1.1, and 1.2 respectively. We may replace f*(Q) in
(1.7) and (1.8) by |

FHQ) = sup seqBx [ 11(Z)I1(Z € Q)it/o(Q)

where A is the disc of radius diam(Q) around the center of Q, and we may replace f*(Q)

in (1.9) and (1.10) by
1/2

(@) = [supzquz ( [ ” f(zt)dxt) ] diam(Q).
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Finally, we turn to the example connected with (1.6). We will be brief. First note that
if A is a disc with center z, then Var,7o = ac(A)?, where « is a positive constant not
depending on A. Furthermore, by symmetry, Var,7a conditioned on Z,, = w still equals

ac({A)?, for any point w € A.

Suppose §(2) < oo, let J be a disc of area §(f2)/2 contained in 2, and let r stand for
the radius of J. Let w be the center of J, and z be any point satisfying |z — w| = r/2.
Let M be the disc of radius r/2 around w. Let 4 = inf {¢ : ltms_+Z, = z}. Then under

pS ("z),'y is the lifetime of our process. (In the notation of the introduction, we used

7(z,w,0) for this lifetime.) Now v = 7as + (v — 7as). Furthermore, under pg ("z), given
Zres (¥ — 7a) is independent of 7ar, so that the conditional variance under PSC2) of ~

given Z,,, is at least ao(M)?, so that

(5.3) VarS(2)y > ao(M)? > ¢6(02)2.
To finish the proof of (1.6) we will show

(5.4) ESC2)y < c6(Q).

Let A be the disc of radius (3/4)r around z. Harnack’s inequality implies G(a,2)/G(w, 2) <
Ci,a € A. A winding argument similar to that used to prove (1.7) shows there is a constant
¢; > 1 such that P,(|Z: — Zo| > eir for some t < 1) < 1/2,a € 0, which, upon using
the kind of iteration argument used to establish Lemma 3.1, gives Py (|Z; — Zo| > keyr for
some t < 7q) < 2%,k =0,1,2,.... In particular P,(Z; € A for some t < 7g) < 92— (k—1)
if |a — 2| > keyr. Now if A = inf {¢ : Z; € 3A},

G(a,z) = E,G(Zy,2)I(X < 1q) if a is outside A.
Thus G(a, z) < C12~ k=)@ (w, 2) if |a — 2| > keyr, which implies, using (2.1),

PZ2(|Z, — z| > keyr for some t < 7) < 2~ (F~1),

Now let Ho = {|Z; — 2| < e1r,t <7}, and if n > 1 put

H, = {|Z; — 2| > neyr for some t < v but [Z; — 2| < (n + 1)e1r for some t < 7}
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Then PZ(H,) < C12~(®~1), and it is easy to show that EZ(y|H,) < cx|[(n+1)cyr]?, using

the main result of [4] (essentially (1.1)]. For all the action takes place in a subdomain

of the disc or radius (n + 1)¢;7 around z, which has area w((n + 1)¢17)2, and both the

expected time to reach the circle of neyr about z is less than ¢ times this area, and the

expected time to get back to z without reaching the larger circle is also less than ¢ times
this area. Thus EY~y = XE¥(v|H,)P(H,) < cr? < C§(Q), proving (5.4) and finishing the
proof of (1.6).

2]

3]

[4]

5]

(6]

8]
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