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0. Overview

This paper outlines a new approach to the asymptotic analysis of certain counting
functions arising in the geometry of discrete groups. The approach is based on an analogue
of the renewal theorem ([3], ch. XI) for counting measures in symbolic dynamics.

The counting problems considered in this paper are mostly tied up with the ergodic
behavior of the action of a discrete group at co. Some of these problems may be solved by
other methods of noncommutative harmonic analysis, e.g., the Selberg trace formula, and
in these cases the alternative methods may give sharper results (especially error estimates).
Also, the methods developed here are not well suited for groups with parabolic elements,
because of difficulties with the symbolic dynamics. However, our approach is suitable
for certain problems that are apparently outside the scope of noncommutative harmonic
analysis, in particular, problems directly concerned with the geometry of the limit set.

Let T' be a Schottky group (sec. 9; also [15]) acting on the hyperbolic plane H2. (For
simplicity, we shall state our main results for Schottky groups. These results hold for
“most” finitely generated Fuchsian groups without parabolic elements; cf. sec. 10-13.)
Consider the Riemann surface H?/T'; define N(a) to be the number of closed geodesics on
H? /T with lengths < a. Let A be the limit set of I', and let 6 be the Hausdorff dimension
of A.

COROLLARY 11.2: As a — oo,

The corresponding result for cocompact Fuchsian groups (6§ = 1) is a well known conse-
quence of the Selberg trace formula ([5], ch. 2). There are analogous results for closed
geodesics on compact Riemannian manifolds of variable negative curvature [17] (but no
hint of a proof appears in this paper) and, more generally, for periodic orbits of Axiom A
flows [20], [19], [11].

Now let T be a Schottky group, as before, but consider I as a group of transformations
of the plane C with the Euclidean metric dg. Let 2 be a point of discontinuity for T, i.e.,
ze C—A. .

THEOREM 10: Ase—0
# {veT :dr(yz,A) > e} ~Ce™®

for a suitable constant 0 < C < co. Moreover, the uniform probability measure on {yz :
dg(vz,A) > €} converges weakly as € — 0 to the normalized §-dimensional Hausdorff
measure on A.

This result is closely related to counting problems concerning noneuclidean lattice
points ([6], [14], [17], [21], also sec. 12), which are traditionally approached by spectral
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analysis of the Laplacean on H2/T. It is not clear whether such methods can be adapted to
obtain results like Theorem 10. The result concerning the asymptotic behavior of uniform
distributions sheds some light on the construction of conformally invariant densities on

A ([22], [31]).

Next, let R be the natural fundamental region for ' (sec. 9). The images yR,y € T,
form a tessellation of C—A in which the tiles YR accumulate at points of A. The (Euclidean)
areas of these tiles converge to 0 as 7 — oo.

THEOREM 11: Ase —0
# {y€T: Area (YR) > e} ~ Ce~%/2

for a suitable constant 0 < C < oo.

Consider now the limit set A with the induced Euclidean metric; keep in mind that

A is compact. Let N(e) be the minimum number of of e-balls needed to cover A, and let

M () be the maximum cardinality of an e-separated subset of A (i.e., a subset F such that

“d(z,y) > ¢ for all z,y € F). Let G, be a subset of C of minimum cardinality such that

every point of A is within distance € of some point of G; define P. to be the uniform
probability measure on G..

THEOREMS 12-13: Ase — 0,

N(e) ~ Ce™8,
M(e) ~ C'e™®

for suitable constants 0 < C,C' < co. Moreover, as € — 0, P. converges weakly to the
normalized §-dimensional Hausdorff measure on A.

The counting functions N (&) and M(g) are used to define dimensional characteristics
of A called the metric entropy and capacity [9]:

. . log N(e)
metric entropy = hn'(1) k)gT’
I d
log M(e
capacity = sh_r% ——————-———lfg e“(l) .

Theorem 12 shows that for limit sets of Schottky groups the metric entropy, capacity,
and Hausdorff dimension coincide. The asymptotic behavior of P, suggests that the 6-
dimensional Hausdorff measure be interpreted as a uniform distribution on A. Theorem 12,
which is the hardest result of this paper, was suggested by an analogous but easier result
for self-similar fractals [13]. For discussion of other aspects of the geometry of A, see [16].

The results mentioned thus far are all derived from an abstract renewal-type theorem
in symbolic dynamics. Let (X,0) be a one-sided shift of finite type (sec. 1), e.g., & =
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O
[1{1,2,...,£} with the topology of coordinatewise convergence and (0z), = Z,41. For a
1

continuous function f : ¥ — C define Sp,f = f+foo+...+ foo™ L. Let f,g: ¥ — R
be Holder continuous functions such that g > 0 but not identically zero and S,f > 0 on
Y for some n > 1. Define N(a,z) fora € R,z € Z by

N(a,z) = Z Y. 9(®)1{Snf(y) <a}.

n=0 yioty=xz

THEOREM 1: If f is nonlattice then as a — oo,
N(a,z) ~ C(z)e®®

uniformly for z € I, for suitable constants 0 < 6 < 0o, 0 < C(z) < oco.

The hypothesis that f be nonlattice means that no function cohomologous to f (sec. 1)
maps ¥ into a proper closed (additive) subgroup of R. Explicit characterizations of the
constants § and C(z) will be given in sec. 2; § depends only on f, while C(z) depends
linearly on g¢.

In applications it is often difficult to show that the relevant function f is nonlattice.
For the applications given in this paper the nonlattice character of f derives from the fact
that the geodesic flow on the unit tangent bundle TH? /T is mixing relative to a certain
invariant measure [24]. We shall use this to prove

COROLLARY 11.4: The distortion cocycle of any discrete group containing a Schottky
subgroup 1s nonlattice.

See sec. 11 for the definition of the distortion cocycle. Corollary 11.4 extends Th. 6
of [32] (see also [30]).

ACKNOWLEDGEMENT. The author has benefitted from many enlightening dzscus-
sions with W. Lalley.



Part I. Renewal Theorems in Symbolic Dynamics

1. Background: Shifts, Suspension Flows, Thermodynamic Formalism

A shift of finite type is defined as follows. Let A be an irreducible, aperiodic, £ x 2
matrix of zeros and ones (£ > 1), called the transition matriz. Define ¥ to be the space
of all sequences taking values in the alphabet {1, 2,...,£} with transitions allowed by A,
i.e.,

(1) S ={ze [[{L 2 s8}: A(ZnsTnin) = 1 V).

The space ¥ is compact and metrizable in the product topology. Define the (forward) shift
0:% — X by (6z)p = 41 for n > 0; observe that ¢ is continuous and surjective, but
not 1 — 1. The system (X, 0) is topologically mixing ([1], Lemma 1.3).

Let C(X) be the space of continuous, complex-valued functions on . For f € C(X)
and 0 < p < 1 define

var, (f) = sup{|f(z) — f(¥)|: z; = y; VO < j < n},
|flp = sgrgvarn(f)/p”, and

Fo={f€C(Z) :|flp < o0}

Elements of 7, are called Hélder continuous functions. The space 7,, when endowed with
the norm || - ||, =|+|, + || - ||co, is 2 Banach space.

For f,g € C(X) define Lyg € C(X) by

Lrg(z) = D efWg(y).

yioy=z

For each p € (0,1) and f € %,,L5 : 7, — 7, is a continuous linear operator; if f is
real-valued then L is positive. '

THEOREM A (Ruelle [25]): For each real-valued f € 7,, there is a simple eigenvalue
Af >0 of Lf: F, = 7, with strictly positive eigenfunction hy. The rest of the spectrum
of Ly is contained in {z € C: |z| < Ay — &} for some € > 0. There s a Borel probability
measure vy on L such that E}Vf = Ajvs. If hy is normalized so that [ hydvy = 1 then
for every g € C(X)

Jim X723 = ([ gdvp)hslleo =0.
A proof may be found in [1], ch. 1, also [25], [26]. Here L} is the adjoint of L.
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The probability measure py defined by (dus/dvs) = hy is o-invariant; it is called
the Gibbs measure associated with f. For every Gibbs measure ps the dynamical system
(X,uy,0) is mixing, hence ergodic ([1], Prop. 1.14).

Functions f,g € C(X) are cohomologous if there exists ¢ € C(X) such that f —g =
p—poo. If f, g € 7, are real-valued then py = p, iff f,g are cohomologous; if this
is the case then f — g = ¢ — p o o for some p € 7, ([1], Th. 1.28). Otherwise puys,puy are
mutually singular. Observe that if f — g = ¢ — p 0 o then

Ly =e"PLy(eP);
consequently, for real-valued f,g, ¢,

Af = Ag,hf = e""hg,uf = epUg.

For f € C(X) define Sp,f = f+foo+...+ foo™ 1, n>1, and S,f = 0. Functions
[, g € ¥, are cohomologous iff for every n > 1 and z € ¥ such that o™z = z, S, f(z) =
Sng(z) ([1], Th. 1.28). For real-valued f € 7,, the Gibbs measure us is the unique o-
invariant probability measure on X for which there exist constants 0 < Cy; < Cy < oo such

that .
prlyed tyy=2z;Vi=0,1,...,n—1}

C: <
t= A7™ exp {Snf(z)}

<C:

forallz € ¥ and n > 0.

The functional P(f) = log Ay (the pressure) determines the moments of various func-
tions relative to the Gibbs measures. In particular, for real-valued f,g € %,, P(2f + g) is
real-analytic in z and

(1.2 | LETLD _ [ 1 diapis €

([26], Th. 5.26 and Exercise 5.5).

Define 3 to be the space of all double-ended sequences with transitions allowed by A,
i.e., .

EN: ={ze H {1,2,...,8} : A(Zp,ZTpi1) =1 Vn},

n=—oo

and let o : ¥ — 3 be the forward shift. For a continuous function f :~ﬁ — C define
varn(f) = sup{|f(z) — f(y)| : i = yi V |i| < n}, and define |f|,,[|f]|p, 75, Snf, etc., as
before. Notice that 7, may be regarded as a closed, linear subspace of 7, (namely, those
functions in .’7;,, that depend only on the “forward” coordinates 1, z2,...). Every f € fp
is cohomologous to a function f € 7 5 ([1], Lemma 1.6). Observe that for every f € 7

the Gibbs measure ps extends naturally to a o-invariant probability measure on %, again
denoted by py.



Let f € 37',, be a strictly positive function on 5. The suspension flow over the shift
(¥, 0) with height function f is defined as follows. Let Yr={(z,t):z€%,0<t< f(z)}
with (z, f(z)) identified with (0z,0). The flow T, takes place on 5 f3 it is defined by

To(z,t) = (z,t + s) for t +s < f(z),s >0,
T, oT,, =Ts, 45, for sj,s3>0.

See Fig. 1.

(Figure 1 here)

Finally, we remark that the notion of a shift of finite type may be generalized in
a useful but trivial way as follows. Instead of having the transition rules for sequences
z in I( or i) depend only on adjacent entries Zpn,Zpny1, one may have them depend on
Tn—ksTn—k+1,--+,Lntk for a fixed k£ < co. Such transition rules may be reduced to (1.1)
by changing the alphabet {1,2,...,£} to a finite set of “words” from {1,2,...,£} of length
2k + 1. (This generalization will be needed for the symbolic dynamics in sec. 10.)

2. Renewal Measures and Renewal Theorems

Let f € #, be a real-valued function such that for some n, Spf is strictly positive on
2, and let g € 7, be nonnegative but not identically zero. Define N (a,z) fora e R,z € &
by

(2.1) N@2)=3Y Y o@)isaf(v) <ab.

n=0 yoty=zx

This is a distant cousin of the distribution function of the remewal measure in probability
theory ([3], ch. XI). Since S,f is strictly positive for some n, N (a,z) is finite for all
(a,z) € RX E; in fact N(e,z) = 0 for a << 0, and N(a,z) < C1€%2° for suitable constants
C1,C2 (see Lemma 8.1 below). Observe that N(a,z) is nonnegative and nondecreasing in
a. Most importantly, N(a, z) satisfies an analogue of the renewal equation:i

(2.2) N(a,z)= Y N(a-f(y),y) +g(z)1{a > 0}.

yioy=zc

The asymptotic comportment (as @ — oo) of N(a, z) depends on whether f is a lattice
or nonlattice function. Say that f is a lattice function if f is cohomologous to a function
taking values in a discrete subgroup of R; otherwise, say that f is a nonlattice function.
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PROPOSITION 2.1: Let f € 7, be a real-valued function such that for some n > 1 the

funetion S, f is strictly positive on ©. Then z — Azy s strictly increasing for z € R, and
there is a unique 6 > 0 such that

(2.3) A_ss=1.

Henceforth, § will be the unique real number such that (2.3) holds. The proof of Proposi-
tion 2.1 will be given at the end of the section.

THEOREM 1: Assume that f is nonlattice. Then
(2.4) N(a,z) ~ C(z)e*’
as a — oo, uniformly for x € X.
From the renewal equation (2.2) one sees that if (2.4) holds then

Cl) = Y efWc),

oy=x

so C(z) is an eigenfunction of the Perron-Frobenius operator £_s f- In fact the proof of
Theorem 1 will show that

(2.5) Clo) = <6—ff-€]fld”—:-f;) hes s ().

The lattice case is more complicated. If f takes values in a discrete additive subgroup
G of R, then clearly N(a,z) is a step function in a with discontinuities only at elements
of G. Thus, in general one would expect N (@, z) to exhibit asymptotic periodicity in a.

THEOREM 2: Assume that f is integer-valued, but not cohomologous to any function
taking its values tn a proper subgroup of the integers. Then

(2.6) N(a,z) ~ C(z)el*®

as a — oo, uniformly for z € X.

Here [-] denotes greatest integer. Once again C (z) is an eigenfunction of L_sy; this
time '

(2.7) C(z) = (1—e%)~1 (%ﬁ’:—:z) h_ss(z).

When f is not integer-valued but is cohomologous to an integer-valued function one
again expects e~* N(a,z) to be asymptotically periodic.
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THEOREM 3: Assume that f ts cohomologous to an integer-valued function but not to
any function taking values in a proper subgroup of the integers. Then there exists a bounded
function C(B,z),8 €[0,1),z € &, such that

(2.8) N(a,z) ~ C(a — [a], z)e?®

as a — oo, uniformly for x € X.

There is an explicit formula for C(8,z) but it is neither simple nor illuminating, so
we shall omit it.

Theorems 1-3 are comparable to theorems giving exponential decay of solutions to
renewal equations ([3], sec. XI. 6, Th. 2), and exponential growth and decay of solutions
to Wiener-Hopf equations ([10], Th. 15.4). The proofs of Theorems 1-3 will be given in
sections 7-8.

PROOF of Proposition 2.1: Since the Gibbs measure p,y is o-invariant for each z € R,

/2 (Saf/n)diss = / f duag = (d/dz)(log Aey),

by (1.2). Since S, f/n > € > 0 for some n, it follows that log A, f is strictly increasing in
#; moreover, (d/dz)logA,; > €50 A,y — 0 as z > —oo and Azf — 00 as z — co. Now
Azf is analytic in 2 (cf. [26], Th. 5.26) so A, = 1 has a unique solution z € R.

Recall that the transition matrix A is irreducible and aperiodic. Consequently,

£
LE1(z) =) A", z0) — oo

1=1

as n — oo, for each z € ¥ (here 1 denotes the function in %, that is identically 1). It
follows from Theorem A that Ao > 1. Therefore, since A,y is increasing, if A5 = 1 then
z<0. ]
3. A Modification for Finite Sequences

Define ¥, to be the set of all finite sequences from the alphabet {1,2,...,¢} with
transitions allowed by A4, i.e.,

. ={} U (U {(zo,z1,.-,2a) : A(ms,Ti41) = 1})

(¢ is the empty sequence). The forward shift o, on L. (or ZUX,) is defined in the obvious
way, in particular, ;

0'*(:1}0,121,. . -,zn) = ($1,z29- . ',xn)’

0.(€) = ¢



Sequences in X, may be extended to infinite sequences by adjoining an additional
symbol 0 to the alphabet {1,2,...,£} and making the correspondence

(0, %15+ +3%n) «— (Z0,T1,- -+ ZTn,0,0,...).

Thus the shift o, on X UX, is a shift of finite type. The transition matrix A is extended by
A(0,0) =1, A(:,0) =1,A(0,7) =0 for ¢ = 1,2,...,£ Unfortunately, the extension of A is
not irreducible, so (XUX,, 0.) is not topologically mixing and therefore the thermodynamic
formalism of sec. 1 does not apply directly. However, ¥ U X, is compact and metrizable in
the product topology, and var, f,|f|,, ||f||s, Snf, cohomology, etc., may be defined as in
sec. 1. Define 7,(X U L,) = {f € C(EUZ,) : |f], < o0}.

Let f. € #(X U X.) be a fixed, real-valued function, and let f be its restriction to
Y; assume that for some n, S, f is strictly positive. Let g. be a nonnegative function on
Y U X, not identically zero, such that var,, g. = O for some m < oo, and let g be the
restriction of g, to X. For ¢ € R,z € X U I, define

(3'1) (a,7) = Z Z g*(y) 1 {8 fi(y) < a};
v

as in sec. 2, N, (e, z) is finite, identically zero for a << 0, and grows at most exponentially
as @ — o0o. There is again a renewal equation:

(3:2) N.(e,2)= Y Ni(a=fuly), 1) +0.(z)1{a > 0}.
The

THEOREM 4: Let 6 > 0 be the unique real such that A_s¢ = 1. If f is nonlattice then
(3.3) N.(a,z) ~ C.(zx)e*’

as a — oo, uniformly for z € X U X, where

(3.4) C.(z) = (WT”:L) h.(z)

and h,(z) is the unique positive continuous function on ¥ U X, satisfying

(3.5) h*(az) = h_gf(a:),:c €x, :
(3.6) h«(z) = Z e~ W h,(y), z € x..
Tie

There are analogous results for the lattice cases, which we shall refrain from stating.
The proof of Theorem 4 will be given in sec. 6.
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Theorem 4 differs from Theorem 1 in that more restrictive hypotheses are imposed on
g(z). These may be relaxed somewhat; however, for the applications given in this paper
this is unnecessary.

For many counting problems in symbolic dynamics Theorems 1-4 apply in a very
direct fashion to give the asymptotic behavior of the relevant counting function. Examples
of such problems will be encountered in sections 5 and 12. There are more subtle counting
problems, however, in which the counting function cannot be written in the form (2.1)

r (3.1), but to which Theorems 1-4 may be applied indirectly. An example will be given
in sec. 13. In this example, and certain others like it, one must deal with a function of the
form

(3.7)  N.(a,z;t)

> g.(y) 1{a < Spy1fu(y) <a+8fu(y) <aVj<n}

n=0 ywoly=c

where a, t > 0, z € ¥, UZX, and g, > 0 is a function such that vary g, = 0 for some
k < oo. '

COROLLARY 3.1: Assume that f. satisfies the hypotheses of Theorem 4 and assume
that f.(z) >0 forallz € LUX,,z# €. Then as a — oo

(3.8) N.(a,z;t) ~ F(z,t)e’,

uniformly for x € LU L, and t in any compact subset of (0, c0), where
(3_9) F(z,t) = C.(z) (51 (2)A0) _ o—51.(2)y

and C.(z) s defined by (3.4).

NOTE: a A b is the minimum of a and b.

PROOF: It is easily verified that

a< Sn+1f*(y) <a+t,
Sify)<a Viji<n,
ory==z

occurs iff
@ — fu(2) < Sufi(y) < a+((t - f:(2)) AO),

oty =z.

Hence N.(a,z;t) = Ni(a+ ((t — f«(z)) A O), "3)

— N(a — f«(z),z)
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where N, (a,z) is defined by (3.1), so (3.8) follows from (3.3). O
A similar result holds when the hypothesis f, > 0 is dropped.

Now let G(t),t € R be a nonnegative, monotone function (either nondecreasing or
nonincreasing); let g.(z) be as before. For z € &, U X define

(3.10) Ne(@o) =Y Y 0.0)G(Sns1fuly) - o)

n=0 yioly==z

H{a < Snt1fu(y); Sifu(y) < aVyj<n}.

COROLLARY 8.2: Under the hypotheses of Corollary 8.1, for eachz € X, UX, z # £,
o0

(3.11) J%@Jpw“/ G(t)F(z, dt)
0

as a — oo, uniformly forzx € L, UX.

This follows from Corollary 3.1 by a routine argument. Note that the measure F(z,dt)
is supported by the interval [0,]|f.||co] so the integral fooo could be changed to OHf lles

An important consequence of Corollary 3.1 is that F(z,t) is jointly continuous in z,¢.
This implies

COROLLARY 3.3: For every € > 0 there exists o, > 0 such that if G(t) is any
monotone function satisfying |G(C + 1) — G(0)| < 1 where C = ||fi||oo and if 0 < a < a,
then .

(3.12)

/mGU+@F@Jn—/wGMF@Jﬂ<s
0 0
for everyz € TUX,, T # €.

PROOF: Since F(z,t) = F(z,C) for t > C, the limits of integration may be changed
from [0, 00) to [0,C]. Fubini’s Theorem (integration by parts) implies that the difference
between the two integrals is

—/]anmm

[0,

+ / (F(z,t — &) — F(z,t))G(dt)
(,C]

+AQGMF@J—®mﬂ)

The result now follows easily from the uniform continuity and boundedness of F(z,t).00

12



4. Equidistribution Theorems

Once again let f € 7, be a real-valued function such that S, f is strictly positive on T
for some n > 1, and let z € T be a fixed but arbitrary admissible sequence. In this section
we shall discuss the distribution of those y € ¥ such that 6™y = z and S,,f(y) < a for
some n.

Let P* be the probability measure that attaches probability 1/N(a,z) to each ele-
ment of

F**={yeX:o" ==z, S,f(y) < a for some n >0},

where
N(a,z) = #(F>%).

THEOREM 5: Assume that f is nonlattice. Then as a — oo

(4.1) p©e 2, V_sf
uniformly for x € X.

NOTE: 2 (convergence in distribution) means that for each continuous g : ¥ — R

(4.2) / g dP** —>/ g dv_sy
b, b3

as a — oo.

PROOF: Let g € 7, be nonnegative; then

o0

> 2 g(y) {Snf(y) <a}
/g dP®% = n=0°o yiony=x
. 2 X HS.f(y)<a}

n=0 yioty==zx

———-)/ g dl/_gf
b

as a — oo, uniformly in z, by Theorem 1 and (2.5). Since any nonnegative, continuous
function may be uniformly approximated by functions in 7,, (4.2) and hence (4.1) follow.[]

For g € C(X) define g = [ g du_sy, and for y € F** let n(y) be the largest n > 0
such that o™y = z and S, f(y) < a. Unless z is periodic there is only one such n for any
y € F® %, If z is periodic the number of y € F* ¢ such that 6™y = = has more than one
solution n > 0 grows linearly in a, since S, f > 0 for some m.

THEOREM 6: Assume that f s nonlattice. Then for each g € C(X) and each e > 0

(4.3) prefy: |2nwiY) "?(Zy()j)(y) —g > —0,
(44) Px’a{y : _7—1,(—3;) - ‘ > E} — 0.
13



as a — 0o, uniformly for z € X.

PROOF: Let 2> 6 >0,s0 A_,5 <1 (Prop. 2.1). Then

o0

(4.5) > Z 1{Snf(y) < m(f —€)}

< Z Y =W i)

n=m Yyioty=g

= (caszzf 1)(z)e™ )

n=m

~ATp (1= 2sp) ™! C(z)emU =)

as m — oo uniformly for z € ¥, by Ruelle’s Theorem (sec. 1). Theorem 1 implies that

(4.6) Z Y. USaf(y) < m(F-e)}
n=1 yioty=zx
~ Cl(x)em(f—s)ﬁ
as m — oo. Now (d/dz)(log A_;f)z=5 =  (cf. (1.10)) so there exists z > 6 such that

A—Ef e(z—ﬁ)(f—s) < 1.

Therefore (4.5) and (4.6) imply that

ory=z

PP 1{Snf(y) < m(f — &)}

=1 oty==z

T USu) <m(T-e)

as m — oo uniformly for z € ¥, which in turn implies that

P {y: n(y)f >a(l+e)} —0

as a — oo uniformly for = € .
A similar argument, this time using § > z > 0, implies that

m

Z > {Saf(y) <m(f+e)}

=1 o"y=z

§ S 1Suf(y) <m(F+e)}

=1 oty=z

14



as m — 0o, and hence
Po{y: n(y)f <a(l-¢€)} —0

as a — oo uniformly for « € X. This proves (4.4).
In proving (4.3) it suffices to consider positive g € ¥,. For such g,

d _
(E log /\zg_af) - =g>0,

so for all sufficiently small z > 0, A_zg_s5 €° @) < 1. Consequently,

Do D UYSug(v) <n(@-c) —ae; 5af(y) < a}

n=0 yioty=cz

< Z Z exp {—2S,9(y) +‘zn(y'—— €) — 68, f(y) + a(6 — ze)}

n=0 yiory=zx

o0
— Z (‘szg——b'f 1)(_,5)827»(5—5) 6 —aze

n==0
<C ea6—aze

for some C < c0. Since

Z Z H{S:f(y) < a} ~ C(z)e*®

n=0 yioty=z

by Theorem 1, it follows that

o0

> X UYSng(y) S n(@—¢) —ae; 8, f(y) < a}

(4.7 RS0 vy —0

o0

X Y S.f(y<a}

n=0 y:ioty=z

as @ — oo, uniformly for z € X. A similar argument shows that

o0

nzzzo W;ym 1{Sng(y) > n(g + &) + ae; Snf(y) < a}

> 2 YSuf(y) <a}

n=0 yioty=z

(4.8)

as @ — oo, uniformly in z. The result (4.3) now follows easily from (4.4), (4.7),
and (4.8). O

Theorems 5 and 6 extend to the setting considered in sec. 3. We will not need such
extensions, however, so we shall not state them here.
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5. Periodic Orbits of Suspension Flows

Consider a suspension flow over the two-sided shift (ﬁ,a) with height function g¢.
Clearly, every z € ¥ such that oz = z, o't #z, i =1,2,..., n— 1 for some n lies on
a periodic orbit 7 of the flow; the period of r is S,g(z). Since there are infinitely many
periodic sequences = € X, it follows that there are infinitely many periodic orbits 7.

Recall that g is cohomologous to a function f that depends only on the “forward”
coordinates z1,Z2,...; f may be considered a function on ¥. It is not difficult to show
that S, f is strictly positive for some n, since g > 0. The suspension flow is topologically
mizing if f (equivalently, g) is nonlattice. Let § > 0 be as in Prop. 2.1.

Define a measure M on £, = {(z,t) : z € £,0 <t < g(z)} by
(5.1) M (4% B) = u_ss(A)m(B)/ [ 1 du-sy

for any rectangle A x B C flg, where m is Lebesgue measure. Since [ f dp_s f=/[g
du_s5, M is a probability measure. It is easily verified that M is invariant for the flow.

Denote periodic orbits of the suspension flow by 7; let A(r) be the (minimal) period

of 7. For any continuous function G : f]g — R let 7(G) be the mean value of G on 7, i.e.,
the integral of G over 7 divided by A(7).

THEOREM 7: Assume that the suspension flow is topologically mizing. Then for any
>0,

(5.2) #{r : X\(1) < a} ~ €% /as,
#{r: A(r) < aand |7(G) — [ G dM]| > &}
(5:3) #{r: A7) < a} 0

The first statement is roughly equivalent to the main result of [20]; the second state-
ment strengthens the main result of [19]. For more refined results, see [11].

PROOF: Suppose that 7 is a periodic orbit of the suspension flow that crosses the “floor”
{(z,0) : z € L} exactly n times. Then there is an n-periodic sequence z such that the
crossings occur at (z,0), (0z,0), (02z,0),...,(c" 1z,0), and

A(r) = Sng(z) = Snf(z).
Consequently,
(5.4) #{r: A(r) < a}
= i n~! 4 {z € T,z is n — periodic, S, f(z) < a}.
n=1
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Thus the problem of counting periodic orbits of the suspension flow is equivalent to a
counting problem for the shift.

Let k be a fixed large integer; choose z(1), z(3) ... (™) ¢ ¥ such that z(i) ( ) :1:,(;), ‘

+=1,2,...,m, are the distinct sequences of length k in X.. Assume that each a:(*) is an
aperiodlc sequence. Define g; : ¥ — R by

0:(z) = 1z =237 ¥ j = 1,2,....k};

m
observe that ) g¢; = 1.

=1

Consider z € ¥ such that 0"z = z(¥) and g;(z) = 1. Let % be the n-periodic sequence
I=21Tg...C,T1T3...Ty...; then

S0 f (%) = Suf(2)| < Y var; (f) = ex.

i=k

Keep in mind that ¢4 — 0 as k — oo. Because of our choice of z(1), ..., z(™) | there is a
1:1 correspondence between n-periodic sequences and sequences z such that ¢%z = z(9

and g;(z) = 1 for some 7 = 1,2,...,m, provided n > k (the correspondence is given by
z + Z). Hence, for n > k,

(5.5) Em: N (a — ex)

# {z : z is n — periodic, S, f(z) < a}

f:N(z) a+eg)

where . '
N,(L‘)(a,) = #{z:0"z= :z:(‘),g,-(z) =1,8.f(z) < a}.

Now as a — oo, #{7 : A(r) < a} — 00, so the contribution to the sum (5.4) from-the
terms n < k is negligible as ¢ — oo; consequently we may ignore the fact that (5.5) may
not hold when n < k.

Recall that f satisfies the hypotheses of Theorem 1. Therefore, as a — oo

(5.6) NO@) =3 N (a)




where

C; = (M) h_ss(z®) > 0.

Now Theorem 6 implies that for nearly all z such that o™z = z(9) and S, f (z) < a for
some n > 1,

nza// fdu_ss.

when a is large. Since for n < (||f|]oo) ™?

> NP(a) < Ni(an||fleo) = o(e* /a),

1<n<an

it follows from (5.6) that as a — oo,

(5.7) Zn LN @) ~ Gl [ 1 dumsg)e® .

Observe that as k — o0, — 0 and

m
Zc'i/ fdu_sy
=1
= 25_1(/ g dv_s5) h_s5(c)
i=1

— 61 / h_afdl/_sf =61,

Therefore, (5.4), (5.5), and (5.7) imply (5.2).
It remains to prove (5.3). Let G : ig — R be continuous; define h: % — R by

h(x) = /09(21) G(z,t)dt.

Now h is continuous, so it may be uniformly approximated by k € .'r’ Recall that -any
h e .’r" is cohomologous to some 3 € %,. Thus, if 7 is a periodic orbit passing through
(z,0), where z is an n-periodic sequence, then

7(G) = Spp(z)/Sn f(z).

By the same reasoning as that leading up to (5.4) we conclude that to prove (5.3) it suffices
to prove that

cO

Z n! #{z : z is n — periodic, S, f(z) < a,|Spp — n [ dp_s¢| > ne}
n==1
= o(e“‘s/a).
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This may be accomplished by virtually the same argument used in proving (5.2), this time
using (4.3) of Th. 6. O

6. Proof of Theorem 4

Theorem 4 is a relatively straightforward consequence of Theorem 1. Observe that
(3.3) holds for z € ¥ by Theorem 1. Furthermore, if (3.3) holds for all z € £ U X, then
the renewal equation (3.2) implies that

C(z) = Z e MW C(y),ze UL,
yio.y=z

y#¢
and (2.5) implies that
J 9dv_sy )
Cz) = [ LIE8 Vb yi(a),z e 2.
@ = (PS5l ) hosa)

Therefore, to establish that (3.4) holds for all z € X U I, it suffices to show that C (z) is
continuous and that the nonnegative solution to (3.5)-(3.6) is unique.

LEMMA 6.1: There is at most one nonnegative, continuous h.(z) on L U X, satisfy-
ing (8.5)-(3.6).

PROOF: First notice that any solution h.(z) must be strictly positive on © U Z,. It is
positive on ¥ because of (2.5), since h_s¢ > 0. Hence it is positive near X, by continuity.
But for any z € X, there exists y € T, near ¥ such that o7y = z for some n (since the
matrix A is irreducible); iterating (3.6) n times shows that h,(z) > =55~/ p (y) > 0.

For z,y € X.,y # €, define
k(z,y) = e %00 (R (y)/hi(z)) foy=2x

= 0 otherwise.
Then foreachz € ., > k(z,y) = 1. Define
Yiowy=z
k™ (z,y) = > k(z,y1)k(y1,¥2) - - - k(yn—1,9);

(y1,925--3Yn—~1)

then by induction Y, k"™(z,y) = 1. Now suppose k' (z) is another nonnegative, con-
yiory=z

tinuous solution to (3.5)- (3.6). Then
P2) _ N (PA0)
e~ ke (5:5))
ki
-t (5G7)
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As n — 00, any y € I, such that k*(z,y) > 0 (i.e., o™y = z) gets increasingly close to I.
But near %, h}/h. = 1, by (3.5) and continuity. It follows that A, (z)/h«(z) = 1 for every
T € X,. O

To extend (3.3) to z € L. we will use the fact that g.(z) depends on only finitely
many coordinates of z. '

LEMMA 6.2: For each & > 0O there ezists n. sufficiently large that if z,z' € TUZ, satisfy
r; =z for i =0,1,...,n, then

(6.1) N.(a,z) < Ni(a +¢,2')
for all a € R.

PROOF: I z; = z} for ¢ = 0,1,...,n,, some n, > 0, then there is a natural, 1 — 1
correspondence between those y such that 6™y = z and those y’ such that o™y’ = z’. In
particular, y <> y' if y; = y! for ¢ = 0,1,...,n + n..

Recall that the function g, in (3.1) satisfies var,, g. = 0, i.e., g.(z) is a function
of only the first m coordinates of z. Choose n. > m; then if y < y’ as in the preceding
paragraph, g.(y) = g«(y’). Consequently, the series (3.1) defining N, (a,z) and N.(a+¢,z’)
only differ in terms where S,f.(y) < a but S.f.(¥') > a + €, or vice versa. Now if
y -y, o"y =z, and o™y’ = z', then

n+tn,

5af(®) = Sufu W) < Y varm(£2),
m=ne
o0
and since vary,(f:) decreases exponentially to zero, if n. is sufficiently large then .
m=n,

var,(fi) < e. Therefore, all terms in the series (3.1) defining N(a,z) are included in the

series defining N(a + ¢,2'), and because all terms in these series are nonnegative, (6.1)
follows. - U

PROOF of Theorem 4: Consider the renewal equation (3.2); iteration yields

(6‘2) N*(a'a .’B) = Z N*(a_Snf*(y):y)

n—1

+ i Y gw)i{a— Smfi(y) >0}

m=1 yio™y=x

o™ y#E
+ g(z)1{a > 0}.
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Fix n large. For a > n||f.||co the last two sets of terms in this expression do not change
with a, so the asymptotic behavior of N, (a,z) is completely determined by

Z N*(G—Snf*(y)sy)'

yiory=zc

ol T ly#e

Observe that each y in the preceding expression is a sequence of length of least n,
because o7 ly # £. For each such y there exists y’ € ¥ such that Yy, = y;fori =
0,1,...,n —1. By Lemma 1, if n > n, then :

N.(a—e— S,f.(y),y')
<N.(a — Snfu(y),v)
<N.(a+e— Spfuly),y").

The asymptotic formula (3.3) now follows easily. Theorem 1 implies that
Ni(ate— S,fe(y), y') ~ C(y") e(a=Snfu(y))6 +es

as a — oo. Letting € — 0 one obtains (3.3). The continuity of C (z) for z € TU X, follows
easily from Lemma 6.2. O

7. Perturbation Theory for Perron-Frobenius Operators

The proofs of Theorems 1-3 will rely heavily on analyticity properties of the map
z— L,¢,2z € C. In this section the most important such properties are summarized.

Henceforth f € 7, is a fixed, real-valued function such that S f is strictly positive
for some m. The quantities LafsAzf ey, vzf, etc., will be abbreviated LAz, hay vy, ete.

The spectrum of £, for z ¢ R was partially described by Pollicott [23].

THEOREM B: Suppose z € C — R.

(a) If for some a € R the funetion (Im(2)f — a) /27 is cohomologous to an integer-valued
Junction, then €'*ARe(z) 15 a simple eigenvalue of L, and the rest of the spectrum is
contained in a disc centered at zero of radius less than \ Re(z)-

(b) Otherwise, the entire spectrum of L is contained in a disc centered at zero of radius
less than ARe(z)-

In case (a), Im(z)f = ia + 2mip + iy — iy oo for some integer-valued ¢ and
real-valued v. It is easily verified that the eigenvectors of £, and L} corresponding to
the eigenvalue €'\ Re(z) are e“i'VhRe(z) and ei”'uRe(z). Observe that if f is a nonlattice
function then case (a) can occur only if the constant « is irrational. Consequently, if f is
nonlattice then Ag(,) is in the spectrum of £, iff I m(z) = 0.
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In applying Theorem B the following result is useful.

LEMMA 7.1: One of the following three cases obtains.
(a) f is cohomologous to a constant function.

(b) There do not ezist a € R,b > 0 such that b= f —a is cohomologous to an integer-valued
function.

(c) There exists a mazimal b > O such that for some a,b~'f — a is cohomologous to an
integer-valued function. Moreover, if b.,a. € R are such that b1 f — a, is cohomolo-
gous to an integer-valued function, then b, |b.

PROOF: Let G be the additive subgroup of R generated by {S,f(z) — S.f(y) : 0"z =
T,0"y = y,m = 1,2,...}. If f is cohomologous to a constant then G = {0}. If f is
cohomologous to ¢ — ¢, where ¢ is a constant and ¢ takes values in a discrete subgroup
H of R, then G is a subgroup of H, hence discrete. Therefore, if neither (a) nor (b) obtains
then G is a nontrivial discrete subgroup of R. By rescaling f we may assume that G = Z.

There exists a constant ¢ € [0,1) such that f —¢ is cohomologous to a function valued
in Z. To see this, observe that for each m = 1,2,... there exists ¢,, € [0,1) such that
Smif(z) — mley, € Z for all £ € ¥ such that or"":c = z. There exists a subsequence of ¢,
converging to some ¢ € [0,1]; by construction, S, f(z) — né € Z whenever o™z = z,n =

1,2,... . By Prop. 2 of [23] ((¢) = (447)), f — ¢ is cohomologous to an integer-valued
function. If € = 1, it may be replaced by ¢ =0
This proves that if neither (@) nor (b) holds, then (c) must. O

In the remainder of this section we shall study the operator-valued function z —

(I- L)L

The operator-valued function z — L, is an entire, holomorphic function of z; its
derivative is given by

(7.1) [(d/dz)L:] g(z) = Z F(@)e*?¥) g(y)

Therefore, if (I — £,)™? exists (as a bounded, linear operator on 7,) for all z in some open
D c C then 2 — (I — L) ! is holomorphic in D. Now Prop. 2.1 implies that X, < 1
for all z < —§, and Theorem B implies that the spectral radius of £, is < )\ Re(z) for all
z € C; consequently, if Re(z) < —§ then the spectral radius of £, is less than 1. This
proves

PROPOSITION 7.1: z— (I — L)™' is holomorphic in the half-plane Re(z) < —6.

Next we shall investigate the singularity of z — (I — £,)~! at the point z = —6.
Theorem A and standard results in regular perturbation theory ([8], sec. 7.1, 4.3) imply
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that the functions 2 — A,z — h;, and 2 — v, extend to holomorphic functions in a
neighborhood N of the real line, such that

(7.2) | A, #0,
Loh, = Ak,
ﬁ:Vz = AzVz,
Volhs) = vo(hy) =1 -

for z € N. (The function z — v, takes values in the dual space 7, , not the space of Borel
measures; it is holomorphic in the weak sense that for each g € 7, the map z — v,(g) is
holomorphic.)

Define operators £, and L for z € N by

(7'3) ﬂ;g = AE:I/z:(g)h'z',g € fp’

(7.4) L)=1°L,— L.

By the results of the preceding paragraph, 2 — L/, and z — L/ are holomorphic, operator-
valued functions in N. For each z € N, L), maps 7, onto the one-dimensional subspace

generated by h;, whereas L)) maps 7, onto the complementary subspace {g € 7, : v,(g) =
0}. Therefore,

(7.5) L7 = (L))" +(LD"

for n = 1,2,.... Notice that A;1 L’ is idempotent, so (£.)™g = A" v,(g)h,.

Theorem A (sec. 1) implies that for z € R the spectral radius of £ is less than X,.
Since z — L is analytic, the spectral radius of £ is a lower semicontinuous function of z.
Consequently, there is a neighborhood U of z = —§ such that the spectral radius of £/ is
less than 1 — 2¢ for all 2 € U N N, for some € > 0. It now follows from the spectral radius
formula that for some n, > 1,[|(LY)"]| < (1 —€)" for alln > n, and 2 € U N N. Hence,

(7.6) z— Y (LY~ =T —-L)™

n=0
is a holomorphic, operator-valued function of z € U N N. Together with (7.3) - (7.5), this
proves

PROPOSITION 7.2: The function z — (I — L,)™! has a simple pole at z = —6. In
particular, for each g € ¥,

(7.7) (I- ﬁz)—lg =(1— )‘z)_le(g)hz + (I — EZ)_IQ
Jor z in some punctured neighborhood of z = —46.
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The regularity properties of z — (I — £,) ™! on the rest of the line Re(z) = —§ depend
on which case of Lemma 7.1 obtains. The case where f is cohomologous to a constant
we shall ignore. Suppose there do not exist constants a € R,b > 0, such that b=1f — a is
cohomologous to an integer-valued function. Then by Theorem B the spectral radius of £,
is less than Age(z) if Im(2z) # 0. Since the spectral radius of L; is lower semicontinuous in
z, it follows that for each z, on the line Re(2) = —§ except z. = —§ there is a neighborhood
of z, in which z — (I — £,)™! is holomorphic.

Suppose next that f is nonlattice but that b~ f — a is cohomologous to an integer-
valued function. Assume that b > 0 is maximal in the sense of Lemma 7.1(¢c). Then
a is irrational, so' by Theorem B, Ag.(;) is in the spectrum of L, iff Im(z) = 0. Con-
sequently, z — (I — £,)7! is holomorphlc in a neighborhood of every z on the line
Re(z) = —6 except z = —§. This proves

PROPOSITION 7.3: If f is nonlattice then the function z — (I — L)~ is holomorphic
in a neighborhood of every z on the line Re(z) = —6 except z = —6.

Next, suppose that f is integer-valued and that f is not cohomologous to any function
valued in a proper subgroup of the integers. Then £, is 2wi-periodic in z, so the pole at
z = —6 is repeated at z = —6 + 2m¢m, m € Z. Theorem B implies that 1 = A_; is not in
the spectrum of £, when Re(z) = —§ and Im(z)/27 is not an integer. Hence,

PROPOSITION 7.4: If f is integer-valued but not cohomologous to any function valued
in a proper subgroup of the integers then z — (I — L)~ is 2mi-periodic, and holomorphic
at every z on Re(z) = —6 such that Im(z)/27 is not an integer.

8. Fourier Analysis of the Renewal Equation

In this section we shall analyze the asymptotic behavior of N(a,z) asa — oo by
means of its Fourier transform. We begin with the lattice case, as it is easier.

PROOF of Theorem 2: Suppose that f is an integer-valued function but that f is not
cohomologous to a function taking values in a proper subgroup of the integers. In this
case N(a,z) is a step function in e with dlscontmultles only at integer values of a. Recall
that N(a,z) = 0 for @ << 0 and that N(a,z) = 0(e“?) for some C < oo as a — co.(see
Lemma 8.1); consequently, the Fourier-Laplace transform
(8.1) N(z,z) = Z e"*N(n, z)
n=—oo

is well-defined and analytic for z in a half-plane Re z < —C. The renewal equation (2.2)
transforms as )

N(z,2) = L:N(2,2) + g(2)/(1 — ¢°)
for Re(z) < 0. By Proposition 7.1 (I — £,) ! is defined and holomorphic in the half-plane
Re(z) < —6, hence in the half-plane Re(z) < min (-8, —C) the functional equation

N(z,2) = (1~ €)1 (I - L) "g(2)
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holds. Since the right hand side of this equation is analytic in Re(z) < —6, N(z,z) ad-
mits an extension to Re(z) < —6. Since the coefficients N(n,z) in the series (8.1) are
nonnegative, it follows that the series converges uniformly and absolutely for Re(z) < —6.

According to Propositions 7.2 and 7.4, (I — £,)"1g(z) has an isolated singularity at
z = —6 but is regular (holomorphic) at each z = —§ + 40,0 < |#| < 7. The singularity
at z = —6 is (1 — A;) " 'v,(g)hz(z); since v;(g) and h,(z) are continuous at z = —6, the
singularity is a simple pole with residue

v_s(glh-s(z) _ [ gdv_s N
Caai = (s ) heste)

It follows that N(z,z) is meromorphic in {2 : 0 < Im(z2) < m, Re(z) < —6 + €} for some &
> 0, and that the only singularity in this region is a simple pole at z = —§ with residue
C(z), where C(z) is given by (2.7). Consequently,

oo

F(z,z) £ Z 2"{e"™ N(n,z) — C(z)}

n=0

is holomorphic in {|z| < 1 + 2¢} for some € > 0; F is also jointly continuous in z and z.
Cauchy’s integral formula now implies that

e " N(n,z) — C(z) = (Zﬂi)_I/ F(z,z)2~ " ldz
|z}=14¢
=0((1+¢)7")
as n — oo, uniformly for £ € X. This proves (2.6). O

PROOF of Theorem 3: Assume that
f=p+r—n00

where ¢ is an integer-valued function, and that f (hence also ) is not cohomologous to
any function valued in a proper subgroup of the integers. Note that since S,,f > 0 for
some m, there exists m’ such that Sy > 0. Recall that A, = A,y = A, for all z € R
hence also for those z € C where ), is defined by analytic continuation.

Define
N*(a,z) = N(a — (=), z)

for a € R,z € . The renewal equation (2.2) for N(a,z) may be rewritten as

N*(e,z) = Y N*(a—0(y),y) +9(z)1{a > 7(2)}.

cy==zx
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Fix 8 € [0,1), and define the Fourier-Laplace transform

Ng(z,z)z Z e"’N*(n+ B,z).

n=--0o00

The renewal equation implies that
Ni(z,2) = (1 — )71 — L) " ge2 TP (2)

for Re(z) < —6, as in the proof of Theorem 2. We may remove the singularity at z = —§
as before to obtain

(8.2) N*(n+B,z) ~ C(,B,.'z:)e’“S

as n — oo, uniformly for £ € . This also holds uniformly for 8 € [0,1), because the
functions g(z) exp {z[v(z) + 1 — B]},8 € [0,1), are bounded in 7,. Now (8.2) clearly
implies (2.8). O

The nonlattice case is more complicated because it requires the analysis of a Fourier
integral rather than a Fourier series. The Fourier (integral) transform of N(a,z) once
again involves (I — £,)~!. Now Proposition 7.3 states that (I — £,)~?! is holomorphic at
every z such that Re(z) = —6, Im(z) # 0; however, the operator norm of (I — £,)~! may
be unbounded as |Im(z)| — oo on the line Re(z) = —§. Thus, the Fourier transform of
¢~ N(a, z) may behave wildly at co. Circumventing this problem requires an unsmooth-
ing argument, and this in turn requires an a priori bound on the growth of the renewal
function.

LEMMA 8.1: There exists constants C, a. < 0o, depending only on f, such that for every
g € ¥, the function N(a,z) defined by (2.1) satisfies

(8.3) N(a,z) =0V a< a,,

(8.4 N(a,2) < Cllglleo e*.

PROOF: Recall that there is an n > 1 such that S,f > € > Oon X. Since f,S2f,...,
Sp—1f are continuous and ¥ is compact, there exists a. € (—o0,0) such that

. i ; " 3.
(8.5) OS];pSlS_IS,f(z) >a,Vz€E

If ¢ < a. then (8.5) implies that there are no nonzero terms in the series (2.1) defining
N(a, z); thus (8.3).

Define G(a,z) = e *°N(a,z)/h_s¢(z). Since h_sy is bounded away from 0 and oo,
it suffices to prove that G(a,z) < C||g||co for a suitable C' < co.
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The renewal equation (2.2) may be rewritten as

(8.6) Ga,2) = Y Gla— Suf(y),y)e 5O (h_s(y)/h_ss(z))

yioty=z

FeO Y Y u)(te > S} hoss(a)).

1:=‘-0 O"' y==zx

Observe that
(8.7) Y e IW (h_gi(y)/hoss(x))

. (LZs5 h_ss)(z)/h_ss(z)
=1

3

since h_sy is the eigenfunction of £_g s corresponding to the eigenvalue A_s5; = 1. If n is
sufficiently large that S, f(y) > e > 0for all y € &, and if

G(a)= sup G(d,z),
a'<La,ze8

then it follows from (8.6) and (8.7) that for all a € R,

(8.8) G(a) < Gla—e) +C'||glloo 72
where .
r __ 1 .
C' = };0 ¢/ min hss(y) < oo.

Now (8.8) implies that G(a) < C||g||o for a suitable constant C < oo, proving (84). O

To prove that e"®*N(a,z) — C (z) we will show that it suffices to prove that a
suitably smoothed version of e=%° N(a, z) converges to C(z), then accomplish the latter
by Fourier analysis. For the smoothing we will use a continuous probability density k(t) =
k(—t) whose Fourier transform k(:6) = [ e*®*k(t)dt = k(—18) is nonnegative, C*, and has
compact support. Let P be the set of all such probability densities. (NOTE: P # @. To
see this let k = l?:l * l::l, where k; is an even, C'®°, compactly supported function, suitably
normalized. Then k € P.)

LEMMA 8.2: To prove Theorem 1 it suffices to prove that for each k € P
(o0}
(8.9) lim k(a —t)e **N(t,z)dt = C(z)

—
a—oo J_ o

uniformly for z € X.
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PROOF: Fix € > 0 (small). Choose k € P such that [°_k(t)dt > 1 — ¢ (such a k
exists because if k(t) € P then ck(ct) € P for all ¢ > 0). By Lemma 8.1, there exists
C < oo such that e %*N(t,z) < C for all t € R; consequently, if (8.9) holds then for
sufficiently large ¢ and all z € &

at-¢e
| / k(a —t)e P'N(t,z)dt — C(z)| < C'e,
a—e
for a suitable C’/ < oo independent of z. Since N (t,z) is nondecreasing in t,
a+t-2¢
/ K(a + e — 1)e SN (¢, 2)dt > (1 — €)e2¢ e=**N (a, 2)
a

and .
/ k(a+ & — £)e SN (t, 5)dt < €254 N (a, 2).
a—2¢e

Letting € — 0 shows that e"%*N(a, z) — C(z) uniformly for z € & as a — oo. O

PROOF of Theorem 1: By Lemma 8.2 it suffices to prove (8.9) for arbitrary k € P. Recall
that N(a,-) =0 for a << 0 and that e "N (a, z) is uniformly bounded for a € R,z € X.
Hence, to prove (8.9) it suffices to show that

(8.10) lim / " k(a—t) + k(—a £)}e N (t, z)dt = C(q)

a—0o0o

uniformly for z € X.

Define the Fourier-Laplace transform

(8.11) F(z,z) = /00 e**~% N (a, z)da.

—0o0

As in the proof of Theorem 1, the renewal equation (2.2) and the analyticity of z —
(I - £2)7! in the half-plane Re(z) < —§ imply that

F(z,2) = —(I - Lz—s5)""9(z)/(2 — 6)

for Re(z) < O (observe that Lemma 8.1 implies that the integral (8.11) converges abso-
lutely and uniformly in each half-plane Re(z) < —e < 0). By Proposition 7.3, F(z,z) is
holomorphic at every z on the line Re(z) = 0 except z = 0. By Proposition 7.2, F(z,z)
has a simple pole at z = 0 with residue —C/(z), where C(z) is given by (2.5). Therefore,

F(z,z) = —C(z)/z + G(z,z),
where G(z,z) is holomorphic in a region containing the closed half-plane Re(z) > 0.
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The monotone convergence theorem implies that

/ " {k(a— ) + k(=a — ) }e~S N (1, 2)de

~lim / {k(a—2) + k(~a — ) }e=C+N (2, ).

For each s > 0,e~(6+e)t )y (t,z) is a nonnegative, integrable function (relative to dt), by
Lemma 8.1. Furthermore, k(t) is the (inverse) Fourier transform of a nonnegative, inte-

grable function k(:6). Consequently, the Parseval relation ([3], ch. XV, eq. (3.2)) implies
that

(8.12) /oo {k(a—1t) + k(—a —t)}e~C+)t N (2, 1)dt
= /00 2 cos(0a)k(10) F(—s + 10, z)dl /2.

Since the left hand side is real, we may ignore the imaginary part of the integrand on the
right hand side. Using the representation (8.12) together with the fact that k(29) is real
we obtain

/00 {k(a —t) + k(—a —t)}e=C+)t N(¢,2) dt

:/00 2 cos(a0)l}(z'0)0($)8(82 +06%)71 do/2n

—00

[o.0]
+/ 2 cos(af)k(i0) Re G(-s +10,z) df/2x

—C(z) +/ cos(ad)k(if) Re G(ib, z) do/x

-— 00

as s | 0. (The measures 77 1s(s2 + 6%)df converge weakly to the delta function at 0 as
s 10, and k£(0) =1 because k is a probability density.)

It remains to show that the last integral converges to zero as ¢ — 0o, uniformly
for z € T. Recall that £(0) has compact support, say [—A, A], and is C, also that
G (70, ) is analytic in a neighborhood of [—A, A] and continuous in z. The Cauchy integral
formula for derivatives implies that (d/d8)G(38, ) is uniformly continuous, hence bounded
on [—A4,A] x X. Integrating by parts gives

A
/ cos(ad)k(i0) Re G(:0,z) df
—A
A A
=— a'l-/ sin(af)(d/d8){k(:i0) Re G (16,z)} do;
—A
clearly, this converges to zero as ¢ — oo, uniformly for z € X. This proves (8.10). (I
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Part II. Applications to Discrete Groups

9. Symbolic Dynamics for Schottky Groups

Let Q1,Q-1,Q2,Q-2...,Qk, Q_x be 2k (k > 2) mutually exterior (nonintersecting)
circles in the plane, and for each j = 1,2,...,k let T; be a linear fractional transfor-
mation mapping the exterior of @_; onto the mterlor of @;. The group I' generated by
T1,T3,...,Tk is called a Schottky Group ([4], [15]). The region R exterior to all 2k circles
is a fundamental region for the group.

The Schottky group I' enjoys a very simple and transparent symbolic dynamics, be-

cause it is a free group on the k generators Ty1,T3,...,Tx. Consider the set ¥, of finite
sequences from the alphabet {Ty,T; !, Ty, 75}, ..., T, 1 with all transitions allowed ex-
cept T;T; ! and T, I7v,d = 1,...,k. There is a natural 1 — 1 correspondence between

I' and E* in whlch the group 1dentity corresponds to the empty sequence ¢ and the shift
0.« corresponds to a multiplication by one of the symbols Til. Henceforth we will not
always distinguish between T and Z,; z;z,...z, may denote a sequence in X, or the
corresponding element of T'.

To complete the symbolic dynamics we will extend the correspondence just described
to a map from the set X of infinite sequences (with allowable transitions) to the limit
set Aof I'. To accomplish this we will show that for any z = T1Z3... € ¥ and any
z€ R, limy ,oo(z122...7,)(2) exists and is independent of z € R.

For each v = Tiil,z' =1,2,...,k, let D, be the open disc interior to Q~y = Quy; for
T1ZT2...Ty € N, — {&}, let

(9.1) D:clzg...zn = le:z:g:c:;...z,, =...=21.. --'En——lD:z:n-

Notice that

(9 2) Dzl Z2.e.Zpn4m C Dzl 2.y if m Z 1;

(9.3) Dsyog.z, N —D-Eiw'z---% = unless z; = z},i = 1,...,n;
(9 4) $1:L'2...$nR C Dzlz2---$n

(

compare with [7], sec. 5.2).

LEMMA 9.1: There ezist constants C < 00,0 < p < 1 such that for each z1z ...z, € T,
(9.5) diam (Dy, z,...z,) < Cp™.

The proof will be given at the end of the section.

It is now apparent from (9.2)-(9.5) that for each z = z1z5... € ¥ the regions
T1Z2... T, R shrink to a single point z € A as £ — oo, and that the induced map ¥ — A
is a homeomorphism. Furthermore, (9.5) implies that any Lipschitz continuous function
on A pulls back to a Holder continuous (%,) function on X.
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Consider now the shift 0 : £ — ; let F : A — A be the corresponding map on A.
Following Bowen [2] we will call F = Fp the Nielsen map for T (cf. [18]). Notice that for
z€ ANDy,;,

F(z) = T¥,,

so F is continuously differentiable and F’(z) # 0 at every z € A. Define

~

(9.6) f(2z) =log [F'(2)|,2z € A,

and let f : ¥ — R be the Holder continuous pullback of f . We will call f (or f) the
distortion function of T.

LEMMA 9.2: There exists n > 1 such that Sp [ s strictly positive on X.

The proof will be given at the end of the section.

Any measure on the sequence space ¥ induces a corresponding measure on the limit
set A (and vice-versa). Bowen [2] proved that the Gibbs measure pb—s5 on X (here § > 0
is as in Prop. 2.1) induces a measure on A that is equivalent to §-dimensional Hausdorff
measure on A, and that the §-dimensional Hausdorff measure of A is finite and strictly
positive. Series [27] subsequently proved that the measure induced by v_sy is actually a
scalar multiple of the §-dimensional Hausdorff measure on A.

PROOF of Lemmas 9.1-9.2: The group I' is discontinuous at oo, so every element vyeT

has an isometric circle Cy, and for each € > 0 only finitely many C, have radii larger than

e (cf. [15], IV. 1. D). Moreover, for each 4 # identity,~y(co) lies in the interior of Cy-1.

Now (9.4) implies that (o) € D5, so it follows from (9.2) that all but finitely many of
k

the isometric circles Cy lie in |J (interior (Q;)U interior (Q—;).
j=1
Choose n sufficiently large that each isometric circle Crizo.2nsT1T2 ... Ty € Ly, lies
in interior (Q+;) for some j. Then for every sequence zj ..., of length n and every
*4, 7123 ... 2,Q4; C interior (C(zl.__zn)-l); but since z;z,...2,R C D., and each Q; C
dR, it follows that z; ...2,Q4; C D, . Hence C(z,...z,)-1 C Dz,. Thus, whenever TpTrt1
is an allowable transition (i-e., TnTpy1 7 id), 5% +1 lies in the exterior of Crizsuz, -

The derivative of a linear fractional transformation in absolute value is < 1 outside the
isometric circle. Consequently, there is an « < 1 such that for each sequence ryxsy...T, €
X, of length n the derivative of z; ...z, in absolute value is < aon (SIS Ti,. It follows
by an easy argument that

(9.7) max diam Dy, .. z,,.., < Co* k=1,2,... ,

T1Z2...Zkn+1E€ED.

for a suitable C' < co. The result (9.5) follows from (9.7).

Finally, consider the Nielsen map F. On ANDgz, g,...z,, FoFo...oF (n times) coincides

with (z1z2...2,)71 (cf. (9.6)), and maps A N Dy, 4,...z, into Uyzgmt D,. Consequently,
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the derivative of Fo Fo...oF in absolute value is > é > 1 on A. Lemma 9.2 now follows
from the definition of f. O

10. Symbolic Dynamics for Fuchsian Groups

Series [27] has developed “symbolic dynamics” for a large class of nonelementary,
finitely generated Fuchsian groups. In this section we give a resumé of her results.

A Fuchsian group is a discrete group I' of linear fractional transformations, each
mapping the unit disc D onto itself; it is nonelementary if its limit set A is infinite. A
nonelementary Fuchsian group is necessarily nonabelian. A group T is finitely generated
with generating set Ty if every element of T is a finite product of elements of I'y. Each
finite product of elements of T'g yielding the identity in T is called a relation; the set of
relations and their inverses is itself a free group.

A nonezceptional Fuchsian group is a nonelementary, finitely generated Fuchsian
group satisfying one of the following conditions:

(10.1) D/T is not compact;
(10.2) |To| > 5 and every nontrivial relation has length > 5;
(10.3) at least 3 of the generating relations have lengths > 7.

Series proved that if I' is a nonexceptional Fuchsian group then every element of T has a
canonical representation as a shortest word in the generators I'o, and that the rules govern-
ing these representations are of finite type. Consequently, there is a 1 — 1 correspondence
between T and %,, where X, is the set of finite sequences with admissible transitions from
some finite alphabet.

Assume henceforth that T' is a nonezceptional Fuchsian group with no parabolic ele-
ments. (A linear fractional transformation is called parabolic if it has only one fixed point.)
Series proved that the canonical bijection I' «» ¥, extends to a continuous map X — A,
which is onto and one-to-one except at a countable number of points where it is two to one.
(Here A is the limit set of T' and T the set of infinite sequences with the same transition
rules as %,.) If z € INT (D) is not a fixed point, then there exist C < 0o, p < 1 such that
whenever z,2' € ,,z; =z} V < n then

(10.4) dg(zz,2'2) < Cp™

(cf. [27], Prop. 4.2; dg is the Euclidean distanée). Consequently, if £ € ¥ then lim

n—oo
(z122...2,)(2) € A gives a continuous surjective map ¥ — A. The inequality (10.4) lifts
to X, and therefore Lipschitz continuous functions on A lift to Hélder continuous functions
on X.

The shift 0 : ¥ — ¥ induces a map F : A — A, which we will again call the Nielsen
map. This map is C? except (perhaps) at a finite set of points. Define

~

(10.5) f(z) =log |F'(2)|,z € A,
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and let f be the Holder continuous pullback to £. We will call f (or f) the distortion

function for T'. Series proved that there is an n > 1 such that S, f is strictly positive on
3.

Finally, let § > O be the unique real number such that A_; 5 = 1 (Prop. 2.1) and
Vg5 the corresponding eigenmeasure. Series proved that 6 is the Hausdorff dimension of
A, and that v_s; is a scalar multiple of the é-dimensional Hausdorff measure on A (cf.
also [22], [31]). She calls v_ss the “Patterson measure”.

11. The Geodesic Flow

Let T be a Schottky group. T may be regarded as a group of isometries of the
hyperbolic space H%+!, where d = 1 if I' is Fuchsian and d = 2 otherwise (H4+! is the
unit ball in R4*! with the Poincaré metric). Thus, H%*1/T is a Riemannian manifold
with the induced Poincaré metric. In this section we shall discuss the geodesic flow on
the unit tangent bundle T(H?*!/T), using the symbolic dynamics developed in sec. 9.
The restriction to Schottky groups is primarily for simplicity; the methods and results of
this section can almost certainly be generalized to the nonexceptional Fuchsian groups of
sec. 10 (cf. [28], [29]). Our methods can be traced back to Artin, Hedlund, and Morse (cf.
[28]). However, our main result, Theorem 8, seems not to have been noticed before.

For definiteness, let I be a Fuchsian Schottky group generated by Tlil, Tzil, ceey T,f:l
as in sec. 9. The region R inside the unit disc D but exterior to each of the circles
Q1,Q-1,...,Q_ is a fundamental polygon for I'. The images YR,~ € T are nonoverlap-
ping, and by Lemma 9.1 the Euclidean diameters of v, R converge to zero as n — oo for any
sequence 7y, of distinct elements of I'. Consequently, if 2,, 2/, € v, R for eachn = 1,2,...,
then lim 2, exists iff lim 2!, exists, in which case lim z,, = lim zl, € A. On the other hand,
if £ € A has the expansion z1z5... € I, then for any ~ the sequence (z1Z2...2,)YR of
polygons converges to the point z € A as n — oo.

Consider now the set of geodesics in H?; keep in mind that the geodesics on the
Riemann surface H2/T are in 1 : 1 correspondence with the geodesics in H? that enter
R (plus k additional geodesics corresponding to the 2k circles bounding R, which we will
ignore.) Each geodesic in H? is determined (up to a translation in time) by its endpoints
on the unit circle S1. Consider a geodesic (z,y) whose left and right endpoints z and y
are both in the limit set A; let z < zy25... € ¥ and y < y1y2... € £. In order that the
geodesic (z,y) enter R it is necessary and sufficient that z; # y;. Furthermore, if this is
the case then the geodesic passes through infinitely many images YR of R, in the following
order:

(11.1) voe — T1T2R — 2R — R — 1R — y192R — ...,

Conversely, if a geodesic in H? cuts through infinitely many 4R in the order specified
by (11.1) then the left and right endpoints of the geodesic are necessarily z and y, by the
arguments of the preceding paragraph.

Now let z,y € A,z =z123...,9y = y1Y2 ... . The condition that z; # y; is equivalent
to the condition that xl_lyl # id, i.e., that all transitions in the double-ended sequence
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...z;lxl_lylyg... are allowable. Let & denote the set of all double-ended sequences
with allowable transitions, and let o denote the forward shift on 3. Define g: ¥ —
(0,00) by setting g(...z5; 'z7 y1y2...) equal to the noneuclidean length of that segment
of the geodesic (z,y) lying in R. It follows routinely from Lemma 9.1 that g is Holder
continuous on X (see [28] for a similar argument). Observe that goo™(...z5 ]  y1y2...)
is the noneuclidean length of the segment of (z,y) lying in y1y2...ynR (if n > 0) or
T1Z2...z2, R (if n < 0).

(Figure 2 here)

Consider the geodesic flow on the unit tangent bundle T(H?2/T). The set F of points
in T(H?/T) whose orbits correspond to geodesics in H? with endpoints z,y both in A is
a closed subset of T(H?/T), since A is a closed subset of S'. Call the flow restricted to
F the restricted geodesic flow. What we have shown is that the restricted geodesic flow
has a representation as a suspension flow over a shift of finite type with Holder continuous
height function g (sec. 1).

THEOREM 8: The height function g is cohomologous to the distortion function f.

PROOF: {t suffices to show that for every n-periodic sequence ...z1z3...2,2123... 2y
...=Zin X,

(11.2) Snf(&) = Sag(Z)

(1], Th. 1.28). Let z = z172...2p21... and 2’ = z; 'z, ...z z; ..., and consider
the geodesic (z',z) in H%. The transformation ziz2...z, € T maps this geodesic onto
itself, mapping that segment in (212, ... Zxn+i) R onto the segment in (2125 ...2,)(z127 . ..
Tkn+i)R. Consequently, the corresponding geodesic on H?/T' is periodic, with period
Srng(Z). It follows that for any point z on (z',z) in H?, S,,g(%) is the length of the segment
(2, (z122...2,)2) of (¢/, ).

Choose z on (z',z) very near z (in the Euclidean metric). Near z the geodesic (z/, z)
looks like a line emanating from z perpendicular to S!, and the transformation zz» ...z,
looks like a homothety (expansion) with expansion rate

((—i‘%(xlxz . xn)(f))

Therefore, for z near z the noneuclidean distance from z to (z1z2 ...z, )z is approximately

— eSnf(z)

¢=2

eesnf(-") Zdt
A i
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Letting z — z, we obtain (11.2). U

Consider again the suspension flow over the shift (f),a) with height function g. If ¢
is nonlattice then the suspension flow is topologically mixing ([19], Sec. 5). Conversely,
if g is lattice then the suspension flow is not mixing for any invariant measure (if ¢ is
cohomologous to an integer-valued function then the flow only returns (approximately) to
its initial point at (approximately) integer times). It is known [24] that there exists an
invariant measure for the restricted geodesic flow that is mixing. (NOTE: this invariant
measure [24] is supported by the subset F of T(H?/T) carrying the restricted geodesic
flow.) Therefore,

COROLLARY 11.1: The distortion function f of a Fuchsian Schottky group is nonlat-

tice.

It follows that the suspension flow on f)g is topologically mixing (sec. 5). The peri-
odic orbits of the geodesic flow correspond to those of the suspension flow, and have the
same lengths. Consequently, (5.2) - (5.3) translate to corresponding statements about the
periodic orbits of the geodesic flow. In particular, if S is the measure on F corresponding
to the measure M (cf. (5.1)) on £, then

COROLLARY 11.2: For any € > 0 and any continuous G : F — R,

(11.3) # {r: (1) < a} ~ €* /aé,
# {7 : A7) < a,|7(G) — [ GdS| > ¢}
(11.4) 7 A(r) <a} — 0

NOTE: S coincides (up to a scalar factor) with Sullivan’s invariant measure [31] for the
restricted geodesic flow. (This is because S is an ergodic invariant measure that induces a
measure on the endpoints (z,y) at co of geodesics that is equivalent to v_s¢(dz)v_s(dy):)
Thus (11.4) implies that most closed geodesics are approximately distributed on T'(H? / I
according to the Sullivan measure.

Now let T' be a nonexceptional Fuchsian group without parabolic elements (sec. 10).
Then T' has a Schottky subgroup I'p. If the distortion function of I' were lattice then the
distortion function of 'y would also be lattice (this is easily proved by looking at elements
of Ar and Ar, that have periodic expansions). Therefore,

COROLLARY 11.3: The distortion function f of a nonexceptional Fuchsian group with
no parabolic elements 1s nonlattice.

The results about the distortion function we have just obtained may be recast in a
form that submerges the role of .the shift and the associated symbolic dynamics. Let I be
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any Kleinian group and A its limit set. A cocycle is a continuous function U : ' X A — R
satisfying
U(v172, ) = U(v1,722) + U(72, 2);

a coboundary is a cocycle of the form
U(4,5) = W (12) - W ()

for a suitable continuous W : A — R. Two cocyles are cohomologous if their difference is
a coboundary; a cocycle is lattice if it is cohomologous to a cocycle valued in a discrete
subgroup of R. Define the distortion cocycle U by

U(y, z) = log |v'(z)]-

If the distortion cocycle is lattice then the distortion function is also lattice (for I' of the
types considered in secs. 9-10). Therefore,

COROLLARY 11.4: If T contains a Schottky subgr;mp then the distortion cocyle is
nonlattice.

This is similar to [32], Th. 6, but seems more general. Sullivan’s approach is totally
different from ours, and does not seem to generalize easily.

Finally, observe that Theorem 8 and Corollary 11.1 hold also for non-Fuchsian Schot-

tky groups. The proofs are identical except that the geometry must be carried out in H3
instead of HZ.

12. Distribution of Noneuclidean Lattice Points and Fundamental Polygons

Let T' be a nonexceptional Fuchsian group with no parabolic elements, and let z €
H?(= D) be such that z is not a fixed point of any v € I'. Let dg = hyperbolic distance.

THEOREM 9: Asa — o0
(12.1) #{v€T: dy(0,42) <a} ~ Ce*

for a suitable constant C € (0,00). Moreover, if P® is the uniform probability distribution
on {yz: dg(0,72) <a,y €T} then as a — ©

(12.2) P® 2, Patterson measure.

Recall that the Patterson measure is the normalized §-dimensional Hausdorff measure
Hi on the limit set A = Ap. The statement (12.2) means that for any continuous function
g on the closed unit disc D

(12.3) / gdP® —» / gdHj.
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The result (12.1) is a special case of the principal result of [14] (see also [17]), which
states that (12.1) holds for all finitely generated groups, gives a formula for the constant C,
and provides an error estimate. Our method may generalize to other groups, but probably
it cannot be adapted to give the precise error estimates of [14]. On the other hand, it
seems unlikely that the related Theorems 10-11 below can be obtained by the methods
of [14] (or [6], [21]).

For z =z1z3...2, € £,(=T),z # ¢, define
fu(z) =du (0, (z122...20)2) — du (0, (z223. .. 2,)2);

for £ € X define f.(z) = f(z), where f is the distortion function of T.

LEMMA 12.1: f, € F,(ZUX,) for some 0 < p < 1.

PROOF: Let v be a linear fractional transformation mapping the unit disc D onto itself.
A simple computation shows that

d (0, w) — dgg (0, yw)

—Io dE('yw,Sl)
— 8 dE(w,Sl)

= log [¥'(w)| + o(dg{w,S')),w € D

) + o(dg(w, ')

(du,dg are the hyperbolic and Euclidean distances on D and S! is the unit circle). Now

let z € D = H? such that 2 is not a fixed pointofany y €T; let z = zyz,...2, € 8,2’ =

T1%5... 2, € L, and 2" = 2z ... € £ = A such that z; = z, =zl for i = 1,2... k.

By (10.4),
dp(zz,7'2) < Cp*,

dp(zz,2") < Cp*,
de(z'z,z") < Cp*
(see also Lemma 9.1 for Schottky groups). Hence, for a suitable 0 < C’ < oo,

|fo(2) = £.(=")] < C'6",
|fu(2) = ful=")] < C'6". O

PROOF of Theorem 9: (12.1) follows immediately from Theorem 4, Corollary 11.3, and
Lemma 12.1. In fact, Theorem 4 implies that for any sequence Y=Y1Y2...Yn € X,

(12.4)  # {z122...2m € T, : dy(0,z12;.. Zmz) < a,zi =y; ¥V i< n}~ C(y)e*

where
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vosiy) =v_sp{z=z122... €T : Z;=y; V 1< n}.

Now the cylindersets {z€ L : z; =y; V i< n} generate the Borel o-algebra on ¥ = A,
and v_sys is the Patterson measure Hi on A. Consequently, (12.4) implies that for any
angular sector

A={re’’: 1-e<r<1,0,<0<0,},

lim P%(A) = H{(A).

The result (12.3), hence (12.2), follows by a routine approximation argument. O

Now let T' be a Schottky group and let z by any point of discontinuity, i.e., z €
CU {oo} — A.

THEOREM 10: Ase — 0
#{v€T: dg(yz,A) > e} ~Ce*

for a suitable constant C € (0, o). If P s the uniform probability distribution on {vz:
de(v2,A) > &,y €T} then as € — oo

D
P® — Patterson measure.

There is a similar result for nonexceptional Fuchsian groups without parabolic ele-
ments and z € S — A. Undoubtedly it holds in even greater generality.

The proof of Theorem 10 is virtually the same as that of Theorem 9; this time we use

the function d(( )2, A)
_ E\\Z2Z3...%y)2,
f*(.’B) = log <dE((x1$2 cee zn)zaA))

for z = z,2;... 2, € I, fu(z) = f() for z € £. In proving the analogue of Lemma 12.1
one must use (9.5) in place of (10.4).

Finally we consider the polygons in a noneuclidean tessellation. For simplicity we
consider only Schottky groups. Let R be the natural fundamental region, i.e., that part of
C U {oo} exterior to each of the circles Q1,Q_1,...,Q_.

THEOREM 11: Ase — o
(12.5) # {v€Tl: Area (YR) > ¢} ~ Ce~%/?
Jor a suitable constant C € (0, c0).

NOTE: Area means euclidean area. It doesn’t matter whether the Euclidean area for the
sphere S? = C U {oo} or the plane C is used.
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PROOF: For z = z1z;...2, € L,,z # &, define

folz) = 1 log (Area (z2z3.. .xn}Z))

T2 Area (z1z2...7,R)

and for z € ¥ define fi(zr) = f(z) = distortion function. We must show that f, €
F(Z U X,) for some p € (0,1); (12.5) will then follow from Theorem 4 and Corollary 11.1.

Letz=z1z5... € E= A2’ =iz} ...z, € B, =T,2" = 2zl ...2" € I, such that
z; =z} =z for i = 1,2,...,k. Then each of z,z'R, 2" R is contained in the disc Dyiv,..np
(see (9.4)) which by Lemma 9.1 has diameter < Cp*. Now

Area (z122...z,R) = // [—;;xl(z)lz dm(z),
R

T2Z3...Tp

. d
~ Area (z)2} vz R) = // !g;xi(z)lz dm(z),
z

Ly !
0ZTgezh R

where m denotes Lebesgue measure. The diameters of z223...2,R and zhz}...z! R are
< Cp*-1, and ((—id;)zl is Lipschitz on Dg,;,.. 5, (since Dy, ., .. ., lies outside the isometric
circle of z,; see the proof of Lemmas 9.1-9.2). Consequently,

|fe(z) ~ fu(2)| < C'pF,
|Fu(z) — fu(2")| < C'p*

for some C’ < oo. This proves that f. € %,(Z U I,). O

13. Packing and Covering Functions of the Limit Set

In this section we shall describe a more elaborate application of the renewal theory,
this to the geometry of the limit set A. Let F be a finite set of points in the plane. Say
that F is an e-covering of A if every point of A is within € of some point of F'; say that F
is an e-packing of A if F C A and no two points of F are within € of each other. Define
the covering function N(c) of A to be the minimum cardinality of an e-covering of A, and
define the packing function M(e) of A to be the maximum cardinality of an e-packing of
A. (NOTE: In this section the only distance function considered is the Euclidean distance
on R? =C.)

THEOREM 12: If A is the limit set of a Schottky group or a nonezceptional Fuchsian
group without parabolic elements then as € — 0

(13.1) N(e) ~Ce~?,
(13.2) M(e) ~Cle™®

for suitable constants C,C’ € (0, c0).
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The functions N(g) and M(e) are used to define dimensional quantities usually called
the metric entropy and capacity (better terminology might be covering dimension and

packing dimension):
log N
metric entropy = lim (-—-—g—(e-)-) ,

e—0 \ loge™!
log M

provided these limits exist [9]. Theorem 12 shows that the Hausdorff dimension, metric
entropy, and capacity of A are all equal. This is apparently not true for limit sets of discrete
groups with parabolic elements [33].

It is natural to ask about the distribution of points in an economical e-covering (or
an e-packing). For ¢ > 0 let F, be an e-covering of A of minimum cardinality and let P®
be the uniform probability measure on F..

THEOREM 13: If A is the limit set of a Schottky group or a nonezceptional Fuchsian
group without parabolic elements then as € — 0

(13.3) P* -2, Patterson measure.

In other words, if g : C — R is any bounded, continuous function then as € — 0

/gdPe —+/gdﬂi

where H} is the Patterson measure (normalized é-dimensional Hausdorff measure on A).
There is a similar theorem for maximal e-packings.

The key to Theorems 12-13 is the approximate local self-similarity of A. Let J be the
intersection of A with a small disc, and let F : A — A be the Nielsen map (sec. 9, 10). Since
F is conformal, F acts on J approximately as a homothety; consequently, any e-covering
of J is mapped by F to an ep-covering of F(J) for a suitable p > 0. (NOTE: for the
limit set of a semigroup of contractive homotheties the analogues of Theorems 12-13 are
simpler; see [13].)

In proving Theorems 12-13 we shall, for ease of exposition, only consider Schottky
groups; the modifications needed for Fuchsian groups are minor. Furthermore, the proofs
of (13.1) and (13.2) are nearly identical, so we shall only discuss (13.1).

We shall begin by modifying the symbolic dynamics constructed in sec. 9. Let I' be
a Schottky group generated by Ty, T, ..., Tk, as in sec. 9; recall that I' may be identified
with the set ¥, of finite admissible sequences from T'y = {T},T, 1Ty, .., T, 1}, and that
the limit set A may be identified with the set X of infinite admissible sequences. Let
T,,r > 1, be the set of all sequences z;z2...z, € X, of length r, and let X7(X7) be the
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set of infinite (finite) admissible sequences from T',. (Admissible transitions are defined as

follows: if
y=2z122...2, €Ty,

/ !’ 0 ’
Yy =x125...2, €T,

then yy' is admissible iff z,z| # identity.) There is a natural homeomorphism ¥ — X7
given by

(134) T1Z9... — ($1$2 e .’E,-) (IB,-+1.'B,-+2 e zg,) cee .

Thus, for each r > 1 the limit set A may be identified with X", so there are infinitely many
choices of “symbolic dynamics.”

Recall from the proof of Lemmas 9.1-9.2 that there exist 0 < o« < 1 and r > 1 such
that for each z1z5 ...z, € T, the derivative of the function (z1z3...z,) in absolute value
is < aon U R D Fix such an r; henceforth we will only use the sequence spaces
27, 3T, For nota.tlonal convenience we will drop the superscript r and refer to these spaces
as 2 Y«. The shift on ¥ U X, will be denoted by o,. All entries z;, y;, z;, w; occurring in
sequences, either finite or infinite, are henceforth from the alphabet T',.

(NOTE: The space X, of finite sequences from T, can no longer be identified with T,
or even a subgroup of I'. This will not matter.)

Consider now the shift o : ¥ — I; the corresponding map on A is F(), where F is
the Nielsen map defined in sec. 9. Define

7 (2) = log |(F()(2)], 2 € A,
and let f : ¥ — R be the pullback of f (") to ¥. Because of our choice of T,
(13.5) flz) >0 Vzek

(see the proof of Lemma 9.1).

LEMMA 13.1: The function f is nonlattice, and the unique § > O such that \_ —5f = 1
(c¢f. (2.8)) is the same & as for the distortion function of T.

PROOF: For this proof let g denote the distortion function of I' (cf. Sec. 9). By construc-
tion, the pullback of f to the original sequence space (via the map (13.4)) coincides with
Srg, and the Perron-Frobenius operator L,s pulls back to L7,. Consequently, A,y = Azg

The statement about é§ follows immediately. That f is nonlattme follows from the fact
that g is nonlattice (Corollary 11.1) and Theorem B (sec. 7), together with the spectral
radius formula. U

Let D3, 4,..5,,%1%2...Z, € X, be the discs defined by (9.1). (This is a subset of
the system of disks defined by (9.1), because z; € T',; hence, (9.2)-(9.5) still hold.) Define
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functions f;,fo : T U X, — R by

fi(z) = f(z),z € &,

. d _ —_
fi(z1z2...2,) = inf {logIE:z:1 1(z)] : 2€ Dz 45,2,

d _
fa(z1z2 ... z,) = sup{log [:i;:cl Y2)|: 2€Daymy.zn }s

fi(€) =o0.

LEMMA 13.2: The functions fifo satisfy

(13.6) fi,f2€ F(ZUL,)

(13.7) 0< fi(z) < fo(zr) V z€XUZ,,z#¢,

(13.8)  fi(z1z2...7n) < fi(z1Z2.. . ZpZpyy .. Tnij) YV Ti1Ta...Tpyj € T,
(18.9)  fa(ziza...zn) > folz1Z2.. . TnZpyy... Tnyj) V T1Zp...ZTpi; € ..

PROOF: (13.8)-(13.9) follows from (9.2). The positivity of f; follows from our choice of

r. The Hélder continuity of fi, f2 follows from (9.5). O
Define
(13.10) Tp={z€l.: z=z122...2,},m=1,2...,

i.e., Xy, is the set of all sequences of length m with allowable transitions. Define
(13.11) Oy, = st;}c)) max{Sy, f2(z) — Snf1(z): € Zpim}.
n—
[0
Observe that a,, < ) (var;f; + var; f1), so by (13.6)
m

(13.12) . Oy — 0 as m — 00.

LEMMA 13.3: Let ¢ = z1Z2...Tpym € Zpim where nym > 1. For any 21,2z, €
D

Tn41Zn+20Tntm?

eSnfl (:c) < dist (21, 22)
— dist ((z1Z2...%0)21, (ZT1Z2 ... Tp)22)
< eSan(z).
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Here z;z3 ...z, denotes both a sequence in £, and an element of the group I'. To prove
Lemma 13.3 it suffices, by induction, to consider the case n = 1; for n = 1, the result
follows from elementary calculus.

LEMMA 13.4: For any z = z1z5... Tptm € Lptm,n,m > 1,

e—Snfz(Z) diam (Dzn+1...zn+m)
S diam (D:cl:l:g...zn+m)
<e~5=81(2) diam (D

ZntleeZn4m ) *
This is a straightforward consequence of Lemma 13.3.
LEMMA 13.5: There ezists C < oo with the following property: if D is any collection of

pairwise disjoint discs from the set {Dzy2y..2, ¢ T1ZT2...Ty € 5.} such that each disc in
D has diameter > Ce, then the distance between any two distinct discs in D is > ¢.

NOTE: The constant C does not depend on ¢.

PROOF: Consider a pair of disjoint discs whose distance is < €. Then by (9.2)-(9.3) these
discs are contained in discs Dy, 4.2, 2, +1 )D:cl:zz...:c,.z'n ™ whose distance is < €. It suffices
to show that diam D, Zoenznp < CE.

If dist (Dzlz2---znxn+1’Dzlzz---znz:,__'_l) < € then by Lemma 13.3

eSn—1f2 (21132-.-2211,)6 Z dist (‘Dznzn+l7D$uz:l+l)
On the other hand, Lemma 13.4 implies that

diam Dy, 4,...4,,, < e 5»/1 (2122--2041) Qiam D.,.,.

Consequently, since there are only finitely many D, +1 and Dy, oz, ., it suffices to show
that there is a constant C’ < oo such that

Sp—1f2(z) — Spfi1(z) < C

for every sequence z € I,. But this follows from (13.11)-(13.12). O

Let K be any compact subset of R?; define N (e, K) to be the minimum cardinality of
an e-covering of K (note: N(e) = N(e,A)). Clearly, N(g, K) is a nonincreasing, integer-
valued, right-continuous function of € > 0. If K is the union of pairwise disjoint, compact
sets K; such that dist (K, K;) > 2¢ if ¢ # j then N(g, K) = }_ N(e, K;).

(2 .
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Define subsets D" of ¥, as follows. Fix 4,, > 0 real and m > 1 integer. Let D™ be
the set of all z1z3... 2y m € X, such that

(13.13) Spfi(z1Z2. .. Tnym) > (loge™) — v,
(13.14) Sifi(z1zz... 2j4m) < (loge™) —4m V 5 <n.

Lemmas 13.4-13.5 and relation (13.12) imply that if 4,, is chosen sufficiently large then
for each pair of distinct sequences 2173 ... Zpim,Zizh ... o) m €D,

(13.15) dist (Dg, o,..

_D 1l 1
zizh...x!

+m) > 2e.

Tn+m?

Let £ = z1z,... € &; since Spf(z) — oo as n — oo and f; is a Holder continuous exten-
sion of f, there exists n < oo such that (13.13) holds. Consequently,

(13.16) A=JAsroaonims
Dm

\

where

Azl 22Ty — AN Dx1 T2, Ty *
It follows from (13.15)-(13.16) that

N(e) = N(,A) = Y N(&,Azy5.0000)-
Dm

Fix w = wiwy...wx € L, somek > 1, and let gw(z) = 1if z; = w; for¢ =
1,2,... ,k,gw(x) = 0 otherwise. As ¢ — 0 the sequences in D/* become longer; in par-
ticular, for all ¢ sufficiently small each sequence in D" has length > k. By the nesting
property (9.2)-(9.3),

Awle...wk - U Azlxz...zn.,.m :>
z€EDM: gy (z)=1
.(13-17) N(E, Aw; !.U2...1Uk) = Zgw(:c)N(s, Az1 zg...zn+m)-
by

Let z =2zyz2...Zp4m € DI*. If F is an e-covering of Az z,..2,,,, then by Lemma
13.3, (z122...2,) ' F is an € exp(Sy, f2(z))-covering of Azrir.zpyn- Similarly, if G is an
e exp(Sy, f1(z))-covering of Azpirozny,, then (z125...2,)G is an e-covering of A, .
Hence, by (13.17) and (13.11), for all € > 0 sufficiently small,

(13.18) Z Z gw(“’)JV(":‘BS'J1 (z)+am, Ay,yo.ym)
yEXm z€D, (y)
S N(Ea Aw1 wzmwk)

< Z Z QW(y)N(EeS"fl(z)aAyzyz---ym)

yezm zEDG (y)

Zot+m"
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where %, is defined by (13.10) and, for each y € £,,,,

De(y) ={zeD*: zppi=y; V i=12,...,m}.

The sums in (13.18) are nearly of the same form as the sums considered in Cor. 3.2.
Observe that by (13.8), if (13.13) holds then (13.14) is implied by

(13.19) Sn_1fi(z1z2 ... Zpim) < (loge™ ) — A3
on the other hand, if (13.14) holds then

(13.20) Spn—1f1(z122 ... Tnim) < (loge™) — vy + apm.
For y € X,,, define

Diy)={z=21%2...Znim €Ts: Tnpi=vy YV i <m and (13.13), (13.19) hold },
DZ'(y) = De(y) ~ D.(y)-

Then (13.18) implies that for all € > 0 sufficiently small,

(13.21) Z Z .'B)N EeSnfl ($)+am Aylyz.--ym)
YESm zED!(y)

S N(E, Aw1 w2...Wk)
< Z Z w (:I;)‘N'(&-:esnf1 (z)’ Ayl y2"-ym)

YELm zeDi(y)

+ Z Z gw(z)N(e_’ymaAylyg...ym)-

YESm zEDY (y)

Now each of the sums X;¢ps(y) is of the form .5, j=y Na((loge™!) — Yy, §) for a suitable
monotone G, where Ng(a,y) is defined by (3.10), hence Corollary 3.2 applies to each.
The next order of business is to show that if m is chosen very large (thus a,y, is small,
by (13.12)) then the ratio of the right and left sides of (13.21) is close to 1 as &€ — 0.

LEMMA 13.6: There exists C < oo such that for any m >1,y € £,,,0 <e <e(m),

(13.22) # D! (y) < e %(Ce™® M ayy,)

NOTE: #F = cardinality of F.
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PROOF: By (13.19)-(13.20), if z € D/ (y) then (loge™) — v < Sp—1fi(z) < (loge™?) —
Ym + ay. Consequently,

by Theorem 4, where C,(3) is given by (3.4). Since v,, > 0 and C,(#) is bounded for
y € Xy, (13.22) follows. O

LEMMA 13.7: There exists C < oo such that for each w = wiw,...wyg € DI

N(El Wi Wa...w ) -8
13.23 P 1% Pk! < Cey /e
( ) N(E2,Aw1w2 wk) ( 1/ 2)

Jor all 0 < gy < &5 < g(w).

PROOF: Recall that N(e,K) > 1 for ¢ > 0 and K # @ and that N(e, K) is nonincreas-
ing in €. Choose £(w) > 0 such that (13.21) holds for all 0 < & < e(w). Then for & < (w)

(13.24) Y Y sl

YE€Xm z€D!(y)
S N(E? AW1U)2...wk)

SN, { ). aw@+ > @)}

YEDm z€D!(y) z€DY (y)

where
N = ma'X{N(e m ylyz ym) Yiy2...Ym € Em}'

It follows from Corollary 3.1 that

(13.25) > gulz) ~Cye?

z€D](y)

for some 0 < Cy < co. Inequality (13.23) follows from (13.21), (13.24), (13.25),
and (13.5). ad

Consider again the double inequality (13.21). Fix y € X,,; define
Gy(t) = N(e"", Ay, ys..oym )
Gy(t) = N(e ™o Ay o .y) = Gyt + am).
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Then

(13-26) Z gw(37)J\].(":"?S"f1 (:c)’ Aylyg...ym) = Z NGg ((log 5_1) — Tms :‘7):

z€D;(v) gou =y
(13.27) Z 9w (z) N (ee5» 1 (2)+1m § Ayiyovm) Z Ng ; ((loge™) — Y, 7),
z€D{(y) youg=y

where Ng, Ng are defined by (3.10). By Corollary 3.2, as € — 0
o0
(13.28) Ne, ((Ioge™Y) = ymyy) ~ e=Fe=0n / G(t) F(y,dt),
0

(13.29) Ng. ((10ge™1) =, ) ~ =0 / Gt Fy, dt),
0

where F(y,t) is defined by (3.9).

Recall that for each y the measure F(y, dt) is supported by [0, ||f1]|co], that
fo (y, dt) is bounded above, and that for a suitable C > 0,

F(y,t) — F(y,0) > C(e’* —1) V ye S, UZ

(cf. (3.9)). Lemma 13.7 implies that there exists a constant C’ > 0 independent of m >
1 and y € &,,, such that

Gy(t)/Gy(0) > C’ V 0 <t < {|filloos
éy(t)/Gy(O) >’ V 0<t <||filloo-

Consequently, there exists a constant C” > 0 such that for each m > 1 and each Yy E X,
- ,
(13.30) / (Gy(6)/Gy(0)) F(y, dt) > C™,
0oo )
(13.31) / (Gy(6)/Gy(0)) Fly, dt) > C"s
0

since Gy(t)/Gy(0) and Gy(t)/Gy(0) are < 1fort > 0, it therefore follows from Corol-
- lary 3.3 that as m — oo (recall oy, — 0 as m — 00)

fo y(t)F y,dt)

fO y( )F(yadt)

(13.32)

uniformly for y € X,,

Now consider the term

(13.33) | Y gu(@N(ET™, Ay, )

zeD} (y)
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in (13.21). This is bounded above by (#D!(y))Gy(0). Hence, by (13.30) and Lemma 13.6,
for large m (small a,,) the ratio of (13.33) to

=8 e=8Im / G, () F(y, dt)
0 .

is small as € — 0, uniformly for y € ,,. Combining this with (13.32) and (13.26)-(13.29),
we find that for large m the ratio of the right and left sides of (13.21) is close to 1 for all
small € > 0. Letting m — oo we obtain

(13.34) N(e,Awywy..wy) ~ C(w)e™®

as € — 0.

Examination of (13.28)-(13.29) shows that the sequence w = wyws ... wy enters into
the asymptotic formula (13.34) only by way of the distribution functions F (y,t). It there-
fore follows from (3.9) and (3.4) that

C(w) = C/gwdl/_af
for some 0 < C < oo independent of w. Hence, (13.34) implies that as € — 0

N(e) =) N(e,Ap,) ~ Ce™®

and N(e, A )
E, e
]:;)z:;z 2k B /gwdv—ﬁf = HX(Awl...wk)-
This proves Theorems 12- 13. n

14. Random Walk and Hausdorff Measure

Recall that the Patterson measure (normalized §-dimensional Hausdorff measure on
A) is the probability measure induced by the measure v_; fon 3. The Gibbs measure
p—sf is equivalent to v_s¢, hence it induces a probability measure £(dz) on A equivalent
to the Patterson measure.

Let {p, : v € T'} be a probability distribution on T, i.e., py >0V yeTl and Zppy =
1. Let X;,X>,... be a sequence of independent, identically distributed random variables
with distribution {p}, i.e., X1, Xs,... are measurable I'-valued functions on some nor-
malized measure space ({1, 7, P) such that

P{X1=71;Xz =725+ ; X = Vn} = Pyy Pz + + - Prys-
For any discrete group T of the types considered in secs. 9-10 and any 2z € C — A,

Im X;X5...X,,2

n—roo
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exists and is independent of z. Define the exit measure n(dz) on A by

7](A) = P{ lim X1X2 ...an € A}
for Borel measurable A C A.

THEOREM 14: There exists a probability distribution {p,} on I' whose ezit measure
n=¢.

This follows from the construction in [12], which shows that any Gibbs measure has a
representation as an infinite concatenation of independent, identically distributed random
words of finite length from the alphabet {1,2,...£}.

The probability distribution {p,} given by Theorem 14 is not unique. It would be
interesting to have a concrete example of such a distribution. (For self-similar fractals
the Hausdorff measure has a very simple and natural representation as an exit measure:

cf. [7].)
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