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Summary
Minimum Cost Trend-Free Run Orders
of Fractional Factorial Designs
Run orders of fractional factorial designs which minimize a cost function based on the number of
times the factors change levels during the time sequence in which the runs are performed and which
simultaneously have all factor main effects components orthogonal to a polynomial time trend are

found for a wide variety of factorial plans. A construction technique based on a generalized foldover

scheme is presented.



1. Introduction. Suppose an experiment is to be performed according to a given fractional factorial
plan. In some cases, the time order in which the runs or treatment combinations are performed need
not be randomized. Instead, certain systematic run orders may be preferred. For example, if the runs
are made in some time or space sequence, each observation may be affected by a trend which is a
function of time or position. In the presence of a time trend, a non-randomized run order may improve
the efficiency with which factor effects are estimated. A design objective of full efficiency is attained

when the factor effects are orthogonal to the time trend effects.

The cost of conducting an experiment is often of practical importance. A second design criterion
is a cost function based on the number of times each factor changes levels. The practical interpretation
is that it costs a certain amount to change the levels of each factor, for €xample, to reset a measure-
ment instrument, change the fertilizer on a field trial, restart an industrial plant and so on. If all level
changes are equally expensive, run orders that minimize the total number of factor level changes are

optimal with respect to this second criterion.

Cox (1951) began the study of systematic designs, for replicated variety trials, with the single cri-
terion of efficient estimation of treatment effects in the presence of a smooth polynomial trend. Certain
2" factorial designs robust to both linear and quadratic trends were found by Daniel and Wilcoxon
(1966). The cost criterion was introduced by Draper and Stoneman (1968) in their exhaustive searches
of some eight-run.factorial plans. Dickinson (1974) extended the work of Draper and Stoneman to 2*
and 2’ complete factorial plans with the search restricted to minimum cost run orders.” Joiner and
Campbell (1976) took an approach in which each factor changed levels from one run to the next with a
given probability. More expensive factors were assigned smaller probabilities of changing levels. In
- an unpublished report, P.W.M. John extended the method of Daniel and Wilcoxon to certain designs
for factors at two and three levels and discussed the foldover properties of such systexﬁatic run orders.

Cheng (1985) gave a theoretical description of the cost structure in two-level factorial designs and
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provided some examples of run orders optimal with respect to both our design criteria. The theory
presented in Section 4 extends Cheng’s results and provides an algorithm for constructing optimal ord-
ers for many fractional factorial designs. In particular, our results may be applied to the designs listed
in two National Bureau of Standards tables (1957, 1959). A majority of these designs can be

optimally ordered with respect to both our design criteria.

In Section 2, we briefly summarize the definition and group properties of fractional factorial
designs and the notation we use to describe these designs. The design criteria are defined in Section 3
while the main results are presented in Section 4. Proofs are left until the Appendix. Section 5 con-

tains applications of the construction results of Section 4. A summary discussion appears in Section 6.

2. Fractional Factorial Designs. Attention is restricted to designs in-which all factors are at the
same number of levels. Consider n factors, each at s levels where s is a prime power. Let the s levels
of each factor be the s elements of the Galois field of order s, GF(s). We denote the s factor levels by
0, 1,...,s-1, with 0 the additive identity and 1 the multiplicative identity in GF(s).

A complete factorial design in all n factors requires s” runs. Let G = (sfP) denote a s7P frac-
tion of the complete factorial, blocked in s* blocks each of size s*P. Let N = s™P be the number of
runs-in the design G. Let R = s" P be the size of each block., |
DEFINITION 1. A design G is defined by a set of (p+1) linearly independent vectors whose elements
are in GF(s), say 0 € GF(s), i= 1,.p4r,j=1,.n. If o = (%, . . . ,04)7, the treatmeqt combina-
tions in the initial or principal block are the R solutions z=(§;, ... ,L)", where (;j £ GF(;), i=1,...n,

to the system of equations:
oz=0, i=1,...,p+r 2.1)

The remaining s™ - 1 blocks, each of size R, are cosets of the initial block and correspond to solutions

z of the first p equations only in system (2.1). )

The n-tuples ay, ... » 0, represent the p independent defining effects of the fraction while

COp+15 - - - Oy are the blocking effects. The group operations involved in solving system (2.1) are



those of addition and multiplication in the field GF(s). To find the R solutions to system (2.1), it is

sufficient to find h = n—p-r independent solutions z;, . . . ,z, and from them form all linear combina-
tions

byz; + -- -+ buz, forall bje GF(s), j=1,.,h (2.2)
If Zyy1, . .. 2, are 1 independent solutions of the first p equations of system (2.1), but not of all

(p+1) equations, they may be used to find the cosets of the principal block by forming the s treatment

combinations
bhi1Zpeg + -0 0+ byp2z,p, forallb; e GF(s), j=h+l,..n—p (2.3)
and adding each result to all R treatment combinations in the principal block.

The notation we use to describe the treatment combinations or runs of the design G is as follows.

Let the n factors be named ay, . . . ,a,. Ifzisin design G, we write run z equivalently as:
g=ala X
Design G is the group (g, ... »8n}. Without loss of generality, G is generated by
{g1,... »8np }» the first h of which are independent solutions to all p+r equations of system (2.1) and

generate the principal block. From expression (2.4), these h principal block generators are in one-to-

one correspondence with the independent solutions Z, ... ,2, of (22). We call {g,,... » 8} the
within block generators. The between block generators gy, . .. »€n-p cCorrespond to solutions
Zhils - - - s Znp OF (2.3). Then, any treatment combination in G is of the form

g=g'8," - g7, beGEs), j=1,..00p 2.5)

We write g =1 to denote the treatment combination corresponding to all factors at level 0. Note that
we assume that any design G is at least a main effects plan, that is, the p+r n-tuples {og} of
Definition 1 are chosen to ensure that no main effect is aliased with another main effect nor con-

founded with any block effect.



3. Optimal Design Criteria. Both the polynomial time trends and the values taken by the main
effects components of the n factors in the design matrix are defined in terms of systems of orthogonal

polynomials. We begin with a definition.

DEFINITION 2. The system of orthogonal polynomials on m equally spaced points i=0, . ..,m-1 is

the set {Pyy, k=0,1,2,...,m-1} of polynomials satisfying

m-1
YPmd=0 forallk>1 3.D
i=0
m~] ,
2Pm@®P, =0 forallk#k (3.2)
i=0

where Py, () = 1 and P, (i) is a polnomial of degree k. We assume that each polynomial in the sys-

tem is scaled so that its values are always integers. .

Note that if Q, is any polynomial of degree k<sm—1 on m equally spaced points

i=0,...,m-1, then, for some {wy, . . . s W}, Qun may be expressed as:
k .
Qun® = ij Pim @) (3.3)
=0

DEFINITION 3. Factor Effects - The s coefficients of the i main effects component of each factor,
1<j<s—1, are P, O<iss—1, the values of the orthogonal polynomial of degree j on s equally spaced

points. .

DEFINITION 4. Trend Effects - The R values of a polynomial trend of degree j, 1<j<R~1, in a block of
size R are Pj (i), 0<i<R~1, the values of the orthogonal polynomial of degree j on R equally spaced

points. ®

The linear model for the N observations is :

Y=XB+¢ (3.4



where € is an N-vector of zero mean, uncorrelated random errors.  Let X =(xy,...,x;) =
(x5, 1=1,..,N, j=1,..,t. Each column x; of the N x T design matrix X is either a factor, trend or
block effect. The first R rows of X correspond to the R treatment combinations in the principal block,
the next R rows to the runs in the second block, and so on. There is one column in X for each block
of G. Without loss of generality, these are the last s columns of X. For any block column Xj,
T-8"+1<j<1, x;=1if run i is in block j~(T—s"), otherwise X;;=0.

Let the first q; columns of X correspond to the factor effects in the model. Unless otherwise
stated, we assume that the interactions are negligible. Then q;=n(s~1). By Definitions 1 and 3, if
column x; represents the m'™ main effects component of factor a, énd if factor a, is at level ue GF(s) in

run i of G, then

We assume that the same polynomial time trend of degree k is present in each block. Let
columns xg ., . . . »Xq+k Of X represent such a time trend, that is, the coefficients in column q;+m,
1<mzk, are given by the polynomial of degree m from the orthogonal system defined in Definition 2
for the R equally spaced positions in each block. By Definition 4, for j=q;+m, if run position

i—=-i0 mod R), then xij = PmR(IO )

Partition the design matrix X into two parts, (Xy,X;), where X is the N x q; matrix of factor
effects and X, the N x qy, (qu=k+5"), matrix of trend and block effects. Partition the p'dfameter vec-
tor B similarly into two vectors B: and B, of dimensions q; and Q, respectively. The following facts
are immediate: the q; columns of X, are orthogonal; the q, columns of X, are orthogonal; the q;

columns of X are orthogonal to the s block effects columns of X,.

For any main effect column x, of X, and trend column x, of X,, we define the time count
between factor effect x; and trend component X, as xlsz. The design criterion based on efficient fac-
tor effect estimation in the presence of a smooth polynomial time trend may now be defined using the
orthogonal polynomial structure of the linear model described above. The objective is to eliminate the

effect of the time trend by finding run orders for which all the main effects components of all n factors



are orthogonal to the k trend columns of the design matrix. Such run orders are said to be k-trend
free. If the time counts between all factor effects and trend effects are zero, the run order is optimal
with repect to our first design criterion. If this is achieved, X; will be orthogonal to Xz and the factor

effects will be estimated with full efficiency.

As stated in Section 1, our second optimality criterion is a cost function based on the number of
times each factor changes levels. We assume that all factor level changes are equally expensive. Then
a run order is optimal if it minimizes the total number of level changes. The compatibility of this cost
function with the group structure of a fractional factorial design is used in Section 4 to produce a con-

struction method that generates run orders optimal with respect to both design criteria.

4. Construction of optimal run orders. We present conditions under which the main effects com-
ponents of each factor become or remain orthogonal to a polynomial time trend during a stepwise con-
struction of a run order of a design. We begin by assuming that design G is run in a single block of
size N. Later in this section, we present results that allow this restriction to be dropped. In addition,
the construction method is adapted to produce run orders that are optimal with respect to our second

design criterion. Proofs of all the results in this section are in Appendix A.

Consider a single factor, a; say. Let U = (Ues1s - - - »Uessy), U € GR(s), i = E+1, ... ,E+sv be a
sequence of sv consecutive levels of a; in rows &+1, ... ,E+sv of design matrix X. Usually, v is a
pawer of s. Let x be the column of X, representing the main effects component of degreé q of a;. By

(35), xi=qu(ui).
DEFINITION 5. Factor a, is k-trend free over U if
(@) each of the s levels of a, appears v times in U

(b) all (s-1) main effects components of a; are orthogonal to trend components Pgy, . . . , Py over

the sv runs of U.



Let iy, m=1,...,v be the v run positions in U at which a, is at level t, for each t=0,...,s~1. Sup-
pose a; is k-trend free over U, for some k=0. For each main effects component of degree q =

1,...,s—1 and each trend of degree j =0, . . . ,k, we have by Definition 5 :

s=1 v s—1 v
0= E qu (t) PjN (lr.m) = Z [qu(t) Z PjN (lzm):l
t=0 m=1 =0 m=1
1

=3P, O W(Ei.N) | @D

t=0
where W(t;j,N) is the sum of the values of the j* trend over the v runs of U in which a; is at level t.
The term W(t;j,N) is simplified by Lemma 1 below. Then with Definition 6, Theorem 1 below is true.

LEMMA 1. If a, is k-trend free over U, then W(t;j,N) = W(,N) is indepéndent of the level t, for j =

1L,....k .

DEFINITION 6. For sequence of levels U as above and for some e & GF(s), let U(e) be another
‘sequence of sv levels of factor a; located at run positions §'+1, e ,§'+sv, where the level of factor a,

at position &+ is given by Ug,i+e. .
THEOREM 1. Let a; be k-trend free over U, for some k>0. Then a is also k-trend free over U(e). o

We may now define the generalized foldover of U in terms of some non-zero element e & GF(s).
Then Theorem 2 which follows Definition 7 below provides the main method for constructing trend

free orders optimal with respect to the first design criterion.

DEFINITION 7. Generalized Foldover of U : For U as above, the generalized foldover of U is the

sequence of s?v levels of a; given by

U'e)=U,U(),Ue), . ..,U(s-1e)



THEOREM 2. Suppose a, is k-trend free over U. Let U"(e) be the generalized foldover of U with

respect to e = 0 € GF(s). Then a, is (k+1)-trend free over U", .

We give below a scheme that allows k-trend free run orders of G to be constructed. We assume
that any run order of G begins with the run 1 in which all factors are at level 0. We employ the nota-
tion of expréssion (2.4) and write the runs of G as {g;, . . . ,gy}. Recall that by g* fort =0,...,s-1 we
mean the multiplication of each exponent of a factor name by t according to the operation of group
multiplication in GF(s).

At the beginning of this section, we assumed that design G would be run in a single block of
size s"P. We now reinstate the block structure. There are s* blocks of size R=s", where h=n-p-r.
Recall that by a within block generator we mean a run g that is in the principal block and is used,
along with h—1 other independent principal block runs, to generate the principal block by (2.2) while a
between block genérator is one of the r independent runs from r distinct blocks, other than the princi-

pal block, used to generate the s™=1 cosets of the principal block by (2.3).
Let {gq,. .. »8n-p} be n-p independent generators of G, the first h of which generate the princi-

pal block. Suppose G is generated as follows : set Uy=1 then let

Ui=U{i(g) i=1,...,n—p 4.2)

where if g;=a;’ - - - a." then factor a, is folded over according to Definition 7 with respectfo level e..
gi 1 an 1] P 1

Theorem 3 below shows how k-trend free orders may be constructed. We preceed Theorem 3 by
a result that exploits the block structure of the design and the assumption that the trend components in

every block of G are identical.

LEMMA 2. Using generalized foldover scheme (4.2), if a factor is at a nonzero level in at least one
between block generator {gp,q, . . . »€a-p}. that factor is orthogonal to all the polynomial trend com-

ponents present in linear model (3.4). .



THEOREM 3. For G generated according to system (4.2), G is k-trend free if each factor appears at
least (k+1) times at non-zero levels in the sequence of generators or, for any factor appearing fewer
than (k+1) times at a nonzero level, that factor is at a nonzero level in at least one between block gen-

erator. Note that these (k+1) appearances at non-zero levels do not have to be at the same level. )

EXAMPLE 1. Consider the design G=23°, a complete 2> factorial in factors a, b and ¢ run in one
block of eight runs. Then G={1, a, b, , ab, ac, bc, abc} and if we choose gi=ab, g;=abc, gy =ac
each non-zero factor level appears at least twice and the resulting run order constructed according to
the scheme (4.2) is linear trend free or 1-trend free. This order is G={1, ab, abc, ¢, ac, bc, b, a} and

was found by Draper and Stoneman in their exhaustive search of all 8! run orders. . )

Note that with the generalized foldover scheme (4.2), the last run of the first s' runs,

i=1,...,n-p, is given by
gi'gs gl 4.3)

We turn now to the second design criterion: a cost function given by the number of factor level
changes. Recall the assumption that all factor level changes are equally expensive. Cheng (1985)
gives a method for constructing minimum cost run orders of two-level fractional factorial designs.
Presented below is a generalization of Cheng’s arguments to fractional factorial designs at s levels,
where s is a prime power. A method based on the generalized foldover scheme defined above is
shown to produce minimum cost run orders of designs G. For convenience, we employ the same nota-

tion as Cheng. The reader is referred to Cheng (1985) for details.

Define a cost or distance function between any two subsets A and B of G by

d(A,B) = min d(®, v)

WEA,VEB

where d(®, v) is the number of factor level changes between runs ® and v. In the notation of 2.4), if

o=2," -2, and v=a," - - - a", &, v; € GF(s), then d/(o, V)=XI(w;#v;). In particular, d(1, w)
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is the number of level changes between run 1 and run ®. In what follows, assume that the first block

of G is the principal block, denoted by B, a subgroup of G. Blocks B, . ..,B & are cosets of B in
G.
LEMMA 3. Let {gy, ... »8np } generate G by the generalized foldover scheme of Theorem 3. Let
i-1 -
di=d (gi,gg;—l), i=1,...,n—p (4.4)

Then the cost of the run order so generated is

C= KE(S—I) s"Pig, 4.5)

i=1 .

Consider the following group structured decomposition of the principal block, B;. Beginning
with H 1(0) ={1}, iteratively define the following quotient groups, subgroups, the set of minimum

within-block costs {c;} and coset structure of B;.

G;=ByHP, i=0,1,...,t-1
Cip = min d(H,K
T g KeG, H 2K ( )

S{’ = subgroup of G; generated by {H :d(H®,H)=c,,,}

Hl(i+1) — U H
HesS®
m;= 1§D | ="
Ni = Ni_l/mi, No =g"PT

The N; are the number of cosets of H{" in B}, where for convenience we count #{ as a coset
of itself, each coset being of size m;m, - - - m,, while I;41 1s the number of independent generators of
S®, the subgroup of the quotient group G; generated by those elements of G, distance ¢;,; from the
current subgroup H{" of B;. The elements of S{ are cosets of ). The H ®°s form a nested

sequence of subgroups, of strictly increasing size, of B,. The sequence of costs {c;;i=1,...,t} is
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strictly increasing. The iterations terminate when N,=1 for some t at which time H{® =B;. Note that
rn+ -+ +r,=n-p-r.

At each stage i=0, ... ,t-1, there is an arrangement of the s elements of S{ that has cost
Ci+1 between any two adjacent elements in the arrangement. This produces a minimum cost ordering of
the elements of S{). We show below how to construct one such minimum cost arrangement and
thereby minimally order the principal block. When the principal block has been minimally ordered, we

repeat the above induction starting with H{" =B, G replacing B, and N,=s" until some N,, /=1 and

H{) =G. The between block minimum costs {C,,p, . . . .C,,;} found from this second iterative pro-

cedure, although strictly increasing, may be less than the within block costs found when ordering B 1

When performing the iterations described above, the following seqﬁence of steps is most useful.
Given subgroup H{” of By, find the next minimum cost c;,; by finding a run g noz in H ® with the
fewest factors at a nonzero level, that is, having the shortest distance from starting run 1. There will
be ry,;21 runs not in H{® this same distance ci+1' from run 1, some r,; of which are in distinct,
independent elements of S®. These Iyyp runs of cost ¢;,; may be used to generate H 1(“1) by forming
the s products of all s distinct powers of each of the r;,; runs chosen and multiplying every run in
HP® by each such product. A similar pfocedure works for the between block generators. Cheng

(1985) contains examples of this iterative procedure for designs with factors at two levels.

To construct minimum cost trend-free run orders, we combine Theorem 3 and the cest structured
gr;)up decompostion of G detailed above with the generalized foldover scheme (4.2). To begin, sup-
pose Sl(i"l) is generated by (K, ...,K;} € Gy, for each i=1,...,t+t. By definition of § {7,
there must exist independent runs z;eKy, j=1,...,r each distance ¢; from run 1. From now on, we
assume that all runs of design G are written in the form of expression (2.4). Setting rp=1 and zy; =1,
define a set of n-p independent generators of G as follows:

i-1 " i1 o
gi=TTIIe5)(TTes Dz j=1.....1, i=1,...,t4 (4.6)
j=1

ij=1j=1 B

Note that g;; is z; multiplied by the product of all previous generators raised to the power (s-1). Since
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the z; are independent in H {7, the collection
{gp j=L...,1, i=1,...,t} .7
are n-p independent generators of G. With the help of Lemma 2, the following theorem is true.

THEOREM 4. If a run order of G is constructed by the generalized foldover scheme (4.2) applied to the

sequence of generators (4.7), the resulting run order has minimum cost given by

Cain =YX N ~Np g 4.8)
=1

Including the between block costs {C.p, . . . »C,} in the cost decomposition described above
implies that the the observations for treatment combinations in each block are made before the next
block’s observations are begun. In reality, observations for runs in each block may be made con-
currently and there will be no between block costs. If this is the case, a run order will have minimum
cost of level changes if each block is minimally ordered according to the within block costs found
above and any r independent between block generators may be used in the generalized foldover scheme
(4.2). With this added freedom, minimum cost run orders that satisify the orthogonality design cri-
terion above are more readily found. An examples is provided in Section 5. Note that expression

(4.8) for the minimum cost for design G becomes:
[ Kl B
Cain = 8" T N, ~Np g; 4.9)
i=1

The results above provide a sufficient condition under which a run order of G is optimal with
respect to both design criteria: trend elimination and minimum cost of level changes. Assume that
there are k trend effects in the linear model in the sense that the trend is of degree k and is represented
by k columns in design matrix X as described in Section 3. Usually, k will be small: values of 1 and

2 are most common. Let the cost structure of G be given by

t+t

{(cr,r. (o), . .. J(Cn T ) where %rj=n—p
=
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Let {zj j=1,...,r, i=1,...,t+t} be some choice of n-p independent minimum distance runs
with respect to this cost structure. Let {g;j} be formed from these as in expression (4.6). All preced-

ing results may be combined to give:

THEOREM 3. If each factor appears at some non-zero level at least (k+1) times in the sequence of runs
{g;} which generate G by the generalized foldover scheme (4.2), or at least once in a between block
generator, the resulting run order, having minimum cost (4.8), or (4.9) if the between block costs are

zero, and being k-trend free by Theorem 3, is optimal with respect to both design criteria. .

5. Examples of optimal run orders. In this section, we present some examples of series of frac-
tional factorial designs with factors at two or three levels for which optimal orders may be found by
the construction techniques of Section 4. Throughout this section, unless otherwise stated, a run order
is optimal if it is linear trend free, that is 1-trend free, and has minimum cost of level changes. We
add one further result which leads to linear trend free two-factor interactions for designs with factors at

two levels but requires more than the minimum number of factor level changes.

Before presenting specific examples, we make the following observation: when s is a prime
number, group operations in GF(s) are addition and multiplication modulo s. Thus, if {@y, . . ., n-p}
is the ordered series of minimum cost runs, in one-to-one correspondence with the runs

’ {zij, j=1,...,,i=1,... ,t+t'} used in (4.6) to find the set of generators that construct an optimal

run order of G by the generalized foldover scheme, then
g = o w; (5.1)

since (s—1)2+(s—1)50(mod §). Only the current and previous members of {®;} are needed to find the
next generator in (4.6). With this simplification of (4.6), whenever a sequence of generators for a par-

ticular design is presented below, only the set of minimum cost runs {0, i=1,...,n—p} is shown.

By Theorem 3, for a two-level factor to be linear trend free it must be at its high level, level 1, in
at least two of the generators in sequence (4.7). An equivalent form of this requirement is: following

the first appearance of the factor at its high level in, say, run @; it must be at its low level, 0, in some
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subsequent minimum cost run ®;, j>i. It is this condition that is most easily checked for some choice
of {®;}.

Cheng gives an example of a series of fractional factorial designs that have an optimal order,
The series he proves can be optimally ordered is {G =2§!, n=25}, with defining relation
I=A,--- A, This is the series of 1/2 replicates of a complete 2" in one block of size 2*! with the
highest order interaction confounded. All (n-1) independent minimum cost runs have cost 2 so a
minimum cost run order requires 2(2°!—1) level changes, by (4.8). We may reproduce Cheng’s result

by using the sequence of minimum cost runs :
a8, 384 , ..., 4389 13, 33 -
if n is even, where the remaining (n/2—1) minimum cost runs may be ;lny other independent cost 2
runs, and if n is odd the slight modification :
Q18 384 , ..., A43p3, 281, pd;, A3 - -
where any ((n—1)/2—3) other independent cost 2 runs may be used after a,a,.

We give two other examples of series of designs, each member of which may be optimally
ordered, to illustrate how readily Theorem 5 may be used.

The first example is the series of 1/4 replicates of a complete 2" for n>7 defined by
I'=AjA;S = A3A,S where the common stem S = As--- A, A minimum cost run sequence that

produces optimal run orders is:

8, 2384, Asdg, Agdy, A78g , ..., Ay g8y, ;3335
The cost structure is {(2,n-3), (3, 1)}, for the (¢, 1y, and the minimum cost is 2% —1 Jevel changes by
4.8).
The next example of this section is the series of 1/8 replicates of a complete 2" factorial in one
block of size 2" defined by T=A[ALAsS = AJA4A¢S = A3A5A¢S where the common stem
S =A;--+ A, The cost structure is {(2,n-7),(3,4)} so the minimum number of level changes

becomes 2(2" 2 —2%+3(2*~1) =22+ 13, Fornz>8, an optimal set of minimum cost runs is:
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18y, A323,, "0 A78,, 213234, 2133385, A4a586, 73327

As stated in the introduction, the construction techniques of Section 4 were applied to the designs
tabled in two National Bureau of Standards publications. Of the 125 plans for factors at two levels in
Applied Mathematics Series 48 (1957), 96 may be optimally ordered by the generalized foldover
scheme. Furthermore, for 63 of these 96 plans, not only a linear but also a quadratic trend free run
order with minimum cost is obtainable. Similarly, all 41 plans for factors at three levels in Applied
Mathematics Series 54 (1959) may be optimally ordered. Tables of minimum cost linear trend free run

sequences for all the designs with optimal orders may be obtained from the authors.

Expression (4.9) gives the minimum cost for a run order under the often realistic assumption that
between block costs are zero. To illustrate how this modification maS' be beneficial, consider the
design G ='228'3 defined by I=ABEGH=ACFG=ABCD with blocking effects ABEF and ACE. This
is plan 8.8.8 in Applied Mathematics Series 48 (1957). For this design, the generalized foldover
scheme does not find a minimum cost run sequence that has all eight factor main effects linear trend
free. However, if between block costs are zero, the run sequence

bdfg acfg adegh bdh abcdefg
has minimum cost by (4.9) and all eight factors are both linear and quadratic trend free. Of the 29
plans in AMS 48 that cannot be optimally ordered when costs are given by (4.8), there are 12 with an

optimal order using (4.9).

Draper and Stoneman (1968) found a run order of a complete 2 factorial with aﬂ three main
effects linear trend free and requiring eleven level changes, four more than the minimum of seven level
changes. No 1-trend free run order had fewer than 11 level changes. By an exhaustive search, we
confirmed that at least four extra level changes are required for any 1-trend free run order of a com-

plete 2,

Cheng (1985) proved that for any n > 3, there exists an order of a complete 2" with all main
effects linear trend free and requiring 2° + 3 level changes, again four more than the minimum. This
result may be reproduced by constructing the sequence of generators (5.1) from the following run

sequence:
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a, A2, - - 893, A 28p1s Ay, A
and using the generalized foldover scheme (4.2). By (4.4), this run sequence has cost structure
di="--=d,3=dy1=d,=1, d,.,=2 which gives the required cost by (4.5).
The generalized foldover scheme may be used to find run orders of two level fractional factorial
designs for which all main effects and two factor interactions are linear trend free, although the run
order is unlikely to have minimum cost. Without loss of generality, let G = (2§"P) be run in a single

block. We have the following construction theorem:

THEOREM 6. Suppose a run order of G, constructed by the generalized foldover scheme (4.2) with gen-

erator sequence {g;, . .. +8np}» is 1-trend free. For each pair of factors a; and a,5, suppose that there
exist generators g;, g i=j, i,j € {1, ...,n-p} in which a; and a, are at different levels (that is, one is
high and the other low). Then all n(n-1)/2 two factor interactions are linear trend free. °

Applying this theorem to complete 2" factorials gives the following corollary:

COROLLARY 1. For n24, the generalized foldover scheme (4.2) applied to run sequence {@;,i=1,...,n}

G ,..., 28, 23, aja3, a4, 2 5.2)

from which generators {g;, i=1,..,n} may be found by (5.1), produces a run order that has all main
effects and two factor interactions linear trend free and requires 2" + 11 level changes, twelve more

than the minimum. .

~ EXAMPLE 2. Consider the case n=4. The run order:
1 ab bc ac acd bed abd d bd ad cd abed abc ¢ a b
is generated by ab, bc, acd, bd, has all 4 main effects and 6 two factor interactions linear trend free

and cost 27. .
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Daniel and Wilcoxon found a run order of a complete 2* with all main effects 2-trend free. Their
run order may be found by folding over with the generator sequence {abd, acd, bed, abcd}. Each fac-
tor name appears at least three times so by Theorem 3 each factor is quadratic trend free. The cost of

37 level changes is well above the minimum of 15.

6. Discussion. Linear trend free mimimum cost run orders have been found for a wide variety of two
and three level fractional factorial designs. The examples of Section 5 illustrate the construction tech-
niques detailed in Section 4. It is important to note that as the number of factor levels and/or the
number of blocks increases, by Lemma 2, it becomes easier to find run orders that are k-trend free for

k>1. The assumption of zero between block costs also aids in this search.

If the two factor interactions are not negligible, the double optimization problem becomes difficult
or impossible in small designs as the requirements of Theorem 6 become harder to satisify. When
faced with this difficulty, the experimenter must decide how to compromise between the competing cri-
teria of efficiency and cost. Additionally, if factor level changes for a subset of the factors are expen-
sive, for example, closing down and cleaning a chemical plant between runs at different levels, while
the remaining factors are essentially free, throwing a switch to change the operating temperature say,
then run orders for which the first set of factors change levels least often may be sought by ﬁnding
generator sequences in which the expensive factors appear at non-zero levels in the latter generators
only. The cost optimization must be attempted whenever the experimenter has a design ﬁfoblem with
cost constraints of the type developed here. If in reality no cost minimization is required, trend elimi-

nation is even easier to achieve as a scalar optimization problem only.

In certain problems it may be necessary to maximize the number of factor level changes to meet
some other optimality condition. For example, for n factors each at two levels, if there is a correlated
crror structure represented by a first order autoregression with positive correlation, a run order that
maximizes the number of factor level changes may lead to a D-optimal design. Such run orders may
be constructed by applying the same generalized foldover scheme (4.2) to sequences of maximum

length generators.
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APPENDIX
Proofs
Proofs of the results presented in Sections 4 and 5 follow.

LEMMA 1. Fix j and N and suppress them in the expressions that follow. A polynomial of degree at
most (s-1) may be fitted exactly through the s points {(t, W(t)), t=0, ..., s-1 }. By the remark fol-
lowing Definition 2 and expression (3.3), we may express this polynomial as a weighted sum of the

orthogonal polynomials Pj o 1=0,...,s-1, thatis :

s-1

=0
For each component q=1, . ... ,s—1, expression (4.1) becomes :
s=1 s—1
0= Pys(®) 3 w;, Py (D
=0 =0
s=1 s-1
= Z lezpqs(t) le s(t)
j1=0 =0
s—1
= We Y, Pe(t)? by Definition 3
=0
Hence wy=0forq=1,...,s~1 and W(t)=wyPy,(t) = constant by Definition 2

THEOREM 1. By the group properties of addition in GF(s), each level of factor a; appears equally
often in U(e). In particular, level t appears in run positions i,m—§+§'=itm+§1 say. The time count
over U () of the g™ main effects component of a, against the j® trend is:

s=1 v

Z Z qu(t"'e) PjN (ltm+§ 1) (A. 1)

t=0 m=1

Now PiN(im+&;) is a polynomial of degree j in im- By (3.3), this polynomial may be written

J .
PGt &) = X wj, P; N(iimn)
=0

where the coefficients w;, depend on the constant &, only. Substituting this expression into (A.1) gives
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a time count of :

1

n
|

é {qu(t+e) i wj, PJIN(ltm)}
=0

m=1

i
o

j s—=1 ‘
= i {le Z qu(t"'e) W(t;jl,N)} (A2)
j1=0 t=0

)\
By the assumptions of the theorem and Lemma 1, W(t;j;,N)= W(1,N) so (A.2) becomes:

j

s—=1
3 {wj1 W(LN) 3 Py(t+e) }: 0
t=0

=0
The above is true for each j=0, . . . ,k and hence a; is k-trend free over U (e)
THEOREM 2. Without loss of generality, U is in run positions 1, ... ,sv of G. By Theorem 1, a; is

k-trend free over U”. As't ranges over GF(s)-{0}, so too does te, t,e=0. As before, assume that a, is
at level t in positions iy, m=1, ... v of U. Then a, is at level (t + qge) in these same run positions
of U(ge), q=1,...,s—1. Each level of a; is represented by some (t + qe) as q ranges from 0 to s-1

for fixed t and sirhilarly as t ranges from O to s-1 for fixed q.

Let the level of factor a; be fixed at t. The contribution to the time count of the /" main effects
component of a; against a trend of degree (k+1) over the run positions {iun} in each U(qge) of U" is :

s—=1 v

20 2 Prg(t+qe) Py N(QsV +iggy) (A3)
q=0m=1 L

Now

k
Piea1 N9V + i) = Wi 1 Par N i) + 3 W; (D) P NG
=0

n=

where wy,; is a constant not depending on q and w; (@) is a polynomial in q of degree at most (k+1).

Then (A.3) becomes :

s—1 v k
2 {Pls(t+qe) > {Wk+1Pk+l,N(itm)+ 2 Wi (Q le,N(iLm)}}

q=0 m=1 j1=0

In the preceeding expression, 2 Wit Pyy n(im) depends on t but not q and summing Py(t+qe) over q
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ranging from O to s-1 yields zero by the discussion above so the first inner term vanishes and (A.3)

simplifies to :

k s~1 v
D {le(Q) Pr(t+qe) 3, le,N(iLm)}
1=0¢=0 m=1

k s-1

= Z E wjl(q)Pls(t+qe)WGlsN)

j1=0¢=0

In this last expression, the terms P;(t+qe) sum to zero over q=0, ... ,s-1, for each fixed t and j;.
So the total time count over U~ of the /'t component of a; against Py, y is zero for each

I=1,...,s-1 and a; is (k+1)-trend free over U

LEMMA 2. Suppose that factor a, is at nonzero level e in between block generator g, so s™
blocks have been generated so far, me {1,...,r}. Recall that we assume that each level of a factor
appears equally often in every block. Suppose that a; is at level t in run position iy of an already
existing block, Bj, for some j= 1,...,s™ . When generator gy, is used with the generalized foldover
scheme (4.2), factor a; will be at level t+ge, q=1,..,s—1 in position i in some s-1 new blocks

B

jpr - - - »Bj . Again, as q ranges over the set 0,...,s—1, so too does t+qe. Hence, the time count

with respect to the trend component of degree ! contributed by this starting run position ip in block B;
for the i™ main effects component is
s—-1

s—1
2 Pir(ip) Pig(t+qe) = P;r(p) X Pi(t+qe) =0
q=0 q=0

by Definitions 2 and 3. So each starting level of factor a; in any starting position in an already exist-

ing block contributes zero to the time count with respect to any trend component in the model. So fac-

tor a; is orthogonal to any trend component in the model.

THEOREM 3. By Theorem 2, if the run order is constructed by applying the generalized foldover
scheme (4.2) to the sequence of generators {gy, . . . »8np}, factor a; is k-trend free over G if a non-
zero level of this factor appears in at least (k+1) of the generators. From this and Lemma 2, Theorem

3 follows.
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LEMMA 3. By (4.3), d; is the number of factor level changes between the i generator g; and the last
run of the first s runs. Hence, by the definition of the generalized foldover scheme (4.2), d; is the
number of factor level changes between each adjacent pair of groups of s runs within each group of
s' runs. There are s" P groups of s' runs, and s groups of s runs within each such group of s' runs.
Thus, the number of factor level changes between groups of size s’ within groups of size s' is
s"Pi(s—1)d;, Summing overi=1,...,n-p gives the result (4.5).

THEOREM 4. Set Rp=0, Ry=rj+ -+ +1;, i=1,...,n—p. By (4.3), generator g;; of (4.6) is zij multi-

plied by the last run in the first s~

runs. So the number of level changes between these two runs
is d(1,zy)=c; by the definition of the runs {z;}. Hence, at each stage i=1, . .. ,n—p, the number of
level changes between each group of s'™! runs within each group of s runs is the minimum possible.

Therefore, the resulting run order has minimum cost. The {d;, i;=1, ... ,n-p} of (4.4) are given by :

i-1 i
= Cj, il=2rj+1,..., r;; i=1,...,t+t (A4)
= A

d;

1

Note that sR‘=N0/Ni. The minimum cost of this run order is, from (4.5) and (A.4) :

n-p ) R nepmi
2E-Ds"di=% ¥ cs-Ds T
i=1

i=1 i1=Ri_1+1

il {n—p—R- T }
= _Z(s—l)ci S A =sH/(1-5)

i=1

t+t L
= E ciNONi/NO s'-1

=1

t+

= > ¢ (Nm;—Ny
i=1

tH

=2 ¢ (Ni,; - Ny
i=1

which gives (4.8).
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THEOREM 5. Follows directly from Theorem 3 and Theorem 4 for the stated choice of minimum cost
generator sequence.

THEOREM 6. Let x; and x, be the columns of the design matrix corresponding to the main effect of
any two factors a; and a,. All entries in x; and X, are either +1 or —1. Then the two factor interaction

column x has i entry XjXXjp. We assume that the interaction is estimable when no time trend is

present.
Without loss of generality, both factors are at the same leveling;,..., gy a is high, a, low
in g,; both are at the same level in 8k+1»- - -» 8m-1 and a; is high, a, low in g, m>k. Then the

interaction column x contains +1 in the first 2! rows and —1 in the next 25! rows giving a time
count of 22®°D) over the first 2* runs. Note that since the trend is linear, we have shifted the values of
the trend polynomial to 1, . ..,R rather than Pjr(@),1=0,..,R-1. This results in a linear rescaling of
the time count but does not affect the result stated here, This same time count is contributed by each
of the first 2! groups of 2* runs. So the time count after 2! runs is 2™%3 When g_ is used,
the entries in the interaction column are all multiplied by -1 and the second group of 2™ runs contri-
butes a time count of exactly —2™*3 and hence the time count for the interaction effect becomes zero
after 2™ runs. This time count remains zero in all future foldoi/ers by Theorem 2. So interaction
column x is orthogonal to a linear trend. By the assumptions of the Theorem, this is true for all two

factor interactions.
COROLLARY 1. The n runs in (5.2) are independent so generate the complete factorial design. Refer-

ring to (4.5), the runs (5.2) have cost d;=1if i=n-3,n-2, and d,3=d,,=2. By (4.5), the cost of the

n -
run order is ¥ (1x2™1) + 23 + 22 which gives 2"+ 11 as required.
i=1

The generator sequence (g, . . ., g,} found from runs (5.2) by (4.6) is

4 dn1, ..., A6As5, A18x85, Byd3, 2343y, a3y

namely the i® generator is the product of runs z; and Z;1, as stated in Section 5. Inspecting this
sequence shows that, for any two factors, two generators in which only one factor name appears may

be found. The conditions of Theorem 6 are met so all two factor interactions are linear trend free.
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