CONSISTENCY OF JACKKNIFE ESTIMATORS OF THE
VARIANCES OF SAMPLE QUANTILES

by
Jun Shao

Purdue University
Technical Report #87-47

Department of Statistics
Purdue University

October 1987



CONSISTENCY OF JACKKNIFE ESTIMATORS OF THE VARIANCES
OF SAMPLE QUANTILES

Jun Shao

Departmeht of Statistics
Purdue University
West Lafayette, IN 47907

Key words and phrases: jackknife; delete-d jackknife; sample quantile; con-

sistency; Helly's theorem.

ABSTRACT

Let o be the asymptotic variance of the sample p-quantile (O<p<).
Consistency of the delete-d jackknife estimators of o with d being a fraction
of n is proved under very weak conditions. Some other results, such as the
asymptotic orders of the moments of the jackknife histograms and an analog of

the generalized Helly’s theorem, are also established.



1. INTRODUCTION

Let F be a distribution function defined on R. The p-quéntile of F is
defined to be 6=F '(p)=inf{t: F(t)2p}, O<p<l. Throughout the paper, we

assume that

F is continuously differentiable in a neighborhood of © and F’(9)>0.

(1.1)

Let {X } be iid. samples from F and F (x)=n"'y" I (X, <x) be the
1=

empirical distribution function, where I(A) is the indicator function of the set

A. An estimator of 0 is the sample p -quantile 6=Fn_1(p). Under (1.1), Ghosh
(1971) proved that

A _ _1— n .
0 =06+ " Zi=1¢F (Xi )+Rn, , 1.2)

where ¢(x)=[p—I (x<0)]/F’(6) and Rn=op (n_vz). From (1.2) and the central

limit theorem,

n”(0-8)—N(0,0%) in distribution,

where

6" = p (1-p)/[F ®)1. (1.3)

2. . . . .
As 0" is not known, making further inferences, such as setting confidence inter-

val for O, requires a (weak) consistent estimator of o°.

The jackknife method introduced by Quenouille (1956) and Tukey (1958)
provides a very convenient way of estimating the accuracy of a point estimator.
For the sample p-quantile, however, the traditional delete-1 jackknife estimator

of 6° is known to be inconsistent. Shao and Wu (1986) studied the general

: . : ~2
delete-d jackknife estimator G

@) (defined in (2.1)) and proved its consistency.



For the sample. p-quantile 0, an application of their general result shows that if
d diverges to infinity at the same rate as »,
~2 2 (1.4)

o —> O
Jd) p

under the conditions (1.1) and

lim nVaré = (52, (1.3)
n—yeo

where —->p denotes convergence in probability.

However, the justification of (1.5) may not be trivial in many situations.
Usually it requires some moment conditions and some further smoothness con-

.. 2 . . .
ditions on F (e.g., EX <o and F” exists in a neighborhood of O, see

Duttweiler (1973)). Without any moment condition, Var® may not even exist.

In the present paper we show that under (1.1), (1.4) holds for certain
choices of d, without any further condition (Theorem 1). For the proof of this
result, we state in Section 2 some other results and give their proofs in Section
3. These results are stated as theorems since they are of interest in their own

right.

2. THE MAIN RESULTS

We first define the delete-d jackknife estimator of 6> Fora given n, let
d=d(n)<n be an integer and r=n-d. Let Sr be the collection of subsets of
{ 1,..,n } which have size r. For any seS§ , let F“(x)zr‘lz_ I(X <x) and

1 LES

N -1 . . .
Gs =Fn S(p ). The delete-d jackknife estimator of o is

2 s -2 b=Llv g 2.1
S = 2 60, B==56, (2.1)



where N=(j) and Y, is the summation over all subsets in Sr.
s

Let s* be a random element satisfying

P (s*=s )= seS

L
N’ r

and E, and Var, be the expectation and variance taken under P_. Then 012( )

defined in (2.1) is actually equal to

A2 _ _nL A - ﬂ_ A _A )
G](d) = Var*(Gs‘) J Var*(Os‘ 0)

_ hr mop-l.5-1\,n—j 2 _ m op—~1. i1\, n—j 2
= IHE @ EDedE )’ - 15 @D L e
since
P8 =X ) =@UhewdD, ksjom, @3

where X(i) is the jth order statistic, m=k+d, k=[rp] and [x] is the largest

integer <x. (2.2) provides a convenient way of evaluating 8J2( 4) without
involving computations of Os for (}) subsets SESr'
Given X=( X R ,Xn )’ the jackknife histogram is defined to be
TEIX) =P [(ZE)*® -0t ], 1eR, 2.4)
S

which can be used as an estimator of P[ nl/z(G—O)St ]. Note that GJZ( 2 is the

variance of J (¢ |X) for given X.



In this paper we assume that d is chosen so that

d =[\n]+l, fora fixed A, O<A<l. | 2.5)

Theorem 1: Assume (1.1). Then for any d satisfying (2.5),

o2 > o’
1@ p°

where 6> and 812((1) are defined in (1.3) and (2.1), respectively.

The following results are needed for the proof of Theorem 1. Their proofs
are in the next section. Theorem 2 is a general result (i.e., 6 is not necessarily

the sample p -quantile) for the consistency of the jackknife histogram J (¢ |X).

Theorem 2: Let 6 be an estimator of 6 and admit an expansion (1.2) with
¢(x) satisfying E¢(X )=0 and 0<E ¢°(X <o and R =o (n™"). Then,
7PN
supteRIJ(t |X)—P [n""(6-0)<t] | —>PO,

where J (¢ | X) is defined in (2.4).

The following result gives asymptotic orders of the moments of J (¢ | X).

Theorem 3: Let é=F:(p) and és=Fn_1(p). Assume (1.1). Then for any d
satisfying (2.5) and &=0,

A

nr%, A 243
E [ (& - =0 (L)



The next result is an analog of the generalized Helly’s theorem (Serfling,

1980, Appendix).

Theorem 4: Let Yn be random #-vectors, n=1,2,..., and Z be a random vari-

able. Suppose that for any fixed » and given Yn-—-y, Zn(y) is a random variable

and as #n —eo,

PLZ,(Y,)st |Y,1-P(Zst) - 0,

Then as n—oo,

E[h(Z, (Y DIY,]1 > E[h@)]

for any real-valued bounded continuous function #.

Proof of Theorem 1;: Let z s=(%)l/2(és—é) and Z be a random variable dis-

tributed as N (0,02). For any €>0 and 1>0, from Theorem 3, there is an A>0

such that
P(E,|Z 17354 ) <,
where 8>0 is a fixed number. Choose an M >0 such that
E[ZZ>M)] <12

and

4o s A

For this M, from Theorems 2 and 4

A =|E[Z° 1@° <M)]-EZIE*<m)]| - 0.
n n,s* n,s* 4

62.6)
(2.7)
(2.8)

(2.9)



From (2.6)-(2.8) and

E,2° - EZ’| <A +E,[Z° I@Z M) +E[ZUZM)],
n,s* n n,s* n,s*

»

we have

248

PI|EZ" -EZ* |20 <P(A 2v4)+ P(E,|1Z |*P24)
n,s n,s

<e+P( An21:/4 ).

Hence from (2.9),

A similar argument shows E,_Z ‘_)p EZ=0. Thus the result follows. O
n,s

3. SOME TECHNICAL PROOFS

Proof of Theorem 2: Without loss of generality, we assume that E¢2(X 1)=1.

It suffices to show that

sup, I 1X) = @@)] = 0,

where © is the standard normal distribution function. For any fixed seSr,

from (1.2),

no_ 1
es—e+7z. ¢F(Xi)+Rn,s

les

with R =0 (r™7). Let
ns p

_onr\er 1 _i n
§, DY 0,&) - L3 6,0

and



=(2Ly4R

0Ln s d n,s* _Rn )

Then (X£)%( —6)=§ +0o. . For any £>0, from
d S‘ n,s‘ *

n,s

P_( ﬁns‘St—s )P ( |ocn - |>e ) <P_( ?;n S‘St—e, locn J=<e)

35

<P ( &n o <, |ocn - |<e) <P, ( &n s*.<_t+e ),

we have

sup

erPu (5, H0 St )-0(0)] 2P ( o 1>e)

+sup, [ max(|P,(§ _st4e)-®@()], P, (§ <t—e)-0(1)[)]
<Ssup, o|P(§ <t)~0@)] +2P,( o [>e)
+sup, [ max( | @(-+e)-0(r)|, | Dr—e)-0(t)] ) ]

Ssup |P.(E <t)-@@)| +Qr) e +2P (o |>e).
teR * n,s* * n,s*

From Theorem 1 of Wu (1987),

supteRlP*( ﬁn S‘St -0(t) | -—)pO.

It remains to be shown that

P (lo _|>8)— 0, forany 0.
n,s* 14

Let s0={ 1,....,n }. Since X1’ Ce, Xn are ii.d.,

_ nr\"%2 _
E[P ( |ocn,s*|>e N=P[ (—d—) IRn,Sa Rn |I>e]1 >0

by (2.5) and Rn =0 (r_l/z). This completes the proof. 1



Note that under (1.1), there is an interval [6—t, 6+t] on which F’ (x)=/,

where >0 and />0 are some constants. Hence we have the following result.

Lemma 1: Assume (1.1). Let so={ Loor 3 If O<t<tr”,

%A it -’12
PL(ED)"10 ~61> 1< 2 ,

and
PL(Z)%18-0]>L ] < 2™ %7
d 2 1= ‘
Also,

max[ P ( |6-0(>t\"2 ), P( |§s —0|>12)] < 27%°,
where p=min[ F (6+t1"2/2)F (6), F (8)—F (6—t\"%/2) 1 > 0.

Proof: From Theorem 2.3.2 of Serfling (1980),

2

nr\v, A 3 ¢ —2r8"
P[(—d—) |9s0 9|>§]S2e for all n,
where 8 =min[ F (0+-L(-2-)*)-F (©), F (0)-F (0-L(-4-)*) 1. Since O<t<tr?,
n 2 nr 2 nr

Sn 2% (—d-)%l . Hence the first and the second inequalities follow from d/n=A.
’ nr

The last inequality follows directly from Theorem 2.3.2 of Serfling (1980). O



Proof of Theorem 3: Let

r#

_ 1+8 nr. Yo A _A
An—'([) ARANC 16 01>t Jar,

.
_ 1+3 nr\va. A _A
B —I%t P*[(—d) |es, 0>t 1dt,

s

and

oo

_ 1+8 nr\Ve,n _A
cn_! 7P (F5)716 —8|>r Jdr.
Then

E, [(ﬁdi)’/2| 0 —8|%°= (2+8)(A _+B +C ).

2219 Q1> 1< PL(EE)210 —0|>L 1+ P[ (2)%|6-0|>L
From P[(d lesa 9]>t]—P[(d) Iesa 9I>2] P[(d 166 | 2]
and Lemma 1,

Trh
_ 145 nr\%, A _'\
E(An)—_([) t P[(—d '9s,, 0>t 1dr

had 2, .2
< 4,[ [ TN
0
Hence E (An):O (1) and therefore An =Op (1). Also,

r 1 A A
EB,)=[ 1" PL(E) 0 6> lar

T

10



A A r
<P(18 ~9|>t\" )f W
° r

< @+8) PP (16 -8(>TA 12 ) + P( 16-0|>TA "2 )]

< 40248) 2P,

where the last inequality follows from Lemma 1. Hence E(Bn)=o(1) and
therefore Bn=op(1). From (2.3),

A —A < _ _
max ¢ 18,701 < X 0y X ppeay = W

» . 1
and it is easy to see that W /r %_50 a.s. Then

IWn | < (kr)v2 as.,

and therefore Cn=o (1) a.s. Thus the result follows. O

For the proof of Theorem 4, we need the following lemma.

Lemma 2: Tet Gny be a distribution function for given Yn=y. If for any con-

tinuity point x of a distribution function G,
Gy )G &) -—>p0, (3.1)
then there is a countable set Qc[0, 1] such that for r[0, 1]-£2,

P(IG, ()-G™'(6)|>e) = 0 for any e>0. (3.2)

Proof: Suppose that £€[0, 1] such that (3.2) does not hold for an e >0. Then
there are 6>0 and 81>0 such that G_l(t )+z—:1 and G_l(t )—€, are continuity points

of G, and

11



PCIG,, 1)-G™@)|>e,)> 8 for infinitely many n.

This implies

P( Gn—y1 (1)2G ™ (t)+e, ) > 812 for infinitely many n, (3:3)

since from (3.1),

P( Gn_Yl ()SG™\(t)-&, ) > &2 for infinitely many n

implies 1<G (G~ (¢)-¢ ), which implies G (+)<G ™ (r)-€,<G " (r). Hence from
3.1 and (33), GG (He)2GG (). Thus 1=G(x) for
xe [G_l(t), G—l(t)+e 1]. This shows that there are at most countablely many ¢
for which (3.2) does not hold. O

Proof of Theorem 4: Let M=sup|h(x)| and Gny and G be the distribution
functions of Zn(y) and Z, respectively. Let Wn (z, y)=Gr;1(t) and
W(t)zG—l(t). From Lemma 2, for any €>0 and re[0, 1]-Q,

P(IW (,Y )-W()|>e) -0,

where € is a countable set. Let T be a uniform random variable and indepen-

dent of Yn. Then
1
E[P(|W (,Y -W(@)|>€|T=t )] =j P(IW (t,Y )-W()|>e)dt — 0.
n n _ 0 n n

Hence
P(|h(W (T,y)-h(W(T))|>e|Y =y )—>P0-
Note that
E[|h(W (T,y)-h(WTNIIY =y]1238
implies

12



P( Ih(Wn(T, y)-h (W(T))|>5/2|Yn=y ) = &/4M.
Hence |
ETh(W, (T, y)|Y,=y1-E AW T))] - 0.
The result follows since for given ¥ =y,
E[h(W (T,y)|Y =y] = E[h(Z &)Y =]
and

En(W(T)]=E[RZ)]. O
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