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1. Introduction:

The bootstrap procedure was introduced by Efron (1979, 1982). Since then there
have been theoretical studies dealing with the accuracy of the bootstrap approximation
in various senses (e.g. asymptotic normality, Edgeworth expansion etc.). A few of the
references are Bickel and Freedman (1980, 1981), Singh (1981), Beran (1982), Babu and
Singh (1984) and Hall (1988). One class of results say that in i.i.d. situation where the
normal approximation holds with error 0(n=1/2), if we replacq the normal distribution
function by the sample dependent bootstrap distribution, then the error rate is o(n=1/ )

a.s.

The bootstrap does not give the correct answers in general dependent models. How-
ever, some dependent models do allow for an appropriate resampling so that the bootstrap
works. Freedman (1984) shows that the bootstrap gives the correct asymptotic result for
two stage least squares estimates in linear autoregressions with possible exogenous vari-
ables orthogonal to errors. Basawa et al. (1987) prove the validity of bootstrap in unstable
and explosive first order autoregressions. Bose (1988) shows that the rate result alluded

to in the i.i.d. situation holds for stationary autoregressions.

In this péper we deal with moving average models. The moment estimators of the
parameters have an asymptotic normal distribution and the error of approximation can
be shown to be O(n'l/ 2). The structure of the process enables appropriate resampling.
We show that the bootstrap distribution approximates the distribution of the parameter
estimates with accuracy o(n‘l/ 2) a.s. The idea is to develop one term Edgeworth expansion
for the distribution of the parameter estimates and its bootstrapped version. The leading
terms of these expansions match and the difference of the second terms is o(n"l/ 2), yielding

the desired result.

2. Preliminaries:

Let (Y:) be a process satisfying

¢
Yi=et + Z S H

i=1
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where we assume that
(A1) (e¢) areii.d. ~ Fo,E(e;) =0,E(e?) =1, and E’ef(aﬂ) < oo for some s > 3.

(A2) (e1,e?) satisfies Cramer’s condition, i.e. for every d > 0,36 > 0 such that

sup |E exp (it'(e1,e?))| < 1-6.
[Itl]2d

01, 0Qz2,...a¢ are unknown parameters, which will be estimated by moment estimates.

Remark 2.1. The assumption that the mean and variance of €; are known have been made
to keep the proofs simple. See Remark 2.12 for a discussion of how this assumption can

be dropped. The Cramer’s condition is required to obtain Edgeworth expansions.

Remark 2.2. The minimum moment assumption we need is E €5 < oo, which may seem
too strong. However, the estimates of ¢;’s involve quadratic functions of €; and we need
(s + 1)th moment of e} with s at least 3. This is in contrast to the situation of i.i.d.

observations where sth moment suffices to derive an expansion of o(n=(¢-2)/2),

We first assume that £ = 1, i.e. Y; = € + ac;—;. The moment estimate of a, given

the observations Yy, Y1,... Yy, is,
n
Qn = n~! Z}It},t—l-
t=1

It is well known (see Hall and Heyde (1980), pp. 197-198) that under our assumptions, ay,

is a strongly consistent estimate of a. Moreover nl/ (ay — a) has an asymptotic normal

distribution.
i-1 .o
Define &; = ) (-1)’a’Y;_j,i = 2,...,n, and & = Y;. Using the structure of the
i=0
process,

£ =¢€;— (—a)iso ...... (2.1)

This shows that &; and ¢; are close enough for large ¢, only if |a| < 1, which in turn shows
that resampling is proper only in this situation. (For p > 1, this condition should be

replaced by the invertibility condition (see Hannan (1970)).
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So motivated by (2.1), we compute the pseudo errors as
1—1 o
bin=) (-1 alYi;,i=2,...n,61, = V1.
j=0

For ease of notations we will often drop the suffix n. Let G,, denote the empirical distri-
bution function which puts mass n~! at each &;,,7 = 1,2,...n. Let F, (z) = Gn(z — &)
where €, = n~! Z?=1 €in. It is expected that F, will be close to Fy with increasing n.

Take an i.i.d. sample (},) from F, and define
Y".* = e:n + ans:n_l, 1= 1, e (5

= €] + ape}_;, dropping the suffix n.

Pretend that oy, is unknown and obtain its moment estimate by
n
-1 L]
op=n Z Y'Y,
i=1

So the bootstrapped quantity corresponding to n!/?(a, — a) is n1/2(a} — ay). In the next
section we will see how accurate the distribution of n'/?(a} — ) is (given Yo, Y1,..., Y.)

in estimating the distribution of n'/?(a, — @) as n — oo in the next section.
Before we discuss the main results, we wish to introduce a few notations.

C will stand for a generic constant, and in probability arguments may depend on the

particular point w under consideration in the basic probability space.

For a sequence of random vectors X3,

S, =n"1/2 th.
t=1

The symbol G, = G will denote that the distribution G, converges weakly G. (Grn may

be random).

The function tn,, will denote the usual function associated with Edgeworth expansions.
This function represents the first (s — 1) terms of the Edgeworth expansion of the dis-

tribution of Sy, whenever such an expansion is valid. See Bhattacharya and Ranga Rao
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(1976, page 145) for the definition of ¥n,, when X; are i.i.d. Gotze and Hipp (1983) may

be consulted for a definition when X; are dependent.

B = (B1-.--Px) denotes a vector where each f3; is a nonnegative negative integer and
for any B, and f:R*¥ - R

1

Dﬁf()az—l—a—gr(l k)

where Bl=B1+ P2+ ...+ Bk.

For any random vector X, D(X) will denote the dispersion matrix of X.

3. The main results:

We first need some auxiliary results. Let F, denote the empirical distribution function

~ -~

(c) F,=Fas.

(d) FE, = F as.
Proof: Throughout the proof, arguments are for fixed w in the basic probability space and
hence all bounds etc. depend on w is general.

(a) By strong law of large numbers, it is enough to show that n=2 3" (e¥ — &%) — O ass.

But n~!(ek — E’f) — O trivially. Further

Z |<n—‘Z( leol*- JZts o



It follows easily that n=1 3" | |e;[’|al* 3" 0 V5 < k — 1. (Use e.g. Theorem 2.18 of
Hall and Heyde (1980)). This proves (a).

n
b) By (a), it suffices to show that n—1 €k — &%) 3 0. Note that a, 23 aand |a| < 1.
‘=1 1] 1
=
Hence for large n,

la| + |an —a] < B <1las.......... (2.2)

Also note that V; > 1,

o8, — 7| = |(an — a+ o) ~ o]

< Cjla, — a|f7~!

< Clap — a|é? for some 6§ < 1... (2.3)
Hence |n~! Z(El’ — &)
=1
n i—1 k i—1 k
=713~ (Z(—l)"a”n-j) - (Z(-l)"az;n_,-) |
1=2 J=0 =0

n i—1 i—1 k-1 i1 k—1
<n”! 2; [2"_1 Z |od, ~ o |[Yi_s| { (l ;(-1)’03,}?-3'!) + (l Z(—l)tatYi—jl) }J
1= =0 =0

k
SCn_llan—aIZ Zafm_,-] (by (2-2) and (2.3))

Thus it is sufficient to show that

k
n i—1
n~! Z (Z 67¥;_;| | is bounded a.s.

1=2 \ =0

k
n i—1
But note that Y; = €;4+ae;_;. Hence it is enough to show that n—1! ( > & Is,-_jl)
=2

1 7=0

is bounded a.s.
m .
Define Z,' = E&J,Ei_jl .......
Jj=0
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Then the sequence (Z;) is a stationary autoregressive process of order one and hence

ergodic. (See Hannan (1970), page 204).

Thus n~? ZZ," 5 E(Z)) < .

=1

k
i—1
But [ e j|| <2ZzE
J=0

This proves (b).
(c) Since (g;) are i.i.d. Fo, this readily follows from (2.1).

(d) Note that if F, and G,, are empirical distributions based on n tuples (z1,...,z,) and

(¥15-..,yn), then for all f such that f’ is bounded,
1 n
|EF.(f) ~ Ec,(f)| < - D If (=) — fws)l
i=1
1 n
<1 loo= D |z — wil.
1=1

(d) follows easily from this observation.

Before we study the bootstrap approximation, we need to develop an Edgeworth
expansion for normalized @,. To do this, we use a result of Gotze and Hipp (1983)

(henceforth referred as GH).

Let (X:) be R* valued random variables on (1, 7, P). Introduce the following condi-

tions.

Let there be o-fields D; (write U(nga D;) = Df) and a > 0 such that

C(1) EX, =0Vt

C(2) E||X:]|**! < Ms11 < 0o Vit for some s > 3

C(3) IVumeD " 3 E||Xn — Yom|| < c.exp (—a*m)

C(4) VAeD™,,BeD,,, |P(AN B) — P(A)P(B)| < c.exp (—a*m).
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n+4+m
C(5) 3d,6 > 0> V||t|| > d, E|E exp (st' X)NDj, #nl<1-6*<1.
. J J

Jj=n—-m
C(6) VAeD:f:, Vn,p,m, E|P(A|D;,j # n)—P(A|Dj, 0 < |j—n| < m+p)| < c.exp (—a*m)
C(7) lim D(n=Y% }" X;) = T exists and is positive definite.
n—oo t=1
Define the integer s, < s by

s _{s if s is even
°T ls—1 ifsisodd.

Recall that tp,, is the usual function associated with Edgeworth expansions and
Sp=n"Y2Y"  X;. Let 5 be the normal density with mean 0 and dispersion matrix

x.

The following results are due to Gotze and Hipp (1983).

Theorem 2.2. Let f : R*¥ — R denote a measurable function such that |f(z)| < M1 +
||z||°) for every zeR*. Assume that C(1)-C(7) hold. Then there exists a positive constant
6o not depending on f and M, and for arbitrary k > 0 there exists a positive constant C

depending on M but not on f such that
'Ef(‘Sn) - / fdzpn,al S CLU(f, n_k) —+ o(n_(s_2+50)/2)

where w(f,n"*) = [ sup(|f(z + y) — f(2)] : |y| < n*)¢x(z)dx.

The term o(-) depends on f through M only.

Corollary 2.3: Under assumptions C(1)-C(7) we have uniformly for convex measurable
C C Rk,
P(Sn6C) = 1hn s(C) + o(n=(e=2)/2),

Let X; = ¥1Y;_1 — a and D; = sigma field generated by €;. It can then be easily
shown that X satisfies the conditions of the above theorem under (A1) and (A2). We

omit the details. Thus we have the following proposition.
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Proposition 2.4: Assume that (A1) and (A2) hold. Let

n

Sp=n"1/2 Z(Yth—l ~ a).

t=1

Then a) Theorem 2.2 holds with the above S, and as a consequence,
b) P(8,eC) = ,4(C) + o(n(#=2)/2) uniformly over convex subsets of R.

We now develop an Edgeworth expansion for the bootstrapped version of the above

Sp.

In what follows we make the convention that the presence of (*) indicates that we are
dealing with the bootstrapped quantity and hence expectation etc. are taken w.r.t. (¢})

1
iid. F, given Yp,Y1,...,Y,.
Define X! = YY:  —ap,i>1

n
H;(t) = the characteristic function of n—1/2 ‘2:1 X3
J=

We have the following lemmas. The proofs are only sketched and the details can be filled
in from GH.

Lemma 2.5: V|t| < C.n®°, we have
IDP(HR () = 7,0 )] < C(1 4 iy ) (1 + [H2C D+ ep(—CJt[2)n(e=24e0)/2

for some ¢ < 1/2 and C depends on the bounds of Mgty n = ($41)th moment of X;. DP

is the usual differential operator, A;';, o (t) the Fourier transform of ¥p,s> the usual function

associated with Edgeworth expansions and 18] < s+ 2.

The proof is exactly as the proof of Lemma 3.33 of GH and we omit it.

Let Iy = {t: Cn® < |t| < C1n1/?}

I={t: Cin'/2 < lt| < E‘lnl/z} where C} is to be chosen and 0 < &€ < 1 is fixed.
Lemma 2.6: Under (A1) and (A2), we have for almost every sequence (Y;),

/ D H (8) |d = o(n=(*=2/2),
tEIg
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Proof: A careful look at the proof of Lemma 3.43 of GH shows that it suffices to show that
E*[E*A;ID;,J' # Jp| < 1 uniformly in tel, and p = 1,2,...,J where

Jptm
Ay = exp(itn‘l/z. Y. Z}),D} = o(e}) and for definition of Jp

J=jp—m
and m see GH. We omit the details of the definitions since they are not used explicitly in

the sequel. Suffices to note that Jp is fixed and the above expectation is independent of m

(see below).

The above expectation equals

Jpt+m
bam = E*|E* exp(itn™/2 " X})|ek, 5 # jl.
J.=jp—m
ndm 2 2
* * * * % * %*
Note that J__JZ: mXJ- =€}, (Yjp—l +anY ,+ € 41+ ansjp_l) +onej?+V
=jp—

where V is independent of E;P.

Let K, denote the distribution function of Yj:—l + anY}’; 42t s;p 4t aie;p_l.

Then 6y, = [ | [ exp(itn='/2zy + itn=1/20,22)dF, (z)|dK (y).

As t varies in I, (tn_l/z,tn‘lﬁan) varies in a compact set bounded away from zero. Let

D denote any such set in R2.

6rn < sup /I/exp(iﬂlzy+iﬂzzz)dﬁ‘n(z)[dK,’;(y).
(!91,192)81)

Let b1,b2 > 0 (to be chosen). Then
bnm < Kp(b1 <|Y| < bo)I1n + K (Y] < b1) + KZ(|Y] > b2)

where I1, < sup sup ]fexp(z'ﬂl.'z:y+it92z2)dﬁ‘n(z)|.
by <[y|<b2 (9:1,92)eD

Note that by Lemma 2.1, K} = K a.s. where K is the distribution function of
Y1+ aYjy2+ €541 + azsj_l, which is non-degenerate. Thus b; and b, can be chosen

such that for large n,

KL (Y] <by) + K:(Y] > b2) < a < 1.
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Note that F,; = F, a.s. and we have Cramer’s condition for (e1,€), (e1,€%) ~ F,. Using
the fact that the convergence of a sequence of characteristic functions to its limit is uniform
over compact sets, we have Iy, < 1 — 4 < 1 for large n. Thus bpm S (1 =) +ay <1

proving the lemma.

Lemma 2.7: Under (A1) and (A2), for sufficiently small Ci1, we have for almost every
sequence (Y;), |B] < s + 2,

/ \DPH (2)ldt = o(n—(e-2)/2),

tEIl

Proof: As in Lemma 2.6 it is sufficient to deal with the original variables instead of trun-
cations. As before we proceed as in Lemma 2.6 following GH but use a different estimate

for E*]E'*A;]e;-‘,j # Jpl-

We have to deal with
bim = E*|Eexp(it n™Y/2(c} A% + aner?))|D;, 5 # n

where Ay =Y} | + anY o+ Epy1 t+ ais;_l.

’ -|)8
Note that 67, = E*|1 - 22 D(e},e:2)tn + £ Wa E* ||(e2,e22)|12| where t =

(tA;';,tan), ly| < 1.

E([ta1°) .
6n3/2 ”371

where #an = E*[|(e5,€2%1° — El|(e1,¢3)Pa.s.

tl
Thus 6., < E*|1 - ﬁ D(ey, ex%)t,| +

E* (ltall®) < HIF[E* (432 + o2)3)1/2

Note that E*(A;? + a2)® — E(A? + a?)® a.s. where A = Y] + a¥s + Y, + o?Y;.

Hence for some constant C ,

Z([tnl®) . _ Clitl® [1£]®
W”’3ns 32 SCC]TG.S.
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On the other hand,

* t, % *
E*|1- 2—':;D(sn,€n)2tn| |
1/2
" ¢ D(e* é:=(-2) 2
< * _n * *2 n n'Sn
< [E {1 2nD(en,e,, )+ <“—2n )

Let X(A) and A(A) denote respectively the maximum and minimum eigenvalues of A.

Denote £ = D(e;,¢2), £, = D(e7,€7%). Note that A(£,) — X(£) > 0 a.s. and AE,) -

A(¥) > 0 as. (by Lemma 2.1).
R A )14
* n n < n * n
g (b ) <3058 (_W )
and arguing as before, the proceeding quantity

t 2
< CClu—a.s.
n

On the other hand,

Combining these estimates and choosing C; sufficiently small,

<exp (-2LL).

n

i 2
bpm <1— 'yu, for some v > 0 a.s.
n

A look at the proof of Lemma 3.43 of GH shows that this proves the lemma.

The following lemma is stated in Babu and Singh (1984) (henceforth referred as BS)
and is a modified version of a lemma in Sweeting (1977).
Lemma 2.8: Let P and K be probability measures and Q be a signed measure on R*. Let

J be a measurable function such that |f(z)| < M(1 + |z|®) for some s > 2. Further let
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a=K(z:|lz]| <1) > 1 and M, = S l=ll**2K (dz) < co. Then for any0<é<1,

| 142 - @) < a1t (31 - g1 +peB
+B [+ [lell) 3 (P - @)z
+ sw (1,262 )0

llz]|<&1/4

where

Ke(dz) = K(6™dz) and B = 9*, ) / (1 + [l21*) (P + |Q|)d,
M, (f) = sup(1 + ||z][*)~ £ (z)|.

Further we have for any 0 < Izl <1, 0< 6 <1,

[ w605 - o)ay <3 [wlr8.060)4

+CM(Mlf 1 exp(=L1z)-2).

From Lemmas 2.5 — 2.8, we have the following theorem.

Theorem 2.9: Assume (A1), (A2) and la] < 1. Suppose f: R — R is such that
[f(z)] < M(1+ |z[?). Let o =FE* (Sx%). For a.e. Y,,Y1,... and uniformly over ;veR,

(&) 1B1(57) = [ 1au3,3) < Cau(f,n=*,032) + o172
T
(b) P*(ox1Sr <z)= [ Wna(029) +0(n"1/2) = P(o-15, < 7) 1 o(n=1/2),
—oo
We omit the proof. For a proof in the i.i.d. case see BS.

For p > 1, we have correspondingly the following results.

Theorem 2.10: Let H be a function from R? — R which is thrice continuously differentiable

in a neighbourhood of 0. Let £ denote the vector of first order partial derivatives of H at

0. Assume £ # 0 and that (a;) satisfies the invertibility condition,
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Let

T(F) = n'/? [H(n-l Y WiYieei— i), i=1,...,8) - H(o)] , 02 =058
k=1
T(F:) = n'/? [H(n_l Z(Y;Y;_,. —BL),i=1,...,60 — H(o)] , op =08
k=1
where

L= lim D2 ¥iVis i=1,...,0)

n—oo
k=1

Tn=D"(n"2Y VY, i=1,...,0)
k=1
Bi = E(YiYis), Bin = E*(YiYi ) i=1,...,L
Then sup |P(¢'T(F) < z) — P*(o},"'T(F}) < z)| = o(n=1/2) as.

Proof: Proposition 2.4 and Lemma 2.5 — 2.7 remain valid for

(n~Y2 > (Vi¥e—i — fi), i=1,...,£) and (n_1/2 YWY -8, i=1,... ,2)
k=1

k=1
respectively. Thus arguments analogous to Theorem 3 and Corollary 2 of BS yields the
theorem. We omit the details which involve Taylor expansion of H and a kind of change

of variable formula.

The above result is true with vector valued H with proper modifications. This is
because Theorem 3 and Corollary 2 of BS remain true for such functions. The estimates

n
of ay,...,a¢ in general moving average model are smooth functions of n—! Y Y

j=1
i=1,...,L

Hence Theorem 2.10 can be utilized to prove results for these parameter estimates.

Theorem 2.11: Under assumptions (A1) and (A2) for a.e. Y,,Y1,...,

(a) If£=1, and |a| < 1,
sup ]P(n1/2(an —a)fo, <z)~ P(nl/z(a;“l — o) /on < z)| = o(n‘l/z)
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where

0? = limiting variance of n!/2 (an — @)

02 = Variance of n/?(a — an) (given Yo, Y1,...,Y;,).
(b) Let £> 2 and (a;) satisfy the invertibility condition.

Let G, denote the distribution function of £—1/21/2 (an — @iy..., 00 — @), where
¥ is the limiting variance—covariance matrix of nl/2 (e1n — ay,... s Cpn — Qp). Let G}

denote the corresponding bootstrapped distribution function. Then

sup [Gp(z) — G}, (z)| = o(n=Y/2),
zeR?P
Proof: (a) The case £ = 1 is Theorem 2.9.

(b) For £ = 2, the moment equations are

n
-1
Q2n =N E yrth-—2

t=1

n
a1n(l+ azy) =n7! Z Y:Yi 1.
t=1

Thus

n
Qop ~ @z =01 Z (YiYi_2 — B2) = Z3, say
t=1

ain(l+ azn) — a1 (1+ az)=n"! Z (YiYi_1 — ,B”l) = Z1p say
i=1
Z 1 —
n +a1( —--l- az) — oy, Zz") ’
1+a2 +Z2n

Thus (a1n — a3,02, — @2) = (

Now the result follows from the multidimensional version of Theorem 2.10.

The idea of proof for general p is clear from what we have shown. However, solving
for the estimates ajy,,..., g, becomes increasingly difficult with increase in £.
Remark 2.12. In the situation of i.i.d. observations, Hall (1988) has shown that error rates

of O(n~') can be achieved for quantile estimates. This is based on a O(n~1) expansion of
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the bootstrap statistic. Abramovitch and Singh (1985) have shown that an error rate of
o(n"(“"z)/ 2), s > 3 can be obtained for the cdf of a modified bootstrap statistic provided
a sufficiently high order Edgeworth expansion is valid for the bootstrap statistic. Our
attempts to derive O(n~1) results in the present context has not been successful since we
have not yet been able to prove a higher order Edgeworth expansion for the bootstrap

distribution.

Remarks 2.13: The assumption that (€:) have mean O and variance 1 was imposed to keep
the proofs simpler. We sketch below how the case E ¢; = u, E €? = 0% (both x and o2

unknown) can be tackled. We illustrate the case p = 1 only.

The model in this case is,
Y: = p+ et + aes_1 where (A1), (A2) hold but E e2=02>0

Under assumptions (A1), (A2), Edgeworth expansion is valid for the distribution of

n_1/2 (Zn: (Yt - ’71), i (lft}’t—l —_ ’72), zn: (}/tZ - ’73)) ...... (2.5)

t=1 t=1 t=1

where 71 = E }It, Y2 = E Yth_l and Y3 = E )/;2.

Estimates pp, an and 02 of 4, a and 0? are obtained by solving

n
n1Y Y= pn
t=1

n
n"1Y Vi¥i1 = pd + ano?
t=1
n
nTtY VP =pk+ak(l+02).
t=1

These equations give the moment estimates.
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Hence

n
pa=n"1) ¥
t=1
02 = [y§ + (v3 + 4y3ys) Y 2] /2ys

n
where y; =n™! Y V.Y; -l
t=1

n
Yz = n—IZYtZ — ph.
t=1

Note that the positive square root has to be taken since as n — oo, a.s. y3 > 0.

Qn = Y2 / On.
. . n n n
Thus all these estimates are smooth functions of tgl Y:, t; Y:Y;_; and té:l Y2
Hence for a suitable normalizing factor Bo, the distribution of nl/ zﬂo(an — a) admits
an Edgeworth expansion upto o(n~1/2), with the leading term as ®(z), and the coefficients
involved in the second term (which is 0(n=!/2)) are smooth functions of e, ¢ and o2 and

of moments of Y;,Y;Y;_; and Y2 ; of order less or equal to three. fy can be explicitly
t—1

calculated and depends on o, u and moments of ¢;.

The empirical distribution is computed by proceeding as before, the only difference is

that Y;’s are now replaced by Y; — p,,.

Proceeding as in the case u = 0,0% = 1, an asymptotic expansion is valid for the boot-
strapped version of (2.5), which yields an expansion of order o(n=1/2) for the distribution
of n1/ 2B (e — @y) where 3, is the bootstrap equivalent of Bas. The leading term in this
expansion is also ®(z) and the polynomial involved in the second term is of the same form
as that in the expansion of n!/28, (an — a). By ergodic theorem the empirical moments
of Y3,Y;Y;:_; and Yt2 converge to the true moments a.s. and hence Qp, Up and o, are
strongly consistent estimates of o, x and o respectively. Thus the difference between the

two expansions is o(n~1/?) as.
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4. Simulations

It is interesting to see how the bootstrap performs in small samples. The accuracy is
expected to decrease as the parameter values move towards the boundary (for £ = 1, as
lal — 1). A small simulation study for the moving average model with £ = 1 was done.

We also simulated the autoregressive process
Y =0Y: 1 +e, [6]<1

when 4 is estimated by the least squares method. Rate of o(n~1/2) is also valid for this
situation as was shown in Bose (1988). See Bose (1988) for the details of bootstrapping

the distribution of the least squares estimates.

For both the MA and AR models, we generated €;’s from eithér N(0,1) or from
centered Exp(1) densities. The parameter values were set at @ = 0.9 and § = 0.9 and
a series of size n = 100 was generated. The distribution of the estimator, standardized
by its true mean and true limiting variance was approximated by using 1000 replications
of the series. The first set of n = 100 observations was used to estimate the residuals
and generate the bootstrap distribution. The bootstrap distribution was approximated by

using 5000 repetitions for the AR case and 10,000 repetitions for the MA case.

The true (approximate) distribution, the bootstrap distribution and the standard
normal distribution have been shown in each case in the graphs. It is evident that the
bootstrap works very well in the AR case and reasonably well in the MA case. Similar
results were seen to hold for other parameter values. In fact the bootstrap does better as

we move away from boundary values of +1.

See Chatterjee (1985) for some more simulation studies. The study of the behavior of
the bootstrap in other complicated time series models is still open. The author is currently

working on the bootstrap in the class of nonlinear autoregressive models.
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