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§0. Imtroduction

For time series in which data are categorical rather than numerical, linear models and normality
assumptions are not appropriate. In .such cases, the so-called “Gibbs states” may be appropriate
models.

Gibbs states were originally conceived as models in statistical mechanics (cf. Ruelle [10]), and
they are also important in topological dynamics (cf. Bowen [1]). Multi-dimensional Gibbs states
have been proposed as models for certain types of spatial data (cf. Ripley [9]). However, using
one-dimensional Gibbs states to model categorical time series seems to be a new idea.

Important examples of categorical time series arise in communications engineering. These
series typically consist of long strings of symbols from a finite alphabet. The dependence in such
series may be quite complicated: Gibbs states might be useful models in these contexts.

Categorical times series also arise in social sciences, e.g., in studies of social mobility. In these
situations one would not usually have long series of observations, but rather “panel” type data.
Thus, inference about complicated dependence would be problematic. The usefulness of Gibbs
states as models in these contexts may be somewhat more limited.

Further discussion of modeling binary time series may be found in Kedem [4].

A one-dimensional Gibbs state py is a probability measure on the space X+ = ﬁo{l, ceesThe

i=
Each element of 7 is a sequence z = (zg, 1, . . .) whose coordinates z; have possible states 1,...,r,
i =0,1,.... Define the forward shift operator ¢ : ¥+ — Zt by (¢2), = zp41, n =0,1,..., for

z € BF. The Gibbs measure uy is the unique o-invariant probability measure on X+ satisfying

prly:yi=2;, 0<i<m—1) <
m—1 : >C2
exp{-mp+ 75 f(o7z)}

(0.1) ¢ <

for some constants ¢;,¢2 € (0,00) and for all z € %, m € N, where p is called the pressure for
f, and f is a real-valued function defined on ¥, called the potential (or energy) function. It is
observed from (0.1) that f determines the dependence in the stationary sequence {X,} which has
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the distribution uy.

Traditionally, categorical time series X = (X, X1,...) are modeled by finite state stationary
-Markov chains,. or more. generally, k-step Markov dependent chains with k being an arbitrary
---positive integer. When f depends only on a finite number k. of coordinates, X ﬁnder iy is just a -
k-step Markov dependent sequence. Therefore the family of Gibbs states includes all k-step Markov
models, k=1,2,....

The inequalities (0.1) reveal that the family of Gibbs states looks like an infinite-dimensional
exponential family, where the potential function f plays the role of the natural parameter. There
is a formal similarity between (0.1) and the likelihood function for a stationary Gaussian sequence;
however, for Gaussian measures the potential function is quadratic.

The purpose of this paper is to estimate some functionals of Gibbs states uy when f is unknown.
It is possible that two different functions f.and g induce the same Gibbs measure ps(= p ) which
gives rise to the stationary sequence X = (Xo,Xi, ...). Therefore based on the observations
Xo,...,Xn-1, [ is not identifiable; only pus is. That is why we do not estimate the function f
itself.

Unfortunately, the exact form of the likelihood function ps(y : y; = z;,0 < { < n—1), denoted
by ps(zo,...,Zn—1) in what follows, is not available. So there is no direct method of finding a
maximum likelihood estimator (MLE). Nevertheless, we shall construct an MLE, and use (0.1) to
study its asymptotic properties.

“Section 1 summarizes some background information about Gibbs states.

In Section 2 the estimation problem is formulated. Using the mixing properties of the shift
operator on the sample space we construct estimators of maximum 'likelihood type. This is done for
the case of the sample space X7 first, then extended to the situation with a more general sample
space Ej.

In Section 3 we prove the strong consistency and the asymptotic normality of MLEs. The
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former follows Birkhoff’s ergodic theorem and the latter is derived from the central limit theorem
(CLT) for sums of stationary sequences.

Section 4 establishes the asymptotic efficiency of MLEs. The nature of our estimation problem
is infinite-dimensional since the function f is unknown. We follow Stein’s idea of simplifying the
problem of estimating a functional of the unknown f by considering the “least favorable” one-
dimensional parametric subfamily (cf. Stein [11]). The main tools are provided by the perturbation
theory for Ruelle-Perron-Frobenius operators and the theory of locally asymptotic normality (LAN)

due to Héjek and LeCam.

§1. Background: Gibbs States and Ruelle-Perron-Frobenius Theory

(1) Forward shift: Let A be an irreducible, aperiodic, r X r matrix of zeros and ones (r > 1), and

let
[ o}
oi= {a:e I o7 Avy, =1, Vi€ N} :
1=0
where Aji, 5,k =1,...,r are entries of A. The space Ej is compact and metrizable in the product
topology.

Define the forward shift operator o : 2: — EI by (6z)n = zptr1, nEN, z € EI. Observe
that o, although continuous and surjective, is not generally 1 — 1.
Remark: 7 is a special case of Ej with A;x =1forall 5,k=1,...,r. The reason for introducing
Ej is to cover those cases in which certain transitions 7 — k are not allowed.

(2) Holder continuity: Let C(X}) denote the space of continuous, complex-valued functions on.

x}. For f € C(2}) define

var, f = sup{|f(z) — f(y)| : =i = y;, 0 < i < n};

forO<p<llet

vary, f
|flo,=s p:
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and

Fr={fecE@):Ifl, < oo}.

Elements of 7,,"' are referred to as Holder continuous functions. The space .’r"p'*' is a Banach algebra
when endowed with the norm || -|[, = |- [, + || * [l

(3) Ruelle-Perron-Frobenius (RPF) operators: For f, g € C(Z}), define L; : C(Z}) —
C(z%) by

Lg(z) = Z efWg(y), z € =t

yioy=x

Theorem 1.1. For each real-valued f € 7', there exists Ay € (0,00), a simple eigenvalue of
Ly : 75 — F*, with strictly positive eigenfunction hy and a Borel measure vy on £} such that
Ljvs = Ajvy. Moreover, spectrum (L)\{)Ay} is contained in a disc of radius strictly less than Aj.
Finally,

Tim [ £59/A} - (/gdl/f)hf”oo ~0, Vg € C(E}).

The proof may be found in [1], [10].
(4) Gibbs states: Assume that [ hydvs = 1. For each real-valued f € 7., the Gibbs measure uy

is defined by

duy
—= = hy.
de I

It is easy to verify that ps is an invariant probability measure under o.
Let M,(Z7}) denote the set of all o-invariant probability measures on 5.

Theorem 1.2. For each real-valued f € 7', there exist constants ¢y, ¢z € (0,00) such that

“f(xO"'wzm—-l) + +
1.1 c1 < — —— < ¢y, Vze€X], meNT =N\{0};
() "7 exp{-mp+ T75" f(o9a)} 4 '

and p; is the unique element in M,(Z7) such that (1.1) holds, where p;(zo,. .., Tm—1)
=ps(y € Z: 1y; =i, 0 <1 <m—1). Here p=p(f) =log Ay is called the pressure for f.
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The proof is given in [1].
Remark 1.3. (1.1) is an extension of (0.1) for the case X3.
Remark 1.4. Two functions f,g € C (ZX) are said to be homologous, written f ~ g, if there exists

¢ € C(Z}) such that

f-g=do0—¢.

Homology is clearly an equivalence relation. It can be shown (cf. [1]) that py = p, iff f — g ~

constant; otherwise ps L u,, because uy and p, are ergodic measures.

Remark 1.5. The Gibbs state model includes the following special cases: Let X = (Xj, X1,...) be

a stationary sequence with underlying distribution uy, then

(i) In the case of 7, if f(z) = ¢, for all z € 7, then X is a sequence of iid random variables
with discrete uniform distribution.

(i) In the case of T%, if f(z) = f(o), for all z € £+, i.e., f only depends on the first coordinate,
then X is a sequence of iid random variables with P(Xo = I) = cel M, 1=1,...,r, where
c=1/31.,¢0.

(iii) In the case of =}, if f(z) = f(zo), then X forms a stationary Markov chain with state space
{1,...,r} and suitable transition probabilities.

(iv) In the case of £, if f(z) = f(%o,...,%k-1), k- € NT, ie., f only depends on the first k
coordinates, then X is a k-step Markov dependent chain.

In fact the family of Gibbs states includes all finite state stationary k-step Markov chains, k € Nt.

§2. Construction of MLE for Estimating Certain Functionals of One-dimensional
Gibbs States

In what follows, we assume that X = (Xo, X1,...) is a stationary sequence with probability
distribution ps and z = (2o, 21, ...) is a specific value of X.

For real-valued f, ¢ € 7;* define 6 = 8(uy) = [ ¥dus = E,,+. Suppose ¢ is given but f
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is unknown. We consider the problem of estimating # based on a finite number of observations
Xo,.--3Xpn—_1. The para.me:ter @ is just the expectation of the random variable ¢ defined on 2:
under. py. For instance, when ¢ = I(5,, . z,_,), 0 equals the probability that the first k coordinates
of X are exactly zg,...,Zx_1.

This estimation problem is connected with the weak topology on the space M, (Ej). If p, is
a sequence in M, (X}), then u, — p in the weak (Lévy) topology (un—u) iff [ ¥du, — [ ¢du for
all € 7F.

Recall that f ~ g implies uy = p,. As we mentioned in Section 0, considering the identiﬁability.
problem we estimate # instead of f itself.

For every v € M,(X}), recall that v(zo,...,Zn_1) =v(y €T tyi =2;, 0< i <n—1),ie.
the probability of the cylinder set with the first n coordinates zg,...,2,_1.
Definition 2.1. Given zg,...,2,_1, if there exists i, € M,(EI) such that g,(zo,...,Tn-1) >
v(%o, . .., Tn_1), for all v € M,(Z}), then g, is called a maximum likelihood summary (MLS), and
6(2n) = [ ¥dpy, is called an MLE of 6.

We construct an MLE of § in the cases with sample space £ and EI separately.
§2.1. The case T+
Definition 2.2. z € 1 is said to be a periodic sequence with period m € Nt if 6™z = z. We
call m the smallest period of z, denoted by I(z), when ¢™z = z but 07z # z for all § < m. The
set of all periodic sequences in X+ is denoted by C.

Observe that for every zo,...,Z,_1 there exists a unique z(») € C with smallest period I, --
such that azg-l") =z;,7=0,1,...,n—1,and I, < nforall zg,...,z,_1.

Define g, € M,(Z1) by

. ' 1 .
pa(o?zl=)) = —, j=1,...,1,.

n

Note that f,, is a o-invariant probability measure which puts all its mass on the orbit of the sequence
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20,

Example 2.3. I (zo,21,22) = (1,2,1), n = 3, then Iy = 2, z(}s) = (1,2,1,2,...) and
£s(1,2,1,2,..) = ps(2,1,2,1,..) = L.

Example 2.4. If (zo,21,22) = (1,2,3), n = 3, then Iy = 3, z(s) = (1,2,3,1,2,3,..) and

£s(1,2,3,1,2,3,...) = 4s(2,3,1,2,3,1,...) = 2s(3,1,2,3,1,2,...) =

[

The next lemma shows that every element in M,(X") can be approximated by a sequence of
o-invariant measures concentrated on C.
Lemma 2.5. For every v € M, (%) there exist v, € M,(2%), n € Nt such that supp v, C C
for all n € Nt and v,, 2V as n — oo.
Proof. For every zo,...,Z,—1, define z(n) € C by z(n) = (zo,...,Tn-1; Zoy--.»ZTn—1; --.), then
define v,, by
(a) vn(z(™) = Lv(zo,.- s Tno1) T 2(21,- .. Tn_1,20) ++ o+ + V(Tp—1,T0ys - - -, Tn_2)}
and
(b) vn(072(n)) = vu(z(n),i=1,...,n.
Observe that (a) and (b) are consistent, and v, € M,(X7) only assigns positive mass to the
periodic sequences with period n, hencé supp v,, C C. To show v, v, only cylinder sets need to
be considered. For any m € N* and z,,...,%Zm_1, When n > m

Un(Zoy- -y Tm—1)

= Z Vn(xO)'“)xm—l;mm:---)mn—l)

ZTmyesTn—1

1
= ;{y(mo,...,xm_;l) +v(z1,. . s Tma1,n—myz0) + ...+ (1,20, .., Tm_1,n—m—1)},

where the pattern k represents a string of length k with arbitrary components. Since v € M, (Z7),

at most m — 1 terms in { } differ from v(xo, ..., Zm_1). Therefore,

m—l_)o

|vn(zos - .- Tm—1) — v(0, ..., Zm_1)} <

asn—oo. 0O



Theorem 2.6. j,, is an MLS.
Proof. For an arbitrary v € M,(3.%) let {vi} be a corresponding approximating sequence given

- in Lemma 2.5. It suffices to show that for every zo,...,Z,_1,
fn(oy .-y Tn_1) > vi(Zo,--.» Tno1), Yk ENT.

Introduce an equivalence relation ~ in C as follows: for z,y € C, £ ~ y if 07z = y for some 5 € N*.
Then we have

(i) = ~ y implies I(z) = I(y);

(ii) C is a countable union of disjoint equivalence classes;
(iii) for each k € N*, there exist a finite number of equivalence classes Fj,..., Ex such that

supp Vi = Uk E;.

Let y) be a representative element of the class E;, then E; = {y(®, oy, ... ,a'(y(i))‘ly(")}. Let
B,={yeC:y;=12;35=0,1,...,n— 1}, then

vi(zo,y ..y ZTn_1)

= vi(B;N B,)

i=1

= Zv;c(y"’) #{7:1<5<I(yY), o7 (y*)) € B}

=1

= {we(B) 1y} - #{7: 1< 5 <U(yD), o(y?) € By}
=1

=

x

X

x

< max [#5:125 <109),0/(4) € Ba} /1)

<#{7:1< 5 <y, oz € B},
= fn{Z0,- .., Tn-1)
The last inequality follows from the fact that those 0-7_' zln), 5 =1,...,1, in supp vy must belong

to one equivalence class E,,, hence I, = I(y(™)) and

#{j:1<5<1,, oiztr) € B, N supp vg}/l,
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=#{7:1 <5 <1(y™),07y™ € B,}/I(y"™)

_ 1< i< Uy @) giy® oS
&f‘é’%{[#{’ 1<7<l(y"™),0e’y" e B, }/I(y*)]. O

§2.2, The case Ej
Example 2.7. (cf. Example 2.4) Let (2o, z1,22) = (1,2,3), n = 3, As; = 0. Recall that I3 = 3,
z(s) = (1,2,3,1,2,3,.. ) in Example 2.4. Now z(*s) ¢ 57 since the transition 3 — 1 is disallowed.
Therefore, the definition of I,, needs to be revised for those zy,...,z,_; satisfying
(2)zeCnNB,,l(z)>n-1
and
(b) Az,_,,2o =0, i, (Zos-..,Tn—1;%0s-- -, Tn1;...) € T4.
For any zo,...,%,_1 define

I*=inf{l € N : there exist ao,...,a;41 witha; € {1,...,7}VO< 7 <I+1,

such that Agq;,, =1V0< 5 <! and ap = z,_1, G141 = 20}
Since A is irreducible, I* is well-defined (cf. [1], Lemma 1.3.). Notice that the choice of ay,...,a;
‘need not be unique and /* depends on zg, z,,_; in general.

Definition 2.8. For given zo,...,,_; satisfying (a) and (b) define
ztn) = (2o, ..., Zno1, G1,. ey G1e) T0y. .y 1y Gly- - -y Q1s] ... )ec

for some choice of ay, . . ., a;« with the smallest period l(a:'(’")) = ntl*2 l,; and define 4, € M, (Z})
by
i (pigiely= 1 o
Pn(o?z)) = o = 1,...,1,.
n
‘The next lemma is the analogue of Lemma 2.5.

Lemma 2.9. For every v € M,(X}) there exist v, € M,(Z}), n € N* such that suppv, C C

for all n € Nt and v, 5v as n — oo.



Proof. Let L* = max [* and L, = n+ L*, then for every z¢,...,2,_1 and for a possible choice

%0,Zn—1
of a1,...,ar+ define
z(n) = (Lo, ., Tn—1, 81, .+, 8L*; T0y+--sTp—1, G1y---,8L=;...) EC
and v,, by
(a) Vn(2(n)) = Lin{u(xo,. ey Tpe1,@1y- -, QLs)
+ (21,3 Tao1,81,. .., 8L, 20) + -
+v(aL, %oy ..., Tpn-1,81,---,8L—1)}
and
(b) va(07z(n)) = v, (z(n)), 5=1,...,L,,
then v, € M, (2}), supp v, € C, n € Nt. Furthermore, for any m.€ N* and o, ..., Zm_1, when

n > m the same argument as in the proof of Lemma 2.5 implies that

m—l_)0

|vn(Zoy -« s Tm—1) = V(Z0,- - - Tm—1)| < n

as n — oo. Hence v, Sv. O
Theorem 2.10. i, is an MLS.

The proof is the same as in Theorem 2.6.

§3. Consistency and Asymptotic Normality of MLE
The main result of this section is
Theorem 3.1.
(i) Strong consistency of MLE: for the MLE 0(j,,), we have 0(fi,) — 8 a.s. as n — oo under pj.

(ii) Asymptotic normality of MLE: Let

o Mtz¥
B5(z) = log A z €R,
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and ®(t) be the standard normal cdf. Then for every t € R

pf(:z: ext: \/n/B7(0) - (0(2a)(z) - 8) < t) — ®(t) asn — oo,

where f7(0) = dz—fz%(i”z:o.
To prove Theorem 3.1 we need several lemmas.
Lemma 3.2. (Weak Bernoulli property of Gibbs states)

Let
by ((Io, o3 Tne1) N (Tt e oo $m+n+k—1))

=pf(y€)3j; Y =25, 3=0,....m—-1m+n,... m+n+k~1).
Then there exist B > 0, a € (0,1) and N € Nt such that

lllf((-'ﬂo; sy zm—l) N (xm+n: vy xm+n+k—1))
ll'f(mO) seey xm—l) . I‘f(xm+n’ ceey xm+n+k—-1)

—1| < Ba"

uniformly for all z;, § =0,...,m—1,m+n,...,m+n+k—1and for alkeNt, n> N.
See Bowen [1], Theorem 1.25 for the proof.

Lemma 3.3. For each Gibbs state uy, there exist § € (0,1) and N € N* such that

pr(zo,y...,Tn1) < B, Vzo,...,2,_1 and n> N.

Proof. (1.1) implies that
e<pr(YET) tymo1=2m-aly;=2;, 5=0,....m-2)<1—¢

for some ¢ € (0,1) and for all zg,...,2,,_3 and m € N*.
The lemma follows by setting 8=1—-¢. O

Lemma 3.4. Under py, asn — oo

(i) "—\7-:7& —0 as.

and
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(i) = > 1 as.
Proof. It suffices to prove (i). Let P(E) be the probability of an event E under u;. For any

6 €(0,1)

n—ln ln"n

vn Vn

The second term identically equals zero for all sufficiently large n because

Py |>5)=p(%>5)+P( > 8).

l,<L,=n+L" Vzo,...24_1.

On the other hand,

n —‘I [n_G\/H]
P( ">5)5 P(l, = k),
7 2 A

where [¢] denotes the integer part of ¢ € R. If we can show that for every k = 1,..., [n - 6y/n],
P(l,, = k) goes to zero exponentially as n — oo, then the Borel-Cantelli lemma implies ().
Case 1: [\/n]+ 1< k < [n— §+/n]

Since (X, .. .,X[n%]_l) = (X, "’Xk+[n‘1']—1)

for sufficiently large =,
Plln=k) < P ((Xo,-, X, 3, ) = Koo X,y 30 1))

. 1
< Y wwesk:iyi=yie=24,3=0,...,[n% 1)

Zy.eny T L

[nd]-1
ps
< Z {pfv(:co, ceey m[”.}]_l) + Bak—[ni]} (by Lemma 3.2)
Zoy..y®T 1
[n4]-1

< ﬂ["i] + r["%] . Bak—[”%] (by Lemma 3.3)
< C"yl"%], for some C' > 0,~ € (0,1).
Case 2: 1 < k < [y/n]
Since (Xo,..., Xk-1) = (Xk,---, Xak—1) = ++* = (X(m-1)ks -+ -» Xmk—1) , Where m = [2] >

[v/n], we let 7 = [2] and derive for sufficiently large n that

Pl,=k) < P((Xo,.., Xx—1) = (Xi,..., X2k—1) =+ -+ = (X(3r—1)ks - - -» X8rk—-1))
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< Z {u?-(:co, ey Zrk—1) + Ba"k} (by Lemma 3.2)
ToyeesTh—-1 .
< BTk 4+ (1'0;‘/;)1c . BTV (by Lemma 3.3)
1
< Cy**1] for some C > 0, v € (0,1). O
Lemma 3.5. (CLT for additive functionals of one-dimensional Gibbs states)

For every t € R,

7% (mGEI:—ﬁ?\/lTE (Z¢(aﬂx)—n/¢duf) <t) — P(t) asn— oo.
nfy 0

A proof is given in Lalley [6].
Proof of Theorem 3.1.
To prove (i), notice that
(a) L E;‘;& ¢(07X) — 0 as. as n — co by Birkhoff’s Ergodic Theorem;
(b) E;-'Z___ol Y(07X) — 0 a.s. as n — oo, by Lemma 3.4 (ii);
and
(c) + E o (a7 X)) — (eiX)| < =X l_'(')l vary, _j$ — 0 a.s. as n — o0, since ¢ € 7.
(a), (b), (c) imply (i).

To prove (ii), consider the following decomposition:

Vnl[0(p,) — 6] = Hy +Hz + Hs + H4 + Hs,

n—1
where H;=+/n [;11.- Z (o’ X) - 0} ;

In—1

\/— Z [¥(o7X () - y(a?X)];

(in - ) & v,

1 l,—-1

H4=(7—I_n' \/—)Z"pa:’X

Hs = %,; (a7 X).

13



Let % and 5 denote the convergence in distribution and in probability respectively under py.
Then as n — oo

(a') Hl—d>N(0,,B’f’(O)) by Lemma 3.5;

(b') Hy50 since |Hy| < 7117 Yjeo var; ¢ — 0 as.;

(¢') Hs50 since |Hs| < ||%]loo - |-2”7‘:é:| — 0 a.s., by Lemma 3.4;

(d') H450 since |H4|\S 19]loo - |7:t:- - 71:| -l — 0 a.s., by Lemma 3.4;

(¢') Hs50 since |Hg| < ||#]loo - |%‘| — 0 a.s., by Lemma 3.4.

(a’)-(e") plus the Slutsky Theorem imply (ii). O

§4. Asymptotic Efficiency of the MLE
Theorem 3.1 (ii) suggests that lim Eyf [Vn(0(fn) - 0)]2 = B7(0) for every real-valued f €
n—
7,5, where E¢(-) = E, (). (See Lemma 4.12 for a stronger result.) If every statistic T, based on

the observations X, ..., X,,_1 satisfied

lim nf By [y/a(T, — )1 > B0)
for every real-valued f € 7‘,“’, then 0(f,) would be an asymptotically efficient estimator of 4.
Unfortunately, this is not true in general because there exist some superefficient estimators.
Example 4.1. (Superefficient estimator)
Let T,, be an arbitrary asymptotically unbiased and asymptotically normal estimator of § =

0(uy), ie.,

Vn(T, - H)i)N(O,rz(f)) as n — oo under pj.
Suppose 72(f5) > 0. Deﬁné
T = {Tm if [Ty — 0(ng,)| > n—i
It can be verified that

Vn(T, — B)iN(O,?z(f)) as n — oo under uy,
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where

~20ey _ [ T2(f), at f# fo,
Tz(f)_{o, at 1 = fo

Therefore T, strictly improves T, at f = fo in terms of asymptotic variance 72(f). Nevertheless it
is also observed that usually in the vicinity of the point of superefficiency, there are some points in
7p+ where the superefficient estimator behaves badly. From the minimax point of view the MLE is
superior to other estimators.

Definition 4.2. The estimator 7', is said to be asymptotically efficient at rea-valued fp € 7, if

(*) liminf liminf sup Ey[v/n(T, - 6)]* = 87,(0);
) JeUy, €))]

and for any other statistic T}, based on Xo,...,X,_3

(+) lim inf lim inf N Ey[v/n(T - 0)]* 2 8%, (0),
where U, (§) = {f € Fr o f = foll, < 6}

Notice that U 7, (6) contains complex-valued f, for which Ay, hy, v; (hence ) are well-defined
when § is sufficiently small. The justification follows from Lemma 4.5.

The main result of this section is
Theorem 4.3. The MLE 0(2,,) is asymptotically efficient at every real-valued fo € 7T

Since f is an unknown function, we have an infinite-dimensional estimation problem. Stein
[11] points out that for estimating a single real-valued functional of the unknown state of nature
it frequently happens that through each state of nature there is a one-dimensional problem which

is, for large samples, at least as difficult as any other problems at that point. We call this one- .

dimensional problem the “least favorable” one.

§4.1. The one-dimensional problem of estimating 0,(g) = [ ¥dp iz,

Assume that f,g,¢ € .‘r’;,"' are real-valued known functions and z € R is an unknown parameter.
Here 6.(g) should be thought of as the quantity 6 perturbed by the magnitude z along the direction
specified by g.
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Asymptotic efficiency in the parametric problem is closely related to the concept of “informa-
tion”.

Definition 4.4. We call

' d
I.gn)(g) = Ef+zy['(‘1; log l"f+zy(X0: <oy Xn—l)]2

the Fisher information contained in the sample Xy, ..., X,,_; associated with the one-parameter

family {p54., : 2 € R}, and

N
(4.1) L(g) = lim ~1{")(g)

the average information associated with {ss ., : 2 € R} when the limit exists.
We will show that this limit does exist and equals £ [ gdusy,,.
Lemma 4.5. (Perturbation theory for RPF operators)

Let f1,..., fx € F;t be real-valued functions,

f=(f11---afk)l’ z=(z1)"-;zk)leck;

et
L= £<z|f>: Az = /\<z|f>, h, = h<z|f>a

Vg = Vgg|f>, Hz = P<alf>

for all z at which these quantities exist, where < z|f >= E{;l zfi € 7,5, Observe that L, is
defined for all z € C*, and A, hy, vy, g are well-defined for all z € R*.
(i) The maps z —- Az, 2 — hy have analytic extensions to-a neighborhood Q = Q(f) of R* .in.C¥,

such that
Lzhy =Azhz, zZ€EQ
and

/hzduo =1, zeq.

16



(ii) The map z — v, extends to a weak-* analytic M,(X})-valued function on Q such that

Live =2z, 2€EN
and

/hzdu,,zl, ze

Note. Weak-# analytic means that for each ¢ € 7;" the map z — [ ¢dv, is analytic.
This lemma is stated as Proposition 4 in Lalley [7], Appendix 1.
Lemma 4.6. Let g,(z), n € N be analyticon Ugs = {2 € C: |2| < 26}, 6 > 0; let L = {z €

C : |2z| = 26} be the boundary of Uss. Assume |g,(2)| < C for some C > 0 and for all n € N+

z € Ugs. Then for some K > 0

bignﬁ

SK’ Vn€N+, zeﬁ&.
dz

Proof. g,(2) has the Cauchy integral representation

() = 5 , 24,

so
dgn(z) f gn(f)
= C: 26}.
iz " ami S, - z)zdg, z2€ Uy ={2€C:|z| <26}
Therefore,
dgn(z) 1 C 2Ca +
—ZnA 77 _—.— . O
4z S35 27 .26 = 5 K VneN,z€U5

Proposition 4.7. For every real-valued f,g € 7}, the limit (4.1) exists and equals 2 (gdpsia,.
Proof. For every z € Ej
Bftzg(20,.- - Tno1) = Vitag(Ps+agl(zo,....0n-1))
= ’\;—:zg *Vitag (£?+zg(hf+zyI(ﬂ=o.--~,En—1))) ’

17



where the notation vs,4(t) means [ ¢dvs ., for ¢ € C(ZF).

Define Sof =0, Spf = 3772, ! foo?, n € Nt. Note that

£f+zg (hf+ng(a;o,...,z,._1)) (y)
= D exp (Salf +20)(w) - hytag(4) Lz, 001 (%)

uiotu=y

= exp (S (f + 20)(2)) - exp {Sa(f + 29)(¢) — Sa(f + 29)(2)} - hpyag(),
where ¢ = (2o,...,%n_1;Y0,¥1,...) € T}. Therefore,

log pst29(%o, - - s Ta1) = Spf(2) + 2Sng(x) — nlogAsy .y +log Qn(2),
where Qn(z) = Vf+zg(exP {Sn(f + zg)(g) - Sn(f + 29)(17)} . hf+z9(§))'
Consequently,
d
(4.2 22108 R0y En2) = $10(s) = 17, (5) + 5 Q).
where By 4(z) = log ﬁf;—"— Recall the notation in Theorem 3.1: B5(2) = By 4(z).
Since B} ,(z) = [ gdpsyz (cf. [7] p161 (&),
1
(4.3) 7r (809(2) ~ nf7(2) SN (0,8%,(2)) asn— oo
under g5y ., by Lemma 3.5, and

(4.4) 0<c1<Qu(2)<cz<o0 VneN?t

because Qn(2) = psyaz9(zo,...,Zn—1) / exp{—np(f + zg) + Sa(f + 29)()} (cf. (1.1)).

To prove Proposition 4.7 it suffices to show that there exists C > 0 such that

<C VneNt, zeUs.

(«s) £0n(2)
In fact, £Qn(2) = Ui (z) + UiB(2) + U)(z). where
UL @) = [1529() = Saa @)} exB{SalF + 20)(5) = Sulf + 26) @)} B g )0 7405
U(E) = [ exp{Sa(f +20)(6) ~ 5al + 20) @} Sehpias(s)- dvpins
and
3 d
UE(E) = 35 [ exp{Sn(f +20)(6) ~ Sal7 + 20) (&)} hrtan(6)d s roloms

18



Observe that for z € Uag;s
(@) 1Sng(s) = Sng(2)] < 1725 vara-j 9 < 32, var, g < oo;
(i) ISa(f + 29)(6) = Salf + 20)(&)] < T2, vars(f + 29) < |If + 2gll, - T2, 07
< (171lo + 280lgll,) 125 < oo;
(iii) ||hs+24], < K, for some Ky > 0;
(iv) ”%h,r.,.zg[“ < K for some K3 > 0, by Lemma (4.5) (i).

Therefore, (i), (ii), (iii) imply that
UM (2)] < C; VneN* and some C; > 0, and

(i), (iv) imply that

U (2)| <C; VneN* and some C; > 0.

Let gn(r) = [ exp{Sa(f + 29)(¢) = Sa(f + 2)(2)} - Bs29(s) - V54 rg. By Lemma (4.5) (ii), gn(r)

is analytic for 7 € Uss given z. Since (i), (iii) imply that
lgn(7)| < K3 YV neN' and some K3 > 0,

by Lemma 4.6

089 = |1520n( Vo=

<Cs VYneNTt, 2e€T; and some C3 > 0.

Hence | £Q,(2)] < C YneN*, z € U;s and some C > 0.

Therefore, (4.2)-(4.5) imply that under ps.,,
1 d d "
(4.8) % Elogﬂf+zg(X0, ey Xn-1) | SN (0, B%.(2)) as n — oo.
Moreover, the moment convergence (4.1) follows from (4.2)-(4.5) and Theorem 1 of Lalley [6]. O

§4.2. The Least favorable direction
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When we estimate 9,(g) = [ ¥du f+2¢ as a function of an unknown parameter z € R, the

asymptotic variance of unbiased estimators has Cramér-Rao lower bound

La(o) = [30:(0)*/1:(o).

* The following proposition shows that among all directions ¢ itself represents the least favorable
one.

Proposition 4.8. For all g € 7,

liH(l) L.(g) < lin% L.(¥)-
Proof. By Proposition 4.7 I,(y) = £& [ $dusi.y, so

d

L(¥) = 7, | ¥dustse-

Let B(z) = p(< 2|G >) with z = (21,23, 23)' € C3, G = (f,4,9)', f,¥,9 € 7,'; then
Biyz, - Bagzy > Bagzy* Bayay  (cf. [7] p161 (c)),
2 . .

where Bz.-z,- = %z%f}’ t,7=2,3. By [7]’ plél (e): B,, = f¢dﬂ<z[G>a B,, = fgd”'<z|G>- So

a / vd d / p o (4 / vd :
dzy H<z|G> ds gap<z|G> dzs K<z)G> ] >

where d;:s J 9di<z)G> > 0 since B(z) is strictly convex. Hence

d d 2 d
d_zz ¢dll'<z|G'>> 3;; ¢dﬂ<z|a> /HZ gdﬂ<z|G>-

Let 23 — 1,2, — 0, 23 — 0, then the analyticity of B(z) implies that

. d . d 2 d
zlzlgloa;; / Yadpsyzy = zlslglo{ <d—33 / 1/)dﬂf+zsy> / a7 / gd#f+zag},
ie.,
lir% L.(¢¥) > lin% L,(g9)- O
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§4.3. Local asymptotic normality (LAN) of the one-parameter family {us, ., : z € R}

Hajek, LeCam and others proved that many important properties of point estimators follow
- -from the asymptotic normality of the logarithm of the likelihood ratio for parameters close to
each other, regardless of the relation between the observations which produce the given likelihood
function (cf. [2]). The family {g ;44 : 2 € R} enjoys this property.

Proposition 4.9. For every u € R, let

Xoy .., X
B otaf /T (g K00+ K1)

Zy 2(u) =lo
’ ( ) 8 l‘f+zg(X0’---’Xn—1)
Then
u?
Zn,z(u) =u- An,z - "'2— + Bn,z(u):
where
Dy aSN(0,1)
and
B, .(1)50

under pys .4 as n — co.

Proof. By Taylor expansion

2 3
—y. ¥ . g ¥ 5@
Zn,z(u) =u-Dy .+ ) B, + 3! B.".
where 1 d
An,z = \/—('T— . E:’: log[l«f-{-zg(XO’ .. -,Xn—l),
" (9)
1 d?
B,&l) = I(”)(g) . E 10gl£f+zg(X0, vy Xﬂ—l);
z
B,(;z) = T)l— . [133 log Ilf+zy(X0, .. .,Xn._1)
[IE(g))3/2 ldz 2=8n,5(u)

with €, ,(u) — 2| < ﬁ
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We claim that under g5, as n — oo
(i) Ans>N(0,1);
(i) BNE —1;
(i) BPS o

In fact, (i) follows from (4.1) and (4.6). To verify (ii), notice that
d2
d— logﬂ‘f+zg(X07 s )Xn—l)
1 2
f,g( )+ Q (Z) d 1.2 Qn(z) [Qn(z) dz Qn(z)
By (4.4) and (4.5),

1

Q (z)d Qn(z) <C; VneNt, z € Us and some Ci > 0;

and by (4.5) and Lemma 4.6.
d? —
|d—z2Qn(z)| <C; VneNT, ze Us/2 and some Cy > 0.

Hence (ii) follows from (4.1).

Furthermore,
d? "
@ logﬂ'f+zg(X0; see ,Xn—-l) = _nﬂf,g(z) + Rn(z)’
where
1 42 1 d 2
R,(z) = Q—n(;—)j‘k—an(Z) - [22;(_»2) @R ()]
So
d3 11{} d
Elog/‘f+zy(X0s- Xn- 1) = _"ﬂ ( )+ R (z)

For every u € R, z € Us.

|€n,z(u) — 2| = 0 as n — oo,

jol0]

'H.,f!,,y (én,2(u)) — ﬂ’” (2) as n — oo,

22



hence
-n
(4.7 W ?,Iy (n,2(1)) = 0 as n — oo.
-4
Since |R,(2)]<CVneNt z€ ﬁ% and some C > 0,

d —
—R,(2)] < C1VneN', ze U sand some C; > 0.
dz 4

To verify (iii), we still need to show that for every u € R, there exists N € N+ such that

(4.8) €n 2(u) € ﬁ-ﬁ- Vn>N, z¢€ Tf_%
Note that | |
u
|€n,2(u)| < || + ——= WAL
6
- ¥V n > N; and some N1€N+
=z \/n m(g

where m(g) = min I,(g) > O since I,(g) > O for every z € _ﬁg_ and every g € 7.t which is not
zer_
8 —
homologous to constant, and I,(g) is continuous for z € U 5
Now (4.8) holds for all n > N provided
2Ju|

VN -m(g)

5
S O
<3

§4.4. The minimax lower bound on asymptotic variance of estimators
Lemma 4.10. 8(0) — 84(0) as [If - foll, — 0.
Proof. Since 85(2z) = p(f + 2¢) — p(f) and the map f + p(f) is real analytic on 7r ( cf. [10],
Corollary 5.27 ), Lemma 4.10 follows. O
Corollary 4.11. Let U, (8) = {f € 7}t : ||f — fol|, < 6}, then
linLi(r)lf sup B7(0) = g% (0).
FEU14(8)
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The next lemma is the key to proving the asymptotic efficiency of the MLE 6(j,,). The proof
will be given in the Appendix.

Lemma 4.12. For every fo € 7;* and § > 0,

lim B[V (8(an) - 6)]* = £4(0)

uniformly for all f € U ;,(5).

Lemma 4.13. For every f € .’r"p‘*‘ and any statistic T,, based on Xg,...,X,_1,

lim liminf sup Ejgi.y [V (Ta - 0 — 28%(0))] > 8%(0).
b—o00 n—o00 lz]< %
The proof may be found in [2] ( cf. [2] Theorem 12.1 and Remark 12.2 ).
Proof of Theorem 4.3.
To verify (*), note that for any € > 0, § > 0 and fo € 7, by Lemma 4.12 there exists N € N+

such that
Er [Vn(8(fa) - 6)]° < B(0) +¢
uniformly for all f € Uy, (6). So

liminf sup Ef[vn(8(2s)-0)]’< sup BY0).
n—ee fe-ﬁjo(ﬁ) feﬁfo(s)

The inequality “>” can be derived similarly. Therefore,

liminf sup Ejy [\/ﬁ(ﬁ(ﬂn)—o)]2= sup  B%(0).
n—oo feﬁ!o(ﬁ) feﬁlo(s)

Let § — 0, then by Lemma 4.10 8(j,,) satisfies ().

To verify (**), we use an argument similar to that in [5]. For any b > 0, § > 0 and any statistic

T, based on Xo,...,X,,_1, when n is sufficiently large we obtain that
2 2
sup Br[Vn(Tn—0)]" 2 sup  Efoiay [VA(Tn — 0(so420))]
€T 4, (8) =lal< =
' 2
= sup Efoiay [V (T — 0(us) — 267, (0) + o2))]
|z|<%
2
= sup Epypay [V (Tn — 8(us,) — 267,(0) + o(1)]
lzl< 25
2
= o Efo+2p [V (Tn = 8(1s) — 26%,(0))]” + o(1).
H] <\/F
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Hence
liminf sup E;[v/n(T, — 0)]?
n— oo feﬁfo(‘s)

>liminf sup Ef,4zy [V (Tn — 0(is) — 287, (O))]2 .

n—oco | 5

v
Since b > 0 is arbitrary, by Lemma 4.13.

liminf sup Ef[v/n(T, — 92 > ,35',0 (0).
T 5eTy, (6)

Now (##) follows by letting § — 0. O

§5. Appendix: Proof of Lemma 4.12
Recall Theorem 1.1: For each real-valued f € 7', associated with L7 : 7,t — 7.t there exist
Aj € (0,00), hy € 7t and vy € (7,5)* such that
(A1) Lshs = Ashg, Ay is a simple eigenvalue of Ly;
(A2) Lyvs=Asvy;
(A3) Spectrum L\{As} c {2z € C:|z| < A\j — €} for some € > 0;
(A4) Tim [1£30/3] - v(9) - hlles =0, Vg € 7.
Note that (A1) implies that if h € 7, Lk = Agh, then h = chy for some constant c.
The next lemma shows that the measure satisfying (A2) is essentially unique as well.
Lemma Al. Ifv € (7;})*, Lv = Ajv, then v = cvy for some constant c.
Proof. By (A4),
Jim v(L3(9)/37) = v(vsl9) - hs), YgeF}.

Since v(£%(g)/A}) = v(g), V n € N¥, we have

v(g) =v(hy)-ve(g), Vge .7',,"'.
Therefore, v = cvy with e=v(hy). O
For each real-valued f € .’r"p'*', define

7 € (%) by Lsh=XAs-vs(h)-hy
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- and
Te(Fh) by Lfh=Lsh— LYh forhe 7}

and let
F;={zh;:z€C},

F{={he 7} :vs(h)=0}.
Lemma A2. '

(i) 7t =F;® Ff;
(ii) Ly = L%+ L'}, where L : F; — F}, L'} : F{ — F{,

4 ﬂ.'f:F}'—DO, ﬂ?:F}——)O;
an

(iii)
Spectrum L' = {As},

Spectrum L = Spectrum Ls\{As}.

The proofs of (i), (ii), are straightforward. For the proof of (iii), see Kato [3], ITI, §6.4 and §6.5.

Now let
H={he7 v;(h)=1},

H' ={ve(F) :v(hg) =1}
Observe that H and H' are translates of the Banach spaces {h € 7,;' : vy, (k) = 0} and

{v € (7,})* : v(hy,) = 0} respectively.
Lemma A3. There exists § > 0 such that the maps
(i) Ftr=C:f—= ¢
(ii) 7t = H:f — hy
(iil) 7F - H': f - vy
are all C! (i.e. have continuous Frechet derivatives) in Uy, (8) = {f € 7, : ||f — foll, < 6}, and
(A1), (A2) hold for all f € Uy, (6).

Proof. We first check (i) and (ii). It is verified that the map

FExCxH—FF:(f,\h) = Lsh— AR
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is C'. For given fo € 7,*, the map
x:(\h) = Lph— AR
has its Frechet derivative at (As,,hy,), say Dr, given by
Dr(M\h)=(Lys, — Ag, [)h — Ahy,,

where I is the identity map on 7p+. Obviously D is a continuous linear map. We claim that D=
is also 1 — 1 and onto.

In fact, if (XA, k), (N, k') € C x H satisfy
(‘cfo - ’\foI)hb - Ah’fo = (ﬂfo - ’\foI)hI - ’\,hfo’

then by letting vs, act on both sides we obtain A = A’. Moreover, A = h’ also follows from the
standard argument.

To check D is onto, for every g € .7',,"' consider the equation
(45) (Lso = AsD)h—Ahg =g
with the variable (A,h) € C x H. By Lemma A2, Ay, ¢ Spectrum L , so L} — Ay, is invertible.
There exist unique g’ € F} , g € F{ such that g = g’ + ¢". Define (A, h) by
A=-vp(9),
h=h'+h" with h'=hy,
R = (L% —Ap D) 19",
We claim that (), h) satisfies (A5) and vy, (h) = 1. Actually, by Lemma A2,
(Lso = AppDh— Ahgy = L' = A b +v5o(g) - hyo + (L5, — Ar, DR
= Ao Vso(hso) hyy — Apohs +9' + 9"
=g +4¢"
=g.
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Thus D is onto.
Now the Implicit Mapping Theorem (cf. [8], p17) implies that there exist § > 0 and a unique

- map 7: Uy, (8) = Cx H, 7(f) = (A(f), k(f)), f € Uy, (6), such that 7 is a C'-map, and

T(fo) - (Afo ’ hfo)a

(48) Lsh(f) = X(f)-h(f), Vf €Uy (6).

It follows from the uniqueness of 7 and the fact that the map f — Ay is a real-analytic that

A(f) = Af) Vfe Ufo(s)'

Since Ay is a simple eigenvalue of Ly : 7, — 7F,

h(f) = hj.

So (A6) and (A1) coincide. Therefore, (i) and (ii) hold.
A similar argument implies that there exist § > 0 and a unique map 7' : Uy, (6) — C x H’,

(f) = (N(f), v(f)), f € Ug,(6), such that 7' is a C'-map, and

T'(fo) = (Afo’yfo)’

(A7) L(w(f) = N(f)-v(f), Y feUg(s).

By the uniqueness of such a map,
A(f) = A
Furthermore, by Lemma Al,
v(f) =vy.
So (A7) and (A2) coincide, hence (iii) holds. O
Note. f — vy is a continuous map from 7' into (7,+)*, but not from 7t into (C(Z‘X))* under

the total variation norm.
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Lemma A4. For every real-valued fy € .’r"p'l', there exist § > 0 and € € (0, '\—;ﬂ-) , such that for all

f €U (8)

(i) Ar > Az — &

and

(ii) Spectrum L C {z € C: |z| < A5, — 3¢}

Proof. (i) simply follows from Lemma A3 (i).
To show (ii), first notice that by Theorem 1.1 and Lemma A2 (iii), there exists ¢ € (0, A—;"—)
such that
Spectrum L c {z € C:|z| < Ay, — 3¢}
Thus (2I — L )~! exists and is continuous for all 2z € C satisfying || > Az, — 3¢. Since ||(z] —

£4)7| 0 as || — oo,

0<a2 sup (21— L%)7Y < co.
|2]2Ap —8¢

There exists § > 0 such that

1
”f’ffl' - ‘C.,;o” < EZa v f € Ufo(s)'

So (21 — L)~ exists for all f € Uy,(8), z € C satisfying |2| > A5, — 3¢, and
(1= £ = (eI = £4) I+ (eI - L) (2l — £

Since ||(2I — L£')~*(L4, — LIl < 3, this proves (ii). O

Proposition AS5. There exists § > 0 such that

(48) Jim || L7R/AF — vi(R) - hflleo =0
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uniformly for all f € U,(6) and h € 7;* with ||h||, < 1.

Proof. By the Spectral Radius Formula (cf. Kato [3], III, §3, §6) and Lemma A4 (ii),
NCLE)EN < (A = ge)k, for some k € Nt,
Since f — ﬂ'f' is continuous, there exists § > 0 such that
ILHFI < (Ar, — 2€)*, Y f€T5(6).

By Lemma A4 (i),

As, —2e\*

Nk < fO
et < (3=2) <.
So we have
(49) Jim |(£p*m/AF =0
uniformly for all f € U ,(6). Since Lemma A2 implies
7= (£)" +(L9)",

we obtain

L2h  (L%)"h
YR

+vs(h)-hy, VneN, feUy(6), he 7T

Hence (A8) follows from (A9). O

Corollary A6. Let Y, (f) = i‘—'p—:/-';—ﬁ&. Then there exists § > O such that

(A10) lim Epe*¥~(f) = ¢#°#7(0)/2

n—oo

uniformly for all f € Uy, (6) and z € Us.
Proof. Taylor expansion implies that

hy
By 1) = exp(s64(0)/2-+ 265 (6n,s) 31V} - [ L S S
f+zn"7¢
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where |&, .| < |2|. Since f — Ay is real-analytic, and B7(z) = log AL):"I—’Q,

228 (£n,2)/3W/n — 0, as n — oo

uniformly for all f € Uy, (6), |2| < 6§, when § > 0 is sufficiently small. Moreover, by (A8) and.

Lemma A3 (ii), (iii),

1 A hsdv )h =0
nl»ngollﬁ mTy hs/A frens ¢ (/ It an fHanT ¢”
and

T I v, )b syl =0

uniformly for all f € Uy, (6), |#| < 6. Therefore (A10) holds. O

Corollary A7. There exists § > 0 such that
: 2 -1/
Jlim E;Y,(f) = B5(0)
uniformly for all f € U z,(6).
Proof. Assume that (A10) holds uniformly for all f € U z,(26) and let

C={ze€C:|z| =6}

Since F fe"‘Y"(f ) is analytic in Us,

d?

$Ya(f)
S B d) = Bt e

c (—2)*
Therefore,

1 E efYn(f)
EfY2(f) = E]{J'—f—gs——k-

By the Dominated Convergence Theorem,

lim By (Y2()) = B1(0)
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uniformly for all f € ﬁfo(g). o

Now let Z,(f) = v/n[0(2,) — 0]. If we can prove that
(411) Jim Bf(Z.(f) - Ya(H)* =0
uniformly for all f €T 50 (8), then Corollary A7 plus the Cauchy-Schwarz inequality implies that
: 2 — @l
(412) Jlim E;Z,(f) = p7(0)

uniformly for all f € Uy, (6), which is just Lemma 4.12.
The verification of (A11) needs two steps.

Step 1. Following the proof of Theorem 3.1 (b’) - (e’), we have

n—I,

|Za(f) - Yalf)] < C(%H vl

for some C > 0 which does not depend on f.

By the Cauchy-Schwarz inequality,

EfZa(f) = Yl € CHEAT) + (P72 + 21B/(1) - Bf (P22,

The next step is to show that

(A13) lim B, <l> —0
n—oo In
and
. n— In 2
(A14) ”ILIIJO Ef( 7 ) =0

uniformly for all f € U, (6).
Step 2. In what follows, all probabilities P(-) corresponds to the Gibbs state uy.

Since I,, > 1 for all n € N*, for every € € (0, 1)

1 | (]
Ef(l_) S/O P(E >t)dt$€+0'7 ,
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for some C' > 0, v € (0,1) and for all n > N. Notice that the constants C, 4, N can be so chosen
that they do not depend on any particular f € T]_fo (6) by reviewing the proof of Lemma 3.4. Let
n — co and € — 0, then (A13) follows.

Furthermore, for every € € (0,1)

n—1,\? /°° <n—1,, )
E = tP >t dt
f(\/f_'> 0 | \/’_"I
€ n—1 vn n—1
tP 2>t dt+/ tP( ">t)dt
-/0 (' ﬁ_' ) ‘ v

e? n—1, tzﬁ
Ter ()5

By reviewing the proof of Lemma 3.4 we conclude that

IA

— Y
P<|n ln.|>€> ch[ns],

vn
for some C > 0, v € (0,1) and for all n > N. Here the constants C, v, N again do not depend on

any particular f € Uz, (6). Let n — oo and & — 0, then (A14) follows.

Thus we have proved Lemma 4.12.
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