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Summary

For k lognormal populations, which differ only in one certain parameter 4, the problem
of finding the population with the largest value of # is considered. For two-parameter
lognormal families, several natural choices of 8 are treated, where the problem can be
solved, through logarithmic transformation of the observations, within the framework of
estimating parameters in k, possibly restricted, normal populations. For three-parameter
lognormal families, this standard approach of selecting in terms of natural estimators fails
to work if @ is the “guaranteed lifetime.” For this case, a selection procedure is derived
which is based on an L-statistic which has the smallest asymptotic variance. Of importance
here is that it is location equivariant, whereas it does not matter what it actually estimates.
Comparisons are made with other suitable selection rules, through the asymptotic relative
efficiencies, as well as in an example of intermediate sample sizes. It is shown that only in

the latter, the selection rule, which is based on the sample minima, compares favorably.
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1. Introduction

By definition, we say that a random variable X has a three-parameter lognormal
distribution if In(X — 4) is normally distributed with mean x € R and variance o2 > 0,
where 0 < 7 < X < oo is called the “guaranteed lifetime.” This distribution reduces to
the so-called two-parameter lognormal distribution if « is known, in which case ~ is set

equal to zero for simplicity.

The lognormal family has been studied and discussed thoroughly in Aitchison and
Brown (1969) and in Johnson and Kotz (1970). The latter authors state that, “It is quite
likely that the lognormal distribution will be one of the most widely applied distributions
in practical statistical work in the near future.” Various applications have been considered
in the literature, as is reported by Kane (1982). The main part of interest has been the

estimation of parameters.

A special feature of this distribution in reliability applications, where X represents
the timelength of life (or repair) of a piece of equipment, is that the failure rate (or repair
rate) increases at first and then eventually decreases to zero, cf. Gupta, McDonald, and

Galarneau (1974).

Estimation for the two-parameter family appears, at a first glance, to be quite easy,
since the logarithmic transformation of observations in a given random sample reduces the
model to the familiar normal family N(u,0?). Especially, maximum likelihood estimation,
which is invariant under transformations, apparently is straightforward. However, estima-
tion of parameters other than x and o2, under different criteria of estimation, may lead to
substantial difficulties, as it is pointed out in Johnson and Kotz (1970). A profound anal-
ysis, which includes the Bayesian approach, is provided by Zellner (1971). Further Bayes
estimators and illustrative examples can be found in Martz and Waller (1982), Chapter

9.3.

Estimation for the three-parameter family turns out to be much more complex. The
concept of sufficiency does no longer reduce a sample to a two-dimensional sufficient statis-

tic, but merely ends up with the order statistics. Even the maximum likelihood approach



runs into serious difficulties since the maximized likelihood tends to infinity as ~ tends to
the sample minimum, cf. Johnson and Kotz (1970). Methods to circumvent this difficulty
as well as other methods of estimation are considered by Cohen and Whitten (1980), John-
son and Kotz (1970), Kane (1982), and LaRiccia and Kindermann (1983). Furthermore,
estimators for the reduced model, where 02 = 1, are discussed in Gibbons and McDonald

(1975).

Let us assume that there are k lognormal populations 7; with parameters (v;, u;, o?),
¢ = 1,...,k, from which independent samples X, of a common size n > 2 have been
drawn, 7 = 1,...,k. Assume that these populations differ only in one single parameter 6,
say, which may be 4, s, 02, or any other parameter of relevance to a lognormal distribution.
The problem considered in this paper is to derive some suitable decision rules, based on

the k samples, to find that population which is associated with the largest 8-value.

The standard approach to this problem is to compare populations 7y,..., T through
estimators 8; = éi(xl,...,_)gk), i =1,...,k, where §; is an estimator of 0;, for the k
samples of size n, which is optimum in some reasonable way. This will be done in Section 2,
where the two-parameter lognormal family case is treated. For various choices of 8, it will
be shown that through logarithmic transformation of observations, the problem reduces to
the selection of normal parameters which has been dealt with extensively in the literature,
cf. Gupta and Panchapakesan (1979) for an overview. Furthermore, special emphasis
will be given to the case where # is the maximum failure (or repair) rate because of its

importance to reliability applications.

Section 3 deals with the problem of § = ~ for three-parameter lognormal families,
where we assume that p; = ... = px and o? = ... = o2. Because of the difficulties
arising in an attempt to estimate «, it seems natural to choose any other point of location
in the three-parameter lognormal density as 8, which can be estimated in an easier and
better way. Thinking perhaps first of the mean, median, mode, or some fixed quantile, one
arrives eventually at the following nonstandard approach to the present problem, where

all points of location are treated without prejudice, i.e. without regard to their actual

meaning to the shape of the density. From the theory of L-estimators, which is thoroughly



developed and discussed in Huber (1981) and in Lehmann (1983), a minimum variance
L-estimator is derived for the three-parameter lognormal family, and then it is used for
selecting the population with the largest “guaranteed lifetime” 4. What is actually done
is to find a location-equivariant statistic which has a small variance. Here, it does not
matter which point of location is actually estimated, and it will be seen that the theory
of L-estimators can be successfully applied to the present situation where nonsymmetric
densities are considered. The performance of this selection procedure is also examined
in an intermediate sample size example of n = 20, and it is shown that for this case,
the natural selection rule, which selects in terms of the largest of the £ sample minima,
compares still favorably. Asymptotically, however, it is seen that the latter procedure is

inferior.

L-estimators have been used previously by Hust§y (1981) to derive robust alterna-
tives to Bechhofer’s selection procedure in the indifference zone approach, and asymptotic
relative efficiencies are given for normal, uniform, double exponential, and logistic distri-
butions. In a similar approach, Husty (1984) has found robust alternatives to Gupta’s
subset selection procedure. In the present paper, neither of the two approaches, which
are discussed in full detail by Gupta and Panchapakesan (1979), is emphasized. The re-
sults derived in this paper are applicable and useful not only for both these approaches,
which depend on very specific assumptions on the loss functions, but also to other decision-

theoretic and especially to Bayes approaches.

2. Two-Parameter Lognormal Populations

At the beginning, let us briefly recall some basic properties of a two-parameter log-
normal random variable X. First, In(X) ~ N(u,0?), i.e. the logarithm of X is normally
distributed with mean pz € R and variance 6? > 0. The density and the cumulative

distribution function of X are given by

(1) f(z) = (oz) " o(o™  (Inz — p)), F(z) = (0~ (Inz — p)), = > 0,

where ¢ denotes the density and ® the cumulative distribution function of the standard

normal distribution N(0,1).



From the well-known identity for the moments of X, c¢f. Gupta (1962), E(X?) =
ezp(qu + ¢%0%/2),q = 1,2,..., we get the following relations between (m,v?), say, the

mean and variance of X, and (u,02).

(2) m = exp(p + 0°/2), v? = exp(2u + 0?)[ezp(0?) — 1],
and
(3) p = In(m?v? + m?|7Y?), 6% = In(1 + v?/m?).

Furthermore, the median of X is ezp(u), the mode is equal to exp(u — 0?), and the a-th
quantile of X is given by F~1(a) = ezp(p + 0®71(a)), 0 < a < 1.

For applications in reliability problems, where X represents the length of life of a
piece of equipment (or a component of a system), the failure rate of X is of importance.
It is given by 9(z) = f(z)/(1 — F(z)),z > 0. As mentioned earlier in the introduction, ¢
increases at first and then eventually decreases to zero. The following result can be used

to control the maximum failure rate in later applications.

Theorem 1. The maximum failure rate of X occurs at time zo = ezp(u + owo), where

wo is the unique solution of p(w)/(1 — ®(w)) = w + 0,w € R. Moreover, the maximum

value of ¥ is equal to ¥(zo) = (1 + wo/0)ezp(—u — owo).

Proof: By means of the substitution £ = ezp(p + ow),w € R, the failure rate can be

written as
(4) P(z) = o™ tezp(—p + 0% /2)p(w + 0) /(1 — B(w)), = > 0.

Its derivative with respect to w is zero if and only if w satisfies p(w)/(1 — ®(w)) = w + 0.
The ratio (1—®(w))/e(w) is called Mill’s ratio and has been studied repeatedly in the past
literature. From one of the earlier resources, Sampford (1953), one can see that the function
H(w) = p(w)/(1 — ®(w)) is positive with 0 < H'(w) < 1 and H"(w) > 0,w € R, is thus
convex, and satisfies wEI—noo H(w) = 0,H(w) > w for w > 0, and wll_I’Iéo(H(w) —w) = 0.

The rest of the proof is straightforward.



Let there now be given k two-parameter lognormal populations 7; with parameters

(s,0%), or in view of (2) and (3), with (m;,v?), from which independent samples X; =
(Xi15...5Xsn) of a common size n > 2 have been drawn, ¢ = 1,...,k. By using the
transformation Z;; = In(X;;),7 = 1,...,n,¢ = 1,...,k, one gets independent samples

Z;=(Zi1,...,Zin) from N(p;,02),s =1,...,k. Selection procedures for the latter model
have been studied extensively in the literature, where an overview of the results can be
found in Gupta and Panchapakesan (1979). In the following, it will be shown how various
selection problems for the k lognormal populations transform to equivalent problems for

k normal populations.

The most common selection problems are those where the k populations differ only in
one single parameter 6, say, and the goal is to find that population which has the largest
value of §. The standard approach is then to compare my,..., 7 through estimators
b; = 5,-(_}_(_1, vons Xp)yt = i,. .., k, where ; is an estimator of 6;, for the k samples of size
n, which is optimum in some reasonable way. Several cases, which seem quite likely to

occur in applications, are discussed below.

Casel: of=...=02=02%0=0p.

Selecting the population which has the largest Z; = (Zi; +...+ Zin)/n is the natural
procedure for § = p. It has various optimality properties as is reported in Gupta and
Panchapakesan (1979). To mention at least one, it has the largest probability of correctly
selecting the largest u;, among all permutation invariant selection rules. From (2) one can
see that it is also optimum, in the same senses, for selecting the largest m;, i.e. § = m, or
the largest v?, i.e. § = v2. Furthermore, the same holds if 0 is chosen to be the median, the
mode, or any fixed quantile of the two-parameter lognormal family. Finally, from Theorem

1 one concludes that

Corollary 1. Under the assumption of 62 = ... = o2, the population with the largest

(smallest) value of y has the smallest (largest) maximum failure rate.

Proof: If the variances af are all equal, then the solution wg, which is mentioned in
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Theorem 1, is seen to be the same value for all populations. The proof is thus completed

by examining the explicit form of the maximum failure rate, which is given in Theorem 1.

Various ways of implementing this selection procedure under given performance cri-
teria are described in Gupta and Panchapakesan (1979), which include two-stage selection

procedures for applications where the common value of ¢2 is unknown.

CaseIl: p;=...=pug=up, 0 =03

The natural procedure for # = o2 is to select the population with the largest maximum
likelihood estimator &2 of 02,4 = 1,...,k, under both situations where p is known or
unknown. It has analogous optimality properties as the procedure in Case I, and it can
be implemented under standard performance criteria. This time however, no two-stage

approach is needed if p is unknown.

From (2) it can be seen that this selection rule is also appropriate for finding the
largest m;, i.e. § = m, or the largest vZ, i.e. § = v2. Furthermore, the same holds if §
is chosen to be the negative mode or any fixed a-quantile, o # 1 /2, of the two-parameter
lognormal family. However, a result analogous to Corollary 1 does not hold. A thorough
examination of the results in Theorem 1 shows that the maximum failure rate is not a
monotone function of 0?. To be more specific, for M(w) = (1 + w/o(w))ezp(—wa(w)),

and for o(w) = H(w) — w,w € R, one finds that
(5) o(w)*ezp(wo(w)) M’ (w) = H(w)[1 — (H(w) — w)*(1 + wH(w))], w € R,

which is seen to be positive at w = 0, whereas it is negative for sufficiently small w since
in (5), [...]| = —oco as w — —oo. Noticing that H(w) — w has a negative derivative on R

completes the argumentation.

Case III: vZ=... vi =0% 6 =m.

In this case, one can see from (2) and (3) that the problem of selecting the largest u;,
i.e. 8 = p, is equivalent to the choice of § = m, and to the choice of # = o—2. However, the

estimation of p,,..., ik, and possibly v2 in case of an unknown v2, is a rather difficult task
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under the given condition of ezp(2u1+03)[ezp(0?)—1] = ... = exp(2ur +0}) [exp(o?) —1].
For example, the maximum likelihood estimators cannot be given in closed form but rather
have to be found through computer programs. This makes the given selection problem less

attractive for applications, as long as the common sample size n is small.

For sufficiently large n, on the other hand, the natural procedure is to select in terms
of the largest sample mean X; = (X;; + ... + Xin)/n,t = 1,...,k. Since these sample
means are independent and asymptotically normal with N(m;,v2?/n),s = 1,...,k, one
arrives at the same situation which was considered in Case I, where now the X;’s play the

role of the Z;’s considered there.

CaseIV: mi=...=mp=m, § = v2.

In this case, (2) and (3) show that the problem of selecting the largest o7, i.e. § = o2,
is equivalent to the choice of § = v2, and to the choice of § = x~!. Similar to the case
considered before, estimation of 0%,...,07 under the constraint of u; + 0?/2 = ... =
pk + 02 /2 is difficult, and for example, the maximum likelihood estimators have no closed
form. For sufficiently large n, however, the natural rule, based on asymptotically optimum

n
estimators, selects in terms of the largest Y (X;; —m)%,¢s = 1,...,k, if m is known, and
i=1
n —
in case of an unknown m, it selects in terms of the largest Y (X;; — X),7 = 1,...,k,
i=1
where X is the overall average of the kn observations. Thus, one arrives at the situation

considered before in Case II.

The General Case

Some comments have to be made at the end of this section about situations where
both y; and 02,¢ = 1,...,k vary freely. Although selection with respect to one parameter
9 = h(p,0?), say, without control of the complementing second parameter dimension, is
usually not acceptable in applications, circumstances may arise where this type of problem
is of relevance. To give two examples from reliability considerations, § = u + c®1(a)
corresponds to selection of the largest a-th quantile for some fixed 0 < o < 1, and § =

(p—1In(to))/o refers to finding the largest probability of surviving a fixed time g > 0. Such
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problems can be treated, through the transformed variables Z;;, within the framework of
k independent samples from N(u;,02),7 = 1,...,k, and they deserve to be studied more

carefully in the future.

3. Three-Parameter Lognormal Populations.

Let us assume that there are k lognormal populations 7; with parameters (~;, ui,

0?), % =1,...,k, from which independent samples X;=(X;1, ..., Xin) of a common size
of n > 2 have been drawn, 7 = 1,...,k. The problem to be considered is to select that

population which has the largest “guaranteed lifelength” ~;, i.e. § = . Throughout this
section, we assume that p; = ... = pr = p, say, and o?=... = 02 = 02, say, hold, where
in the first part, 4 and o2 are known. This situation is of statistical relevance, and it is
complex enough to develop the main ideas of the approach completely. Later it will be
seen clearly which adjustments have to be made to adapt the derived selection rule to the
case where p and 02 are unknown. The derived selection rule will actually be independent

of u, and for 02, a pooled-sample estimator will be found.

The standard approach to this problem has been described and applied in Section
2. For i = 1,...,k, a suitable estimator §; = éi(&p- .., X}), based on the k samples
of size n, with good performance properties has to be found, and then the selection is
made in terms of the largest of the estimates 51, cees 0. However, as mentioned already in
the Introduction, estimation of parameters is in this case rather difficult, ¢f. Cohen and
Whitten (1980), Johnson and Kotz (1970), Kane (1982), and LaRiccia and Kindermann
(1983). This is so even if o2 is known, as it can be seen from Gibbons and McDonald

(1975), where 02 = 1 is assumed.

In ranking and selection problems for location parameter families with nonsymmetric
densities, one realizes quickly that comparing the k estimates of a “natural” point of
location in these k densities may not be the best approach. Rather than estimating in the
present model ~1,...,7, or the k expectations, medians, modes, etc., and then selecting
in terms of the largest of the k estimates, one may better search for any functional of the

distribution which can be estimated sufficiently well by a location equivariant statistic.
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In the following, we will consider the class of L-estimators, which are linear com-
binations of the order statistics of a sample. To simplify explanations and notation,
let us first consider one sample from a lognormal population, Xi,...,X,, say, where
In(X; —0) ~ N(u,0%),7=1,...,n,and 4 € R and 0% > 0 are known. An L-estimator is
now of the form

n
(6) L,=n"1)_ A(j/(n+1)) X,
| i=1

where X[1) < ... < X[,] denote the ordered values of the sample X1,..., Xy, and where A
is a bounded weight function, which is defined on the open unit interval (0,1), and satisfies
1

f A(t)dt = 1. It should be pointed out, however, that X is allowed to assume also negative
0

values. A thorough analysis and discussion of this class of estimators can be found in

Huber (1981), and in Lehmann (1983), Chapter 5.5.

The main application of L-estimators is for location parameter families f = {fo}ocr,
where fo(z) = f(z —0),z € R, and where f is symmetric about the origin. Then for any A
which is symmetric about 1/2, L, as given by (6) is a suitable candidate for an estimator
of §. As shown in Lehmann (1983), if one takes weights w;, proportional to A(j/(n + 1)),
which add up to one, then

(7) | Ln =) winXp
i=1

is a location equivariant estimator of §, which is asymptotically normal and unbiased,
provided that some mild regularity conditions on f and X are fulfilled, and the asymptotic
distribution of L, is the same as that one of L,. The last step in this approach is to find

a weight function A which yields the minimum asymptotic variance.

To apply this technique to the lognormal model under concern, one notices the follow-
ing facts. f/n and L,, have still a common asymptotic normal distribution. Theorem 5.1 of
Lehmann (1983) is formulated and proved without the assumption of symmetry of A and
[, and the asymptotic mean and variance are given explicitly in dependence of A and f.
The main idea for solving the k lognormal selection problem is now as follows. Since L,

is location equivariant, it is reasonable to find its value for each of the k samples and then
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select that population which yields the largest L,-value. And one realizes immediately
that this selection procedure remains exactly the same if L,, instead of L, is employed.
To find now a good selection procedure, one has to search for a suitable weight function
A, which guarantees that L, has a small variance or asymptotic variance. In this paper,

the latter approach will be followed.

At this point one can see that selection of populations is not always a comparison
of estimates of the location of some natural point of shape in the densities. Varying A
to minimize the asymptotic variance of L, makes no sense from an estimation point of
view, since for a nonsymmetric f, the asymptotic mean varies substantially with A. From

Lehmann (1983) one finds that it is equal to

®) V(F, ) = / Aw) F~ (u)du,

where F is the cumulative distribution function of f. But it does make sense from a selec-
tion point of view, since comparisons of 8;’s is equivalent to comparisons of the locations
of any fixed point of the k£ densities. In other words, if location equivariant statistics are

employed, it does not matter what they estimate as long as they are doing it well.

To minimize now the asymptotic variance 72(F, }), say, of L,,, Theorem 5.2 of
Lehmann (1983) provides the solution. A careful examination of its proof shows that,
with some minor modifications, it can be used as the proof of a generalized version of
this theorem, which does not require symmetry of A and f, and can be applied to the

two-parameter lognormal density

(9) f(z) = (oz) o (67 (Inz — u)), = > 0.

The construction of the weight function Ao, say, which minimizes 7%(F,}), proceeds as

follows. It involves an auxiliary function g, which is denoted by + in Lehmann (1983).
(10) 9(z) = —f'(z)/f(z) = 271 + 0 %(Inz — )], = > O,

which has the derivative

(11) g'(z) = (0z)2(1 + p — 0% — Inz), z > 0.

11



Following along the lines of Lehmann (1983), with the appropriate modifications men-

tioned above, Ag is given by

(12) Xo(t) =¢' (F71(2) //0oo g*(z)f(z)dz, t € (0,1),

which can be further evaluated by means of

(13) F7(t) = exp(u+ 00~ 1(2)), t € (0,1),
as well as
(14) /ooo ¢*(2)f(2)dz = (1 + 0~)exp (2(0* — u)) .

The results can be summarized as follows, where the asymptotic normality of L, for this

unbounded Ao (t) is guaranteed by Shorack (1972).

Theorem 2. For a sample of size n from a distribution, which has the density given by

(9), the statistic L, (or L,) which has the smallest asymptotic variance 72 (F, ) is based

on the weight function

(15) Xo(t) = (1 +0%) 71 - oo+ 27 1(2)])

- exp(—20{o + ®71(2)]), t € (0,1).

Moreover, the asymptotic variance and mean are given by

(16) T2(F,X0) = o%(1 + o?) lezp(2(u — 0%)),and

(17) v(F,Xo) = (1+ 0?)texp( — 302 /2).

It should be noted that (17) has been stated only for the sake of completeness. It is

irrelevant for applications in the selection problem under concern. It follows from (8), i.e.
1

(18) V(F, o) = /0 Do(&) P (2)dt.

12



More importantly, one can see from (15) that Ao does not depend on . Thus, it does

not need to be known in applications.

Now we return to the original selection problem for k£ three-parameter lognormal
populations, where the observations X;; satisfy In(X;; — ) ~ N(p,0%),7=1,...,n,i =
1,...,k, and are independent. The goal is to select the population associated with the
largest y-value, i.e. § = ~. It is still assumed that u and o? are known. The case where

they are unknown will be discussed later.

The selection procedure based on L-estimation is to select that population which yields
the largest L,-statistic, based on Ag given by (15), from the k samples. This is justified by
recalling that the limiting distribution as n — co of n'/2[L,(X;) — vi — v(F, Ao)]/7(F, Ao)
is N(0,1),¢ = 1,...,k. Thus, for sufficiently large n, the probability of correctly selecting
the population with the largest y-value is approximated by, say, P(\o) which is simply the
following.

oo k—1

(19) P(Xo) = / H o z + 02 (v — vap) /7(F, Ao)) p(z)dz.

It is the well-known PCS for selecting the largest normal mean, which is tabulated for
selected values of £k and A = n1/2('7[k] ~ 941)/7(F, Ao), cf. Gupta and Panchapakesan
(1979).

Any other selection rule which employs L,-statistics derived from a different weight
function A has analogous properties. Everything mentioned above holds analogously, Ao
has simply to be replaced by A. And since 7(F,Xo) < 7(F, ), we see that the selection
rule based on Aq is asymptotically superior to all others based on different A’s. To be
more specific, we consider the concept of Pitman’s asymptotic relative efficiency (ARE)
for selection rules, which is described in details in Miescke (1979). For two L-statistics

LS,,I) and L,(f), say, which are based on A; and A2, respectively, one finds that
(20) ARE (LY, L®) = r2(F, A5) /72(F, Ay ).

To give two examples, let L} be the sample median, and let L}* be the sample mean.

Then for Ly, based on Ag, one gets the following asymptotic relative efficiencies, which are

13



greater than one.

(21) ARE (L,L*) = 27'n(1 + 0%)ezp(20?), and

ARE (L,L**) = (1 + 0~ %)ezp(30?)[ezp(0?) — 1].

Thus, for the special case of 62 = 1, one finds that ARE (L,L*) = 23.2. This means
that asymptotically, the selection rule based on the k¥ medians requires about 23.2 times
as many observations as the rule based on L,, to get the same probability of a correct

selection. The result for the sample means procedure is even more impressive. Here one

finds ARE (L, L**) = 69.0.

To get an idea how well this selection procedure based on L,, through Ay performs at

an intermediate sample size, the following example is considered.

Example: n =20, 1 =0, 62 =1.

From the tables in Gupta, McDonald, and Galarneau (1974), the covariance matrix
C, say, of the order statistics X (1] < ... < X]p) of a sample of size n = 20 from a lognormal
distribution with 4 = 0 and o2 = 1 can be derived. This allows to determine, with

sufficient accuracy, the variance of any linear combination of these order statistics, and

thus for any L, based on weights w;,,j = 1,...,n, as it is shown in (7), by means of
(22) Var (L,) = Var (w7Y) = wTCuw,

where Y = (X (1]~ - ,X[n])T, and wT denotes the transposed of the column vector w. of
weights.

Since n is not large, it is more appropriate to consider f/n, given by (7), since it is

location equivariant and thus more suitable for comparison purposes.

The values of Ao(7/21),5 = 1,...,20, can be found by use of (15), where 02 = 1,
and the values of ®~1(5/21),5 = 1,...,20, which are tabulated in Mueller, Neumann, and
Storm (1977), p. 113. From here, it is easy to determine the weights wj20,) = 1,...,20,
which are proportional to Ao(j/21),7 = 1,...,20, and add up to one. The values of the
weights wjzo of X(;,7 = 1,...,20, have been found to be the following: .55690, .21305,
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.10716, .05996, .03514, .02083, .01209, .00659, .00306, .00080, -.00063, -.00149, -.00196,
-.00216, -.00217, -.00203, -.00180, -.00150, -.00113, -.00070.

The variance of Lo is shown below, together with the variances of three other location

equivariant statistics, which are natural candidates for selection purposes.

Lao X1 (Xf10) + X[117)/2 X
.0076 .0076 .0826 2335

From this one can see that the asymptotically most efficient selection rule based on Lao
is already at n = 20, much better than the ones based on sample medians and on sample
means. But, strikingly, the smallest order statistic provides a reasonable alternative. Thus,
although it is not acceptable as an estimator of the “guaranteed lifetime” «, it turns out to
be a very suitable tool for ranking and selection of 7y, ..., k, at least for moderate values

of n.

For larger values of n, it can be seen that the rule based on X [1] becomes more and
more inferior. The asymptotic variance of X|;) can be derived along the lines of Leadbetter,
Lindgren, and Rootzén (1983), and its ratio to the corresponding asymptotic variance of
L, turns out to be 3.46 for n = 103, 7.47 for n = 10%, 20.22 for n = 105, and infinity in
the limit.

To complete this example, let us mention that the variance of J:Jzo, approximated by
72(F,X0)/20 through (16) with 4 = 0 and o? = 1, turns out to be equal to .0034. The
variance of X[y}, approximated by the asymptotic variance of X|;;, on the other hand, is

0.0090.

At the end of this section, let us deal with the more general situation where y and ¢?
are unknown. Lack of knowing 1 does not cause any trouble, since Ag(¢) does not depend
on p. This can be seen immediately from (15). Moreover, it should be noted that the two
specific asymptotic relative efficiencies, which are given by (21), do not depend on p. This
follows from the fact that u contributes only a factor of exp(2y) to the asymptotic variances

of linear combinations of the order statistics of a sample from a lognormal distribution.
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Now, estimating 02 is not such a difficult task as, for example, estimating ~v1,..., k.
The moment estimator for one sample, as it is given by Johnson and Kotz (1970), p. 124,
can be modified to a pooled-sample estimator for the k samples under concern as follows.

Let

n

(23) g = (kn)™! (Xi; — X3)?, ¢=2,3,

i=1 g=1

where Xi,...,Xx are the usual sample means. Since g estimates in (2), vZ = exp

(21 + 02)[ezp(0?) — 1], and 73 estimates the third central moment, which is the same for
all of the k populations, and is for all 7,  equal to
(24) E([Xi; — E(Xi;)]°)

= ezp(3u + 307 /2)[exp(0?) — 1)*[exp(0?) + 2],

it follows that (ri13)*(rh2) 2 is a suitable estimator of [ezp(0?) — 1][ezp(0?) + 2]2. The

proposed estimator of o2 is thus the unique solution 62 of

(25) lezp(6) — 1[ezp(6?) + 2)? = (1hg)?(1h2) .

Although one might have some reservations about the quality of this estimator for one
sample of size n, in the present situation, where usually k& > 3 samples contribute to &2,
this estimator is expected to perform sufficiently well to be used in the selection procedure

under concern.
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