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SUMMARY

In a queueing network with a single server and r service nodes, a-non-preemptive non-idling
policy chooses a node to service at each service completion epoch. Under the assumptions of
»independent Poisson arrival processes, fixed routing probabilities and linear holding cost rates, we
apply Whittle’s method for Arm-acquiring bandits to show that for minimizing discounted cost or
long-run average cost fhe optimal policy is an index policy. We also give explicit expressions for

those priority indices.
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§1. Introduction
In this paper a queueing network consisting of a single server and r service nodes is considered.
Each node allows an unbouﬂded queue. At any time ¢ > 0, service can only take place at one
node ( this is time-sharing service ). The queueing discipline is non-preemptive and non-idling.
The former requires that no interruption of service in a node is permitted. The latter means that
the server can not be idle if at least one node has a non-empty queue. Here a queue includes any
customer being serviced.
Several assumptions are made for the probability structure of the system:

(A1) The arrival process at node ¢ from outside the network is a PoissoP process with intensity A,
t=1,...,r. The r arrival processes at different nodes are independent.
(A2) The service times at node ¢ are iid random variables, which need not have exponential distri-
butions. The r service time sequences a.t‘diﬂ'erent nodes are independent.
(A3) All service time sequences are independent of all arrival processes.
(A4) The service order at each node is ”first-in-first-out”. A customer who finishes his service at
node ¢ will either switch to the end of queue at node j with ;probability Pij, or leave the network
with probability 1 — 3 pi;.
(A5) The set of r nodes associated with a given partial order < generates an oriented graph G- g
is a forest consisting of one-root trees oriented towards the root. Hence § contains no closed loops
and may be decomposed into connectivity components, each of which is a tree; each tree has one
root and is oriented towards this root. The root of a tree is the maximal element with respect to
other vertices of the same tree.

~ The order < is defined as follows: Node j is said to be achievable from node ¢ if there exist
n € N and nodes 14,...,i, such that ©; =4, 4, = 7 and pijs, ---Pi,_,4, > 0. We denote this by
p(i — 7) > 0. Hence ¢ < j iff p(¢ — j) > 0. Note that p;; > 0 implies ¢ < 7 but the converse need

not be true.



Example 1

Here A\; >0,i=1,...,r and p(i — 5) =0, if 1 # J.

Example 2

Here each node is coded by a pair (1,5): j=1,...,r;;¢=1,...,k. r1+...,+rr = r. Note
that
Aa >0, Ay;=0, 7=2,...,r;
PG+ =1, J=1,0.,m— 15
p((5,7) = (', 7)) =0, ifi£id, ori=4i, j=r;, ori=+, 5> j

P(69) = 6,80 =1 butpey =0, Hj+2<s <r



Example 3

Herer=3,;>0, ¢+=1,2,3, andpia+pis=1, pa1=0, pas=1, p31 =ps2=0.
This queueing network is equivalent to a multi-class system with feedback probabilities, for

one can view a customer at node ¢ as a customer of type 1, or simply an “-customer”,i=1,...,r.

“

In what follows, we may refer to node ¢ or s-customer, depending on which term is more convenient.
Now we introduce more notations. Let

Q:(t) = the queue length at node ¢ and time ¢;

¢; = the holding cost rate at node 1;

7, = the nth service completion epoch;

dy—1 = the node (code) which accepts service in the nth service stage (r,—1, 7n);

Note that we usually choose node d,, at each epoch 7,,. However, if at 7,, all nodes have empty queues

and the next new arrival at the network happens to be an j-customer, then d,, = 7 automatically.

Every sequence {d,, n =0,1,...} specifies a policy =. For every a > 0, define

o0 r
Var=E" / e Y eQit)dt
0 =1
1 TS
Jx = liminf B /0 ; c:Qs(t)dt.
Ve, is the expected total discounted cost with discount factor e™* and policy 7; Jx is the expected

long-run average cost with policy 7. In most cases of interest, the limit
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lim LE” foT 3z €iQs(t)dt actually exists.

T—oo

Our goal is to find 7, and 7* such that
Vame = 1I0f Vo y,
T

for every o > 0; and

Jr+ = inf J,.

The problem of finding 7, was solved by Harrison [1] for the case of Example 1, using a
direct policy improvement method. He also obtained r* essentially in [2] for the same model.
Following the same approach of Harrison with more elegant analysis, T'cha and Pliska [6] provided
an algorithm for computing the optimal policy 7, for the general network model.

Klimov (3], [4] studied the general network model with the long-run average cost criterion.
Assuming the system is in steady-state, he applied linear programming to characterize the optimal
policy =*.

Whittle [8] obtained the same results as in Harrison [1], [2], using the different method in [7],
called Arm-acquiring bandits (AAB ). The bandit problem itself is very important, in which Whittle
made a lot of contri;butions.

In this paper we investigate the general network model from the viewpoint of AAB. Motivated
by Whittle’s idea and methodology, we have succeeded in de;iving explicit expressions for 7, and
m*. The two different fields — scheduling of priority queues and multi-armed bandits — hz;ve been
tied together.

In section 2 the equivalence between our queueing problem and AAB is established by an
adequate state-space transformation. We also state Whittle’s results for AAB and give some
heuristic explanations.

Section 3 contains the main results of this paper. To characterize the index policy 7o, we first
derive a recursive formula for the priority indices, then apply the compound Poisson process theory
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to give the probability interpretation of those indices.

Based on the results of section 3, section 4 establishes the explicit expressions for = *.

§2. Equivalence between sequential scheduling of priority queues (SSPQ) and Arm-
acquiring bandits (A AB)
The problem given in section 1 may be called SSPQ. In this section we transform it to an
equivalent problem of AAB.
Associated with each node ¢ are the following traffic flows:
AQ (t) = # of arrivals at node  from outside the network in [0, ];
Al(t) = # of arrivals at node i from other nodes in [0, ];
D2 (t) = # of departures from node ¢ to outside the network in [0,];
D](t) = # of departures from node ¢ to other nodes in [0, ].

Then we have
(2.1) Q:(t) = Qi(0) + A (¥) + Al(¥) — DY (t) - D{(2).

Here we assume that all processes {Q:(2)}, {42 (8)}, {Al()},{DP ()}, {D!(¥)}, i=1,...,r have

right-continuous realizations. Since

t

/0 e Queds = @u0)- 1 /0 " e 49 (s)ds - /0 e=**[DP (5) + D!(s) — 41 (s)lds,

we have
(2.2) Va,w =C - va,ra
where
Vaw =B [ 3 ailDE () + DI(e) - LDl
0 =1
and

C= E"{é 2": ¢:Qi(0) + /0°° et Z c;A? (t)dt}.
=1 =1
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It is observed that minimizing V, . is equiva;lent to maximizing Va,,r because C is actually a
policy-independent quantity. Moreover, all the expectations E”(-) are finite due to the following
facts: |
(i) max {A](t),D2(t),DI(t)} < 3, AQ(¢) + X1, @:(0), V i=1,...,r, t>0;

(i) 0<S E [;° e=*tAQ(t)dt = [[° e~ **EAQ (t)dt = [T e *A\tdt <00, VYV i=1,...,r
by the Monotone Convergence Theorem ;
(iii) We assume that £EQ;(0) < oo, V i=1,...,r

Furthermore, assume that D (0) = DJ(0) = AJ(0)=0, ¢=1,...,r. Since

e—ae

[D2(s) + DI(s) - Al(s)] [}

/ot e—aS[D? (s)+ D;-'(s) - A,!(S)]ds —

+ 1 ['emee-dp2(s) + Di(e) - 41(0)
and
E tl_l_.I{.lo e~ **A2(t) =0 by Fatou’s Lemma, we have
(2.3) Var =L Vur,
o
where

Pag =7 [ oot 3 ;- dlDP(8) + DI(t) - AL(H)]

=1

=E" i ¢ Er: ¢i+ A[DP(t) + Di(t) — A{(t)e=r,

with the notation A[h(t)]i=¢, 2 h(t) — h(ty). Here we assume 7o = 0 and observe that each
random function D (t) + DI (t) — A!(t) only has the jump points (up or down) at 7., neN.

For every a > 0 maximizing V,,r is a semi-Markov decision problem with state space
X={9=1(91,---,9+): ¢:=0,1,2,...; ¢=1,...,r}

and action space



Intuitively, ¢; is the queue length at node 7, and action ¢ represents “servicing node ¢ ”. Naturally
we let E7(-) denote the expectation given action 7 and state q.

A non-randomized Markov policy 7 is such a sequence {d,,n =0, 1,...} that every d,, depends
only on the state at 7, ( or at the next new arrival epoch if all nodes have empty queues at 7, ).
When d,, does not even depend on n, we call r a stationary policy. In this paper we omit definition
of those more general policies ( e.g. randomized, measurable, etc ).

The dynamical programming equation for this problem is given by

Theorem 1. For every a > 0, there exists a stationary policy x, such that Va,,,a = sup,. Va,,, 2
Vo and V, satisfies the equation
(2.4) Ve(q) = Joax LiVa(g),
’ a;>0
where the one-stage operator L; is defined by
LiVa(q) = Ejle™*" ) ;- A(DY (2) + DI(2) — AL(1))e=r]
J=1
+ 2P Egle ™™ Va (@) + w)] + (1= D pi) Ejle™ Va (¢ +w)),

=1 =1

where 7 is the generic notation for the duration of one service stage; w = (w1,-..,w,) with w;

being the # of new arriving {-customers in the period 7;

q(13)= {(‘h;an‘Flaan—l,,Qr), 1f1>.7’
(ql:""qi_1)'-'7qj+17"-)Q1‘), ifi<yg,

represents that one customer moves from node ¢ to node j; and
q(') = (qla vy qs — 17' .- ,qr)

represents that one customer leaves the network from node i. ¢(*) and q\*) are well-defined for
g; > 0. Notice that V,(-), called value function, depends on the initial state q in general.
Theorem 1 is a standard theorem of Blackwell type. For the proof, see Ross [5].
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The problem of maximizing V, » can be solved by using Whittle’s AAB approach. To do that
we need to introduce an additional action A, which stands for “retirement”. At each epoch 7,,,
we either choose some 1 € A provided Q;(r,) > 0, or choose A with a constant welfare M. If
Qi(r») = 0 for all i € A, then A is the only choice. Once A is taken, service of the entire network
will terminate from then on.

Let V,(g, M) be the analogue of V,(g) modified by adding action A with welfare M. Then
the same conclusions as Theorem 1 hold for V,, (g, M). We state them without proof as

Theorem 2. For every @ > 0 and M € R, there exists a stationary policy mo ar such that

IID

Vaganre =SupVa,r =V,
g B
and V,, satisfies the equation
(2.5) Va(g, M) = max{M, Toax LiVa(q, M)}.
2;>0

The key point of AAB approach is to decompose (2.5) into r simultaneous equations, which
are considerably easier to handle.

Let e; = (0,...,0,1,0,...,0) be the state corresponding to a single i-customer. And let
I7i,a (M) = Va(ei, M)’

() = E:,(),
A(5m) = =T ()]

where A; is a Poisson random variable with intensity A;, i =1,...,r. M

is the usual notation
for partial derivative, which will be justified later.

Theorem 3. (2.5) is equivalent to the following r sumultaneous equations:

(2.6) Via(M) = max{M, L,V,.(M)},
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where L;V; (M) has the form

L,'V,',a (M) = (c,- - Z c_.,'p,'j)Ei —aT 4 BE‘e~ %"

- E‘{/ pij - Wg"‘(m) +(1- Zp,, | [e —“A(aZ)]Tdm},
wherei=1,...,r and M < B < 0.

(2.6) here is just the analogue of [8], P227, (5), with the slight difference due to the greater
generality of our network model. The verification can be done By repeating the argument in [7] with
minor modiﬁéation. For brevity we would rather make some heuristic remarks which emphasize
more insight of Theorem 3.

Remarks:

(a) Starting with the initial state e, the one stage expected reward is given by

r r

(27) B Y e ADP() + DIt — ALD)emr] = (e = 3 ejpig) Be™™.

=1 7=1

In fact, given e; we have

NCHOREHO WS

and A(Aﬁ(t))tm. = Ig,

where F is the event that a customer finishing his service by 7 will go to node 7. Note that the
transition probabilities p;;, 1,7 =1,...,r do not depend on 7, hence (2.7) holds.

(b) For every a > 0, M € R, the optimal policy 74, as is an index poﬁcy, which chooses certain node

¢ with the largest priority index M; provided M; > M, where
M;=inf{meR: Vi,(m)=m}, i=1,...,r

(c) The function V;4(M),i = 1,...,r are nondecreasing , convex and piecewise linear in M.
Therefore, the derivatives QV';;’T("") exist except at m = Mj, _7 =1,...,r. At those index points we

may define them as the right-derivatives.



(d) Given a subset B of {1,...,r}, 7r is said to be a write-off policy with write-off set B if = does
not choose node 1 as the next service stage when ¢ € B at that decision epoch. If all nodes are
written-off, then A will be the only available action. Obviously, the index policy 7 o as is a write-off
policy with B = {i : M; < M}. Note that here B depends on M, denoted by Bas. Bps C Bpyr when
M< M.

Start with small value M and let it increase. If we assume M; > M, > ... > M,, then

9, M < M,,
Buy=<{ {7+1,...,r} Mg, S M<M;, j5=1,...,r—1,
{1,...,1‘}, MZMI

Therefore Bps recruits new members when M passe the index points, and Bz keeps invariant when
M lies between two adjacent index points.

(e) The free parameter M introduced in Theorem 2 and Theorem 3 seems to be a nuisance in the
original queueing scheduling problem. However, it enables us to determime M,,...,M,. Mean-
while, for sufficiently small M, 7, s never chooses A unless at the decision epoch all nodes have

empty queues. In that case m4,ar and 7, coincide.

§3. Construction of 1Ea

Following Whittle’s notation, for every o > 0 and M € R we let ¢;(M) = V; o (M), z: 1,...,r.
It is observed in section 2 that each ¢;(M) is a piecewise linear function and changes its slopes
at each index point M;,5 = 1,...,r. Therefore, if we find the slope of ¢;(M) on each piece
(Mj41,M;), then those M: J’-s can be located as well. This idea is due to Whittle and can be carried
out in our problem even the network structure is much more complicated.

Recall that M; is the priority index of node ¢ ( or an ¢-customer ). Assume that M; > M, >
... > M, since we can always number those nodes ( or customers ) in order of decreasing priority.
For simplicity we also assume that M; > My > ... > M,, since M; = M; means that node ¢ and

node j are equally preferable so that any tie breaker can be used.
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For every a >0andi=1,...,r, let

'»bi(a) = Eie—ar’

h;=(c; — Zc_.,p,,)t,b,(a),

j=1

H,-(M):Ba,b,—(a)—E‘/; [Z': 6¢a(m) +(1_pr)][ —a A(8¢)] dm,

- om
=1

where M < B < co. Then (2.6) becomes

(3.1) _ ¢i(M) = max{M, h;+ H;(M)}.
Define
Yo =1, M > My;
¢£j= —aq;,'](\]l\{[)’ Mj> M > Mj+1, j=1,...,r—1.

The next theorem gives a recursive formula for computing M J’-s.
Theorem 4. Consider a relabeling of nodes ( or customers ) at each decision epoch, so that node

J has the j-th highest priority, j=1,...,r. Then having My,...,M; determined, we have

Ezj—1 oM,
3.2 = Lal=1 70
(3.2) My = max =5,

where

-1 -1
o =[1-Y pi(l - ¥ri-1)]- bila+ D Ae(l— ti1-1))
k=1 k=1

] ]
— 1= pa(1 = )] - tila+ ) Me(1—9w)), I=1,...,5;
k=1 k=1

and

J J
bij=1-[1-) pu(l— )] i+ D> M(l—tsy), i=5+1, §=01,...,r—1.
k=1 k=1

11



Proof. Since

4(55) = empt= ona- 25,

Bl a(22)) =yl + 3 a1 - 22600,

Thus
e _ [Z posthrs + (1 Zw)] dilat Z M= )

for M;>M>M;yy, 7=0,1,...,r —1.
3 3

Set B = M = M, then H;(M;) = Mi4;(c). Since
M]_Zh,"i‘H,‘(Ml), V 1= 1,...,7',
with equality for ¢ being assigned the label 1 in the new labeling, we obtain

h.;
(3:3) 1= 2% 1= Pi(o)

In general, having My,...,M; determined,

Hi(M; 1)

AY

= Mypi(o) - / P U Zp,k)] bila+ Z,\ (1- 22y,

MJ+1 k=1

= Myyi(a) + Z(Ml+1 - Ml)[z ikt + (1 — Zpak)] - i(a+ Z k(1 - Y1)

. . i .
= a‘+1[i Pkt + (1 — ZJ:P"/:)] ilat D k(1 - ds)) + i: aM;.
k=1 k=1 k=1 1=1
The last step is due to the faqt that Yp;=1forall k> 5+ 1.
: Sin(;.e M1 > hi+ Hi(M;41) for all ¥ > 7+ 1, and the equality holds for ¢ being assigned the
label 5 4 1 in the new labeling, (3.2) follows. I
(3.2) provides a recursive formula for computing the priority indices. However, for each j =
0,1,...,r — 1, to calculate M, we still need to know 9,1 < k < I < j. Notice that ¢ is the

slope of ¢x(M) on the piece (M; 11, M;). And it has very nice probabilistic interpretation.
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For each =10,1,...,r — 1, let
Bi={j+1,...,r;A},

CJ' - BO\BJ'.

In particular, B, = {A}, Cp =0. Define
Ty = the time needed to bring all relabeled i-customers (i € C}) to the set B;
when the initial stateisex, 1<k<I<r.
Then we have
Proposition 1. ¢ = E*e 2T, 1<k<I<r.
Proof. Given M € (My41,M;), =a,n is a write-off policy with the write-off set B;. Starting with
the initial state ex, 7o as Will service some node ¢ € C} in each stage until there is no i-customer

( € C}) in the network. Then 7o, M Will retire and take the welfare M. Thus,
$u(M) = V + ME*e~=Tw,

where V is the expected reward before retirement, independent of M. Proposition 1 follows by
differentiation. O

Notes.

(i) There is no presumption that T%; < co. However our interest excludes the case that Ty is a

defective random variable, 1 < k < ! < r. We impose the light-traffic condition, specified by
r
(%) p= me <1,
=1

: . . .. A .
where p; = E*r is the expected service time at node 5, =1,...,7r; 7 = (11,...,7,) satisfies the

traffic flow equations:

r
ﬂi:ZPji’?j‘f'/\i; i=1,...,7‘,
J=1
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or in matrix form

(I = P'(r))n =7, A=(A1,...,2.),

where I, is the r X r identity matrix, P(r) is the r X r matrix with entries p;;,¢,75,=1,...,r.

In fact, the assumption (A4) guarantees that I, — P°(r) is invertible hence 7 is uniquely deter-
mined. This will also be explained later in the proof of Lemma 2. Note that p is called the traffic
intensity of the network and the condition (*) implies that T'x; has finite moments of any order,
1<Ek<LILr.

(ii) Tk depends on the target set B; and the initial state ey, but not on the order in which those
nodes in the set C; are serviced. In what follows, we apply compound Poisson process theory to
derive the expressions of E¥e~>Ts 1 < k< I<r.
Lemma 1. Let Z be a non-negative continuous random variable satisfying P(Z > 0) =1,
P(Z < 1) > 0 and EZ < oco. Then for every B € (0,1) the equation e~* = fEe~*Z has a solution
u>0.
Proof. Let g(u) = BEe %% — ¢™*, then
() g(0)=8-1<0;
(i) Jim g(u) = 0, since P(Z =0) =0;
(iii) g(u) is a continuous function for u > 0.
Since EZ < oo and Z is a continuous random variable, by the Dominated Convergence Theo-

rem we obtain that
g'(v) = —BE(Ze™ %) + e = e[~ BE(Ze 7V ](551)) — BE(Ze™* P~V 701y +1].
Note that lim E[Ze‘“(z‘l)I(z>1)] = 0, and by Fatou’s lemma,
U—r 00

lim E[Ze~*~ DIz )] 2 B[lim Ze *Z~ DIz} = co.

U— 00
Therefore, g'(u) < O for sufficiently large u. Hence (i), (ii), (iii) imply that there exists a u > 0
such that e™% = BEe~%Z. 0O
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In queueing literature the term “workload” is usually referred to service time(s) associated
with a customer. Even in this complex network model we can still imagine that each arriving
customer brings certain workload, which is the sum of service times corresponding to those nodes
along his route in the network. Let
X} be the generic notation for the service time at node k, k= 1,...,r;

Y., be the workload brought by the n-th arriving customer at the network, n € N. ( Here we assume
that no more than one customers arrive at the network at same time.)

For every j=1,...,r, let
I, = the j X j identity matrix;

P(s) = the j X 7 matrix with entries py;, k,I=1,...,5;

v(7) = (v1,...,v;)’ with v; = 1=1,...,5

—
PYE IS )
X() = (Xaye o, XY
U, ,(j) = the w01"kload brought by a customer arriving at node I towards the target set B},

ie. U ,(j ) only includes those service times at nodes in Cj.
Lemma 2. For fixed j=1,...,r, suppose the workload sequence {Y,,} is defined with respect to
the target set B, then Y1,Y3,... are iid random variables, and there exists a random variable Y
such that
(i) Y and Yy have the same distribution;
and
(i) Y = v'(5) - (I; - P(4))~* - X().
Proof. Recall (A1), (A2), (A3) and notice that the transition probability matrix P(5) does not

depend on any arrival process or service time sequence. So Y;,Y,... are iid.

For an arbitrary arrival customer with workload Y, we have

, i _
(3.4) Y= u-u¥
=1

15



Suppose he enters the network at node /. After time X; he may reach the target set B; with
probability 1 — Z{=1 Pii, then no more workload is left with him. Or with probability p;; he goes
tonode ¢ (i € C;), then his updated workload is U ,-(j ). Therefore,

J J J
(3.5) U,(j) = ZPH(XI + U,-(j)) +(1- Zpu)Xt =X+ ZPHU,-(J.), 1<i<y
=1 =1 =1

In matrix form (3.5) is written as
(Z; = PG@P,... .Uy = X(j).

By (A4) every customer will reach the target set B after entering the network and passing
through a finite number of nodes in C;. This implies that I; — P(5) is invertible (cf. Klimov [3],

Lemma 3). Therefore,
(3.6) v, ..., U9y = (I; - P(§) 1 X(5).

(ii) follows by combining (3.4) and (3.6). II

Proposition 2. Under the light-traffic condition (%), for every a > O we have the expression
(3.7) E¥e=oTua — ge~vXk 1<k g I<r,

where u > 0 satisfies the equation e™* = ¢e"*Ee %% in Lemma 1 with

(3.8) Ee "% = ezp{— (M1 + ...+ A;)(1 ~ Ee"Y)},

where Y is defined by Lemma 2.

Proof. Let

N; = the total # of customers arriving at all nodes of C; in [0, ];

St(j) = the total residual workloads at time ¢ with respect to the target set B. i.e. SJ(.j ) is the sum
of workloads associated with all customers at those nodes of C'; and at time t.

16



Given the initial state ey, we have

- N'
(3.10) SO =Xp+ > Ya—t, 0<t< Thj;
n=1
and
(3.11) Ty;=inf{t>0: S =o0}.

Let Z(t) = 30, Y, then {Z(t),t > 0} is a compound Poisson process. Consider the Laplace
transform
h(u) = Ee~*Z(1)
where u satisfies e™* = ¢~ *h(u) (cf. Lemma 1). Since [e“h{u)]* is the Laplace transform of Z(t) —¢,
we claim that

e—u(Z(t)-1)

O = T

t> 0}

is a martingale. By the light-traffic condition and the Optional Sampling Theorem,

{U(0), U(Tk,;)} is a two-point martingale. So
1=U(0) = E*(U(T,)|S{") = e*Xx - B*(e=>Tes|5(7),

or

Ek(e-aTk,' IS(EJ)) — e—uXk .

Hence (3.7) follows.
To show (3.8), let Z = Z(1). Then Z = zn__l Y,., where N; has Poisson distribution with

intensity A1 + ...+ Aj. Because {N;} and {Y,} are independent, we have

e~ Z P(Ny = k) - E|eap(- Z Ya)| = eop{~(as +...+ A5) (1 — Ee™¥)},
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—-uY

where Ee can be computed by using Lemma 2 (ii). Hence (3.8) follows. 0O

So far we have completed the algorithm for computing indices My, ..., M,.

§4. Construction of »*

It usually happens that the optimal policy with respect to long-run average cost is the limit of
the optimal policy for discounted cost as the discount factor tends to one. This is indeed the case
between n* and 7,.

Theorem 5. Under the light-traffic condition (%), 7, will tend to =* as a approaches zero.
Proof. In this queueing network a busy period is counted from the first arrival epoch ( after the
server was idle ) to the first time that all nodes have empty queues. Assuming light-traffic we have
an alternating busy-idle sequence. Since only non-idling policies are considered, and all arrival
processes and the transition matrix P(r) are policy-independent, it turns out that the duration of
a busy period is policy-independent as well. And the successive busy periods form an iid sequence.
The light-traffic condition also implies that a busy period has finite moments of any order. Then
Theorem 5 follows from [5], section 7.4. I

For each a > 0, m, is characterized by the priority indices Mjy,..., M, in Theorem 4. To
characterize 7*, we need to evaluate the asymptotic behavior of M/s as « is close to zero.
Theorem 6. Let

lim aM; = M;, j=1,...,r

Then n* is characterized by M;, ..., M,,

~ _ Ef=1 aiM;
(41 Min=gm S5

where

! !
G=)  piE* T+ p: Y M EF T

k=1 k=1
-1 -1

= PikE*Tig1 — 1: Y ME*Th 115
k=1 k=1
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and

;
bij=pi+ Y E*Tuj(pi + Aeps), 1235+1, §=0,1,...
k=1

Proof. As aa — 0,

Yi(a) =1 - ap; +o(a)

and

Y=1— aE* Ty + o(a).

Then a;, Z,-,- are derived by Taylor expanding a; and b;; in (3.2). O
To implement 7*, we still need to compute all E¥Ty,’s. :

Proposition 3. Forevery j=1,...,r, let

1G) = (1, ... AP with 4 = EU?, 1<1<3.

Then

(4.2) E*Ty; = Lk 1<k<j

) S s
1 - i:l Al’n(])

Proof. First of all, since (I, — P(r))~1 exists and

(Ir - P(T))'Y(r) =i, Br= (l“l’ cee ,p,,.)l,

we have
0 ) = (I - PE)
(i) A= (I, —P'(r))n (the traffic flow equation).
(i), (ii) and (*) imply that
M) =n'n< 1.
So 1- ZLI A;'yl(j) >0 forallj=1,...,r

19



Furthermore, applying Wald’s identity to (3.10) we obtain that
0= E"S,_SQ. = pr+ ENg, ;- EY — E*Tj = p+ (A1 + ...+ \;) E*Ty; - BY — E*Ty;.
By (3.4), EY = v/(j) - 7(5). Hence (4.2) holds. [T
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