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1. Introduction.

Since Stein (1956) has shown the inadmissibility of the least squares estimator of
the mean of a random vector y ~ Np(8,0%21,) when p > 3, a lot of shrinkage estimators
dominating the least squares estimator have been proposed, following the primitive James-
Stein estimator (1961). In particular, Baranchick (1964) has shown that the positive-part
James-Stein estimator dominates the James-Stein estimator. Even though this estimator
is not admissible, no estimator uniformly better than it is known. It seems very difficult
to find a dominating estimator; Bock (1987) and Brown (1988) have shown that the usual

technique of unbiased estimation of the risk is of no use in that case.

Because of the importance of this estimator, we give, in this paper, an exact formula
for the risk of the positive-part James-Stein estimator as Egerton and Laycock (1982) have
done for the James-Stein estimator. We consider the problem of the estimation of a normal

mean vector when the variance is known up to a multiplicative factor.

2. Gain of the positive-part James-Stein estimator.

This estimator can be written
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Note that the function & is continuous and almost everywhere differentiable. We can

then apply usual integration by parts lemmas. The increase in risk of the usual estimator,
y, over ¢(y, s>
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(see e.g. Judge and Bock (1978)).

This gain can also be written as

(21) k—-A+Epe [{(k_2)2(n_k);j‘%—2k+w yt—y}1<ai<1>}

n—k+2 n—k g2 yty

where X = §'0/02. Note that yty ~ x2()/2).

We will suppose that (n — k) is even and greater than 2. Note that this constraint
.can be satisfied in practical cases by adding or subtracting an observation and is far less
restrictive than a constraint about the number of parameters.

3. An exact formula of the gain.

As in Egerton and Laycock (1982), the formulas differ according to the parity of k.
There also appears the Dawson-integral

A
D()\) =e—’\2/ et2dt,
0

which is tabulated in Abra.mowitz-Stegun (1964, p. 319). It is worthwhile to remark that
the approximation of et’ by E in the above integral gives exactly the same results as

1=0
the Abramowitz-Stegun table.

Proposition

(a) If k is even, the gain is equal to
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(b) If k is odd, the gain is equal to
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Note that the ratios PP"E;E){

culated through the recursion formula I'(z + 1) = zI'(z). With the previous partial series
approximation, these formulas can then be incorporated into a package without any need
for numerical tables. The graphs in Section 5 give the computations of this gain for several
values of k£ and n.

which appear in these formulas can be very simply cal-

Remark 1. If, for the positive-part James-Stein estimator ¢, we replace .(Jﬁ%c(iT—kl with

a, where w <a< 3%_:2—’“1, we get a class of shrinkage estimators which are
not comparable (see Figure 1). It is straightforward to generalize the formulas (3.a) and
(3.b) for an arbitrary « by using the following proof.

Figure 1. Risk of several positive-part James-Stein estimators (n = 6,k 0% known).
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Remark 2. We can also deduce from these formulas the exact risk of the positive-part
James-Stein estimator when the variance is totally known by taking the limit of (3.a) and
(3.b) as n goes to infinity.

4. Proof.
We have
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where ¢(w) = nk—kiz

For v € R, the modified Bessel function I,, can be written (see Abramowitz-Stegun
(1964, p. 375))
z) 23
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The above integral is equal to
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Thus, if (n — k) > 4, the expectation we are considering can be written
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From Gradshteyn-Ryzhik (1980, 6.631), we deduce that, for v + u > 0
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where 1 F)(a;fB;2) is the confluent hypergeometric function (see Abramowitz-Stegun,
p. 503). This equality allows us to compute the above integral, which is equal to
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Using the properties of the confluent hypergeometric functions (see lemmas), we get then
the formulas (3.a) and (3.b).
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5. Examples

1.0

Figure 2 — Gain of the positive-part James-Stein estimator (k = 3,n = 7).

Even if the formulas (3.a) and (3.b) seem rather unwieldy, they can be reduced a great
deal in particular cases. For example, when k = 3 and » = 7, we deduce from (3.b) that

the gain is
2D (VAFE) - D (VATEH) g
3 /2 YA

For A = 0, the value of the gainis 2+ 2 11 7 (as hr% ﬂ)‘ﬁ = 1). One can compare this value

with the value of the risk of the James-Stein estimator, 2 % (computed through Egerton and
Laycock’s formula). And when k£ = 4 and n = 8, we get (using (3.a)) the following gain:

=38
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When A = 0, the gain is %, compared with g— for the James-Stein estimator.

As k and n increase, the number of terms in the formulas become larger. For k even,
we have ""’2& terms and for k£ odd, "_—,if——z terms (including the Dawson integrals).



2.0

1.

1.0

Figure 3 — Gain of the positive-part James-Stein estimator (k = 4,n = 8).

Appendix

The following lemmas can be proved by using the recursion formula (13.4.4) of
Abramowitz and Stegun

1F1(a;b;2) = 1 Fi(a — 1;5;2) + % 1F1(a;b+ 1;2)

Some of them have been proved in Bock, Judge and Yancey (1984, p. 223)
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