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Abstract

This paper establishes the asymptotic normality and the consistency-robustness of the
weighted least squares estimator (WLSE) in the generalized linear models with multiple nui-
sance scale parameters. In addition, noting that the asymptotic robust statistical inference in
presence of nuisance scale parameters requires a consistency-robust estimator of the asymp-
totic covariance matrix of the WLSE, this paper derives a class of covariance estimators and

proves their consistency-robustness.
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1. Introduction

The generalized linear model (GLIM) is characterized by the following structure (see
Nelder and Wedderburn (1972), McCullagh and Nelder (1983)):

(i) The responses { Y, }; , are independent with densities _
-1
¢, ¢,)exp{¢, [6,y,~b(8,)]} (1.1)

with respect to a o-finite measure v, where ¢i and Oi are unknown parameters,
O0< infiq)is supi¢i< oo, eie® for all i and @={ O: O<jc(y, ¢)exp{¢—16y}dv<oo }. Conse-
quently,

b =E()=b(@®) and oiz =Var(y,) = 0.b"(0,). (1.2)

(i) The mean ui=u(6i) is related to the linear combination x:B by an injective link function
g: M>R, x:B=g (ui), where the regressors { X, }: , are known p -vectors, P is a p-vector of
unknown parameters, x " is the transpose of the vector x, M=u(®°) and @ is the interior of ©

and is assumed to be nonempty.
Examples of GLIM can be found in McCullagh and Nelder (1983). In a GLIM, B is

usually the parameter of interest and has to be estimated from a finite sample of n observa-

tions y ,..., ¥ . The unknown scale factors ¢ are nuisance parameters.
Y ¥, ; p

In the special case of <|>l,=¢ for all i, the maximum likelihood estimator (MLE) of B, to
be denoted by Bn, is a solution of the log likelihood equation

HYV y-p =0, (1.3)

where y=(y ...y, )% u=(W® ... 1, B wB=g " (P), V=diag[5”©)]  and
H=( apllals . ap.n/aB ). In this case, the MLE of B is equivalent to the weighted least
squares estimator (WLSE) (Bradley (1973)). In addition, Bn possesses certain desirable pro-
perties which make large sample statistical inference possible. That is, under some regularity

conditions, Bn is consistent and asymptotically normal (Fahrmeir and Kaufmann (1985)).

Often in practice either ¢i ’s are unequal or one can not ascertain their equality. In either
case, due to lack of information, one can not obtain good estimates of q)i’s. Consequently, it
is tempting to overlook the presence of unequal nuisance parameters and make statistical

inferences based on a solution ﬁn of (1.3), which does not make use of any information about



¢i’s. It is desirable to study robustness of statistical inferences based on ﬁn in presence of
unequal nuisance parameters. To do so, this paper presents an asymptotic theory of 6 in the
n

GLIM with nuisance scale parameters.

When ¢i ’s are unequal, ﬁn is not necessarily the MLE but the WLSE or the generalized
least squares estimator (GLSE), since the true log likelihood equation is

H'o'Wv'y-w =0,
where @=diag [ ¢i ]nxn.

The paper is organized as follows.

In Section 2, the notations and assumptions are discussed. In Section 3, it is shown that
despite the nuisance parameters, the asymptotic distribution of [3n remains normal. This result
rests upon the relative stability of the central limit theorem. The consistency-robustness of Bn
is also established in Section 3. (We say that an estimator is consistency-robust iff the estima-

tor is consistent no matter whether ¢i are equal or not.) These results may still hold even if

the distribution of y, are not completely specified as in (1.1). See the discussion in Section 3.

The results in Section 3 show that the mean of the asymptotic distribution of ﬁn is the
same for both equal and unequal ¢i ’s. However, the covariance matrix of the asymptotic dis-
tribution of ﬁn, which will be called the asymptotic covariance matrix in the sequel, is
affected by the unequality of ¢‘, ’s. Consequently, for robust statistical inference based on 3n,
it is crucial to find a consistency-robust estimator of the asymptotic covariance matrix. The

asymptotic covariance matrix is shown to be of the following form:
n 2
Zn - Z,':lli (B)Gi ’

where li (B), i=l,...,n, are matrix functions of B. In Section 4, we will propose and present

justifications for estimators of X of the following form:

2 n A 2
2 =% L@ wr’,

=11
where wi’s are positive constants and r=yoW (ﬁn) is the ith residual. In particular, ﬁln is
shown to be the same as the estimators obtained by using the heteroscedastic bootstrap

(Beran (1986) and Efron (1986)) and the linear jackknife (Fox, Hinkley and Larntz (1980)).

The consistency-robustness of f‘.n is proved in Section 5.



In the special case of ¢iE¢’ Zn reduces to ¢E_n 1li (B)vi (B), where v, ([3)=b”(6i). An
i=
. . . ~ ~ A A -1 2 A
alternative estimator is then ¢n2in=1li (Bn)vi(Bn), where ¢n=n Z;lwiri /vi (Bn). The con-

sistency of this estimator is studied in Section 6.

2. Notations and assumptions

Throughout the paper, the minimum eigenvalue, the maximum eigenvalue, the transpose,
and the trace of a pxp matrix A are denoted by kmjn(A ), Kmax(A ), AY, and r(A), respec-
tively. The Euclidean norm of A is defined to be 1A I=[z(A"A )]%. For any positive definite
matrix A, let A% ( AYR ) be a left (the corresponding right) square root of A, ie
A=A AR (APEY=A™R | Define AT =A™y ! and AR =(A"®)\. The left (right)
square roots are unique up to an orthogonal transformation from the right (from the left).
Note that A% s not necessarily symmetric. When A s symmetric, we write

A AL p MR

We will denote the true but unknown parameter by BO and the admissible set of the
Tegressors X, by X, ie., xieX for all i. Let u(0@)=b'(0) and v(0)=b"(0) (when Oe @°, all
derivatives of b(0) exist). If v(0)>0 for Oe @0, M restricted to @° is an injective function.
Let ()= [g '(s)], where g is the link function, h(t)=n'(r) and C()=[k )’y [n@)].
Throughout the paper, N(g) denotes the set { B: |l [3—[30 I <&} for a positive €.

The modeling assumptions are as follows:

(M1) v (0)>0 for Be @0, 1 is twice continuously differentiable and £ (¢)=0.
M2) The admissible set for parameter B, denoted by B, is the interior of

{ B: n(x"B)e @° forall xeX }.

(M3) 0 < inf, C(x:B o) < sup, C(x:BO) < oo,

When n(¢)= ¢t (ie., M is the identity function), g is called the natural link function and B

is convex.

Let §, (B=((x]B), v, (B)=v [n(xfﬁ)], b (By=h (;B),
Z xx,

;]_ll



n

M P = Zizlxixfci P, @2.1)
and
F®=%" xxC @0, 2.2)

Denote Mn B 0) and Fn (BO) by Mn and Fn, respectively.

The design { X, }in= . assumptions are as follows:

(D1) Dn is positive definite for sufficiently large n and
lim max_ xD x =0. 2.3)
n—yoo i<sn i n i
(D2) There exists -a constant de (0,1] such that

limsup [\ (D )]”2‘1+6)/xmm(pn) < oo,

(D3) There exists a constant o > 0 such that

(6—a)/(1+a) <

. 2 T\
limsup _ max,_ llx I/ (D )] oo, llx ll=(x"x)".

Note that equation (2.3) is the Lindeberg’s condition for the classical linear model
(ui=x:[3). It implies that
lmn_)wlmjn(Dn) = oo, 2.4)
which is a necessary and sufficient condition for the consistency of [3" in the classical linear
model. (D1) and (M3) together imply that

. T, ,—1
hmn-—-)oomaxiSnci(BO)xiMn x5 = 0.

Assumption (D2) was discussed in Wu (1981). (D2) and (M3) together imply that

limsup A (M PO/ (M ) < oo,

Fahrmeir and Kaufmann (1985) proved the asymptotic normality of ﬁn for ¢iE¢ under
the following continuity assumption:
©) uM;VZLMn(B)M;V’R—I I >0 asn—woand Bp,,

where I is the pxp identity matrix. Since (C) involves the parameter P, it is desirable to
establish sufficient conditions for (C) in terms of the functions v and 1 and the design. Note
that



M B-M Z xxC(B IE,B/E,BY-11

=1 i i°

and

IIM:ALM’L(B)M; -1l = IIM (M (B)—M )M

<max,_ 18,@B)CB)-11 10 M M = pPmax,_ 10, B)-11.

Hence (C) is implied by
lim max, ICi B/ Ci (I30)—1 | =0,

n—eo, §—p,
which is implied by (M3) and

{ Ci(B) }:_l'is equicontinuous at [30.

(2.5)

When the admissible set of regressors X is a compact subset of R?, the above conditions

simplify considerably. Since {x:BO };l is compact and sup, lei ll<eo when X is compact,

(M3) and (D3) are satisfied and (D1) is implied by (2.4). From the continuity of {, the com-

pactmess of X also implies (2.5) and therefore (C) holds.

The asymptotic results in this paper are established under one of the following three

groups of assumptions:

(A1) Assumptions (M1)-(M3), (D1) and (C).
(A2) Assumptions (M1)-(M3), (D1)-(D3) and (C).
(A3) X is compact and Assumptions (M1), (M2), (D1) and (D2).

From the above discussion, Assumption (A3) is stronger than (A1) and (A2).

We need to discuss one more condition before stating the main results. Let { f

a sequence of functions defined on B and C be a compact subset of B. We say that {

is bounded on C if
sup,supg_ ;B <,
and that { fi }:__ ) is Lipschitz continuous on C if

TROZAN

supM B, 'YEC—T'—;"_ < MSMPBGC Ifl (B) |

}1
fli



for all i, where M is a constant independent of i.

Let f be defined on n_1(®0) and fi(B)=f (x:B). If f is continuously differentiable on
N(¢e) and X is compact, then fi ® }:;1 is bounded on N(g) and

f GEB-f oDl
Py b1eNe Byl PBeNe

| f’(x:B)l x| <M supy o] f(x:B)I

with
YL . T
M = supisupBeN(e) If (xi Bl sup. llxi I/ mfisupBeN(e) ¥i (xiB)I,

provided infisupBeN © lf (x:B)I>O. Hence { fi (5)) }l: ) is Lipschitz continuous on N(g).

3. Asymptotic normality and consistency-robustness of ﬁn

The technique used in our proof of the asymptotic normality of ﬁn is different from
Fahrmeir and Kaufmann’s (1985, Theorem 3). Their proof relies on the assumption that the

distribution of Y, belongs to the exponential family, whereas our results hold as long as
du®/de=v@®), , 3.1

by examining the proofs of Theorems 1 and 2. In fact, the density defined in (1.1) does not
belong to the exponential family. Our results hold for a general case where the log likelihood

of y, denoted by I (L, y), is determined by the system of partial differential equations
AW, y)op = £ ),

where 2=Var(y). In this case (1.3) is only a log quasi-likelihood equation (see Wedderburn
(1974) and McCullagh (1983)). Our design assumption is slightly stronger than Fahrmeir and
Kaufmann’s, i.e., they assume (2.4), which is implied by our assumption (D1). However,
since (D1) is equivalent to (2.4) and

lim  xDx =0,
the difference between (D1) and (2.4) is small. In the classical linear models, (D1) is also
necessary for the asymptotic normality of Gn (Huber (1981)).



We start with the case where g is the natural link function.

3.1. Natural link functions. Let e, B)= YK, (B) and e.=e, (BO). Equation (1.3) becomes
s, =3 x,hBle,® =0,

where s (B) is called the score function. Let -H_ (B) be a pxp matrix whose ith row is the
gradient of the ith component of s (B). When g is the natural link function, A (z)=1 and
s (B) reduces to Z_n Xi€ (B), and

1=

H ®) =M @),

where Mn (B) is defined in (2.1). Since Mn (B) is positive definite for large n (under (D1)), if
Bn exists then it is uniquely defined (as a solution of (1.3)). An slight modification of the
proof of Theorem 1 of Fahrmeir and Kaufmann (1985) leads us to the following result.

Lemma 1. Under Assumption (A1), there exists a sequence of random variables Bn such that
P(sn(Bn)=O)—-> 1 (3.2)

and f’)n is weakly consistent, i.e.,
Bn —)p Bo ) (3.3)

where —->p denotes convergence in probability.

Theorem 1. Under Assumption (Al),
14T A
=@ -B) >, NO, D), (3.4)
where — g denotes convergence in distribution and
> =M"'F M. (3.5)
n n n n
Proof. Denote s, (BO) by s . There is an € >0 such that N(e)cB. From Lemma 1,

P(s, (Bn)=0 and BneN(e) )->1. Hence we focus on the set { s (Bn )=0 and B eN(e) }. By

the mean-value theorem,



* oA
sn = Mn (Bn)(Bn_BO)’
where ]3;I= is on the line segment between B and B . Then

—aL

M s =M MM @M MR

—B,)-
From (1.2) and (2.2),
EQL s s M) = MR x BB M = MTE MU < (up 9 1
Hence M s —0 (1). By Lemma 1 and (C), M M ([3 )M —) I and therefore
Mn (Bn_BO) = Mn sn +o (). (3.6)
Since (inf,0 )M '< X S(sup,q;,)M‘l,
(sup,0.)"'p < or (1M = 0x M2 < (inf0.)'p. 3.7)
Hence from (3.6) and (3.7),
AL A WL, -1
z (Bn—BO) = En Mn s+ op(l).
T, 1
From (D1) and (M3), maxiSnxiMn X, —0. Thus,
> - N©, D
n n n d

from Lemma 2 stated below. This completes the proof. O

Lemma 2. Let { §i }; 1 be a sequence of independent random variables with E§i=0 and

supiE Iéi I2*€ < oo for a constant € > 0. Let { c, }::1 be a sequence of constants satisfying

n—oo

. 2/ 2
lim  max. c /Zi=1ci =0.
Then

Zin: i &i/ [Var (Zin:lci &i )]% -, N(0,1).

Proof. This can be shown by directly checking the Lindeberg’s condition. [J

3.2. Nonnatural link functions. For the case where g is a nonnatural link function, the fol-

lowing lemma is very useful. The proof of this lemma is in Wu (1981).



"Lemma 3. Let C be a compact subset of R?, { fi };:1 be Lipschitz continuous on C (see

Section 2), and { &i }; ) be independent random variables with E §i=0 and sup E E_,lz < oo,
1 = " 2 o0 OQ,
@ If dn—zl_=lsupseclfi(s)l —o0 as n—oo, then for any o > 0,

n (1+o)/2
sup__ Clzizlfi(s)gil/d -0 as.

n

(i) If dn —d < oo and a is a sequence of positive constants satisfying a —», then

supseclz,llfi(s)&i I/an -0 as.

When g is a nonnatural link function,
H B =M B -R B),
where
R B)=3" xxv (Be®),

v, ([3)=\y(x:[3) and y(z)=n"(z). In this case, the uniqueness of the solutions of (1.3) can not be
guaranteed. However, examining the proofs in the previous subsection, it is evident that the
assertions in Theorem 1 and Lemma 1 are still true for a sequence of solutions of (1.3) as

long as

M M1 50 as.
n n n

as n—o and IIB—BO Il —0. This follows from (C) and

1], —14R
Ian Rn(B)Mn I -0 as. (3.8)

as n—eo and IIB—BO I —0.

Lemma 4. Assume (2.4), M3), (D2) and (D3). Suppose that { \|Ii([3) };1 is bounded and
Lipschitz continuous on N(g) and { W, B) }; . is equicontinuous at ]30. Then (3.8) holds.

Remark. If the range of X, is compact, then {\|/i (5)) }l: . is bounded on N(g) and
{(h® }; is equicontinuous at B . Conditions under which { v, (B) }:_: | is Lipschitz con-

tinuous on N(g) are discussed in Section 2.



Proof. Let 'cn=7umm(Dn),
WP =3 xxv@e

and

U®=X" xxv,@kB)r Ol
Then R B = W B) + U (B). From IIM;1 h<c 11;1, where ¢ is a constant, we have

I W @M < M W @) <c 7w @) (3.9)

Let X, be the kth component of X, and g, ’kj=2_n x,2x,? for any (k, j). Then from (D3),

max, g . Smax,_ lx | E i 2

(1+3)y(1+o)
< max, lei I [p?Lmax(Dn N<e Z[Xmax(Dn )] ,

where ¢ ) is a constant. Then from (2.4), (D2) and Lemma 3, for any (k, j),
n
supBEN(e)lZi=1xikxijwi (ﬂ)ei I/Tn. —0 as.,

which together with (3.9) imply

SUpg, N()IlM W (B)M Ry 50 as. (3.10)

Also, there is a constant ¢ >O such that for all »,

IIM ALy (B)M ARy < comax_ 11 (B (B! — 0 (3.11)

as |l B—BO Il -0, since { K, B) };1 is equicontinuous at BO. Then (3.8) follows from (3.10) and -
(3.11).0

From Lemma 4 and the above discussion, we have

Theorem 2. Assume that { v, ()] }; is bounded and Lipschitz continnous on N(g) for an
€>0 and { W, (5)) };1 is equicontinuous at [30. Then under Assumption (A2), the assertions

in Lemma 1 are true and for any { ﬁn }; , satisfying (3.2) and (3.3),

10



T B —B) -, NO,I).

3.3. Strong consistency-robustness. The weak consistency-robustness of Bn has been esta-
blished above. To prove the strong consistency-robustness of ﬁn, we need to assume that the

Iegressors have a compact range.

Theorem 3. Assuming (A3), the following two assertions hold.

(1) If g is the natural link function, then there exists a sequence of random variables ]f’)n and a

random number n 0 such that

P( sn(Bn)=o forall n2n )=1 (3.12)

and

B —B, as. | (3.13)

(ii) If g is a nonnatural link function with { \Z B }; L being Lipschitz continuous on N(g) for
an € > (, then (3.12) and (3.13) hold.

Proof. (i) When X, the range of X is compact, (D2) implies

A M B2 ch (M )],

BeN@E), n 21, (3.14)

with some positive constants c, € and n r Then the proof of (3.12) and (3.13) is the same as
that of Theorem 2 of Fahrmeir and Kaufmann (1985).

(i1)) We first show that almost surely,
H@)2cM @), PeNE), n2n, (3.15)

for some constants 80>0 and ¢ 1>0 and a random number » . From the conditions in (ii) and

the compactness of X, there is an € 1>O such that

p = sup, lei I supisupﬂeN(el)lvi (B)hi B! supisupBEN (sl)lwi (B)/ Ci B)! < oo.

1y . . .
Choose € A min( € P ’ép ! ). Using the same notation as in the proof of Lemma 4, we have

1M @U, GM, G < p sup supy 1w, BIE B 1, B, B!

Wgeney N(e,)

11



73 1
<&, p sup, lei I SUP,SUPg (EO)Ivi (B)hi B! SUP,SUPg e ) |\|Ii B)/ Ci Bl < Ep 'ép < 1.

Hence for Be N(eo) and all n,

—AL ~Y5R %
M BU, M B <e p o L
From the compactness of X, there is a constant ¢ 2>O such that

i EEem ™ < ¢
n n

SUpp N(e,) 2

Then from (3.10), almost surely,

MW M B <e,I,  BeNE) n2n,

for a constant €,< 1—80 p%p and a random number 7 5 Let ¢ 1=1—-(£0 pl/zp+£2). Then almost

surely,

MBR M @) < €,p pte) I, BeNE) n2n,

and

M ®H M B zc I, BeNE), n2n,

Hence (3.15) holds. Then from (3.14), almost surely,

AolH B2l )1 BeNEe), n2n

2’
where ¢ >0 is a constant. The rest of the proof is the same as that of Theorem 2 of
Fahrmeir and Kaufmann (1985). O

4. Estimators of the asymptotic covariance matrix

We have shown in Section 3 that [3" has an asymptotic normal distribution with mean 3 0
and covariance matrix Zn (3.5). For statistical inference based on [3", a consistency-robust
estimator of Zn is required. More precisely, regardless of equality or lack of equality of ¢i ’S,

we need an estimator f‘.n such that

A sR_1 50 (or =0 as.). 4.0
n n n P

12



Note that (3.4) is true for any choice of the square root of Zn. Let }:“.;/zL and ZZZL be the
Cholesky square roots of f}n and Zn, respectively. Then as argued in Fahrmeir and Kaufmann
(1985, Remark (iii) after Theorem 3), (4.1) implies Z;VZLi;ALapI and therefore

$%L A

(B By -, NO, D).

When it is desired to make inference about lTB e where [ is a known p -vector, the following
discussion shows that the computation of the square root of }3n can be avoided. Note that

(3.4) is equivalent to
'@ B D" - L N©.1) forany IR, 140,
Then, for statistical inference, we need
T T
(I znz)/(z z ) —->p1.
But this is guaranteed by (4.1), since (4.1) implies
S 5 5o
n n nn n P
for any vectorl satisfying IIl =1 and
(zz l)/(l): 1)—1_[12 (z z z —1)}: l]/(lZ‘. n=1 (>: z z —I)ln
with 1 —z R la*s 1)
-1
Let T (B)=M_'(B)F (B)M_'(B). Then
— 2 -1
Z, =ZB)=M, BT xxh’B)o M B). 4.2)

A natural estimator of Z is obtained by replacing 0' in (4.2) by an estimator 6‘ and B by

A 2

Bn. If 0' (or (]) ) are nelther known nor functions of B, consistent estimators of G, are not
2

available in general. Nevertheless, one may use estimators based on residuals, i.e., 6;‘ =w.r’,

where w, are positive constants. The resulting estimator of Z‘.n is then
& -1 .5 n T, 2.4 2. 1.a
z =M B)X,_xxh Bwr ™M (). (4.3)

It is provéd in Section 5 that 2’1 defined in (4.3) is consistency-robust (i.e., (4.1) holds)
for any w, satisfying im  max,_ |w —11=0. Let us illustrate that the same estimator 3
3 n—oo i<n i n

(4.3) may be obtained by using two alternative methods as follows.

13



(1) The heteroscedastic bootstrap. This method is an extension of the bootstrap method
to the case where the observations have unequal variances (Beran (1986) and Efron (1986)).
In view of (3.6), Bn-BO is approximated by M;lsn, which has covariance matrix Zn under a

[ . 2 oo . " 1"
probability structure with parameters P, { o, }i_l. For given y, one may generate "data

y:,..., y: from the same probability structure but with the parameters being estimated by

A 2 oo -1,
Bn, { 6'i }i=1. Then the resample analog of Mn s is
-1 n A * A
M_BOX” x kBB
and its covariance matrix under the bootstrap distribution is

Var M (l3 )Z Xh(B )y]—M (B )Z h(B )Var(v)M (B)

which is identical to £ (4.3) since Var, (yi*)=6i2.

(2) The linear jackknife. Fox, Hinkley and Larntz (1980) introduced the linear jackknife
for estimating the covariances of the least squares estimators in nonlinear regression models.
The resulting estimators are consistent (Shao (1988)). The linear jackknife in GLIM is
described as follows. Let B be the WLSE of P obtained by deleting the data (y x ),
j=1,...,n. From (3.6),

|3—[3 M s —M Z xh(B)e

=1ii
and
|
ﬂn,j—Bo - Mn,jzi;ejxihi(ﬂo)ei’
where M —Z i XX C; (B ). Then
B—B xh(B)e —M xxC(B)M Z xh(B)e, 4.4)
sinceM M -M (M —M )M ——M; XX, CJ,(BO)M;J,. Note that
\ 2 _ 2 T, 2
EIM, xjhj (Boe, 17 = 6.0’ Bx M,
and

EIIM xxC(B)M Z xh(B)e 12 <(sup<[>)§([3)tr(M xxM xxM )

14



- (supi ¢, )CJz(BO)(xJTM;j,xJ )(ijMn_zxj )1 .

i.e., the second term on the right hand side of (4.4) is of a lower order than the first term.
Thus,

A A gl
|3n—[3n’j =M xjhj(BO)ej.
Replacing BO by Bﬁ and €, by r.we have
~ | ~
BB, =M, B xh®B ),

. 1,4 A . o A .
ie., Mn (Bn)xj hj (Bn)rj is the dominating component of Bn—Bn’j. Note that the weighted

jackknife estimator of the asymptotic covariance matrix of ﬁn is (Wu (1986)):
n A A A T
X @B, 08,8, 0"
Taking the dominating component of ﬁn—ﬁn i the linear jackknife estimator is
-1 n T, 2 2. .14
Mn (ﬁn)2i=1xixihi (Bn )wiri Mn (Bn)’

which is of the same type as the estimators defined in (4.3).

Note that in the classical linear model where h=1, v=1, and ¢iEGi2’ the linear jackknife

is exactly the same as the jackknife.

5. Consistency-robustness of }:“.n

We prove the consistency-robustness of ﬁ‘,n (as defined in (4.3)) first for the special case
of classical linear models, then for the GLIM with natural link functions and finally for the
GLIM with nonnatural link functions. Throughout this and the next section, we will assume
that the coefficients w, in (4.3) satisfy

limn

_)mmaxlTSn Iwi—l I =0. B.1)

5.1. The classical linear model. The results in this subsection are not special cases of the
results in Subsections 5.2 and 5.3, since we do not need to assume that the distribution of Y,
is of the form (1.1) in the classical linear model. Only
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supiEyi4 < oo (5.2)

is assumed, which is satisfied if Y; has a density given in (1.1). Our results are also exten-
sions of those in Shao and Wu (1987) for "delete-one” version jackknife estimators, where

A . (D )2 cn for a constant ¢ > 0 is assumed.
mim n
Recall that in the classical linear model, ui=x:[3,
. T 2 -1 2
X =D d, xx oD, o =Var(y)

i=11 i i
and
& Ty 2,.-1 vy
zn =D, Zi=1xixiwiri D, =y xiBn'
Theorem 4. (i) Assume (5.2) and (D1)-(D3). Then
> As AR o,
n n n P
(ii) If in addition, X is compact, then

s s 1 50 as.
n n n

Proof. In view of (5.1), without loss of generality, we assume wiEI.

(i) It is known that Bn - o &5 under (D1). Note that Fn (2.2) reduces to

n T 2
= o..
Fn Z,':lxixii
Let
G -anxe
n Syl

where €= yi—x:BO. Then by Kolmogorov’s strong law of large numbers (e.g., Wu (1981,
Lemma 2)) and (5.2),
.n x2x.2)1/2(1+a)

X -0 a.s.
i=1 ik ij

n 2 2
Zi=1xikxij (e, -, IE
for any (k, j), where o > 0 is given in (D3). Then by (D2) and (D3),

IG —F I /xmin(Dn) -0 as. (5.3)

16



Write
_%LA 1
p)) ZZ —I E (A+B+C)Z
n nn

whereA—D GD B—D Z

—1:1

Then by the Cauchy-Schwarz inequality, the result follows if
A 31 5 0
n n n 4

and

From
R I z A 5 )z
n n n
=3 #pG -F g =¥ p™p G —F )p D xR
n n n n n n n n n n n n n n
(5.4) follows if

||z D 1 =0q)

and

ID_ (G —F )D ) - 0.
Since Fn_1 < cD;1 for a coristant c >0,
™1 =@ s D =0 ®™D F'D DH < ep.
n n n n n n nn n n
Hence (5.6) holds. Also,
ID"*G ~F D1 < ID#121G -F Il =r (D HIG —F |
n n n n n n n n n n
<G -F n/x D)0 as.

by (5.3). This proves

s 51 50 as.,
n n n

which implies (5.4). Note that

17
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-1
n

G4

(5.5)

(5.6)
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<(x2x)uz (B —[5)|| <c(xD” x)uz (B B I°

for a constant ¢ > 0. From E I (3 —B )%= p, nz
2
max._ u <c max, _ x IIZ (B —[3 )II —> 0.
Thus by (5.6),
uz B z Ry <max_ u ||>: D z AR ) < max, uileZ:/ZLD:/Z 2

TWBL-VAL

=@ B =[xz = B oI

This proves (5.5) and therefore completes the proof of (i).

(i1) From the proof of (i) and (5.6)-(5.7), we only need to show that

2
max, u -0 as.

. . 02
Since X is compact, sup, le, I” < co. Then

max, _ u2<sup IIx Il IIB —[3 120 as.

by the strong consistency of Bn. O

® -B, )||2=0 (1). Then by (D1),

5.2. The GLIM: natural link functions. We return to the GLIM with natural link functions,

i.e., #=1 and therefore

and

z —M Z xxO'M

i=1 i i

a -1 n T 2, .1
2'n - Mn (Gn)zi=1xixiwiri Mn (Bn)

Theorem 5. (i) Suppose that Assumption (A2) holds. Assume either

or

{ K, (5)) }:;1 is equicontinuous at Bo

(v.® } ; , is bounded on N(e) for an & > 0.

18
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Then
A s o,
n n n p
(ii) Suppose that Assumption (A3) holds. Then

sS sR_ 1 50 as.
n n n

proof. Again we assume that wisl. Let u=r-—e=H (BO)—ui (Bn). Examining the proof of

Theorem 4, the result in (i) (or in (ii) ) follows from

N 4B = 0 (1) (or O(1) as.), (5.10)
M@ )= 0, @ or 0@ as.), (5.11)

where © =A__ (D ), and |
max_ u’ = o (1) (or o(1) as.). (5.12)

From Lemma 1 and Theorem 3, the conditions in (i) (or in (ii)) imply Bn -, [30 (or
Bn_>B0 a.s.). Note that

VB P = oM ETMAB )]

n
Y% A Y% A VB -1 4 :
<c oM "B M M B N =c oM M@ M
for a constant ¢ > 0. Then (5.10) follows from (C) and the weak (br strong) consistency of
Bn. Similarly, (5.11) holds since
-1, -1 —% a VSN
M BT M @M M B L.

If (5.8) holds, (5.12) follows from the weak (or strong) consistency of Bn. Note that the com-

pactness of X implies (5.8). Hence it remains to show that
max, u,2 -0
i<n i P
under (5.9). By the mean-value theorem,
2 2.a%\r. T _ 2
u”=v @@ Y1,

where B* is on the line segment between B o and [3”. From Theorem 1, Z:/ZL(Bn—B 0):Op(l).

Hence by (D1),
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T4 2 T -1 ~L A 2
maxiSn[xi(Bn—BO)] <c maxl,SnxiDn X, IIZn (Bn_BO) I —)pO,

where ¢ >0 is a constant. From (59) and the weak consistency of Bn

max. viz(B*) = OP (1). This completes the proof. O

5.3. The GLIM: nonnatural link functions. As we discussed early, the solutions of (1.3)
may not be unique for nonnatural link functions. We say that { Bn }:; . is a sequence of
weakly (or strongly) consistent solutions of (1.3) iff (3.2) and (3.3) (or (3.12) and (3.13)) hold
for Gn. The existence of a weakly (or strongly) consistent sequence of solutions of (1.3) is

proved in Section 3.

Theorem 6. (i) Suppose that (5.8) and Assumption (A2) hold. Also, {hiz([.’)) };1 and
{ v, B) }; , are bounded and Lipschitz continuous on N(g¢) for an € > 0. Then for any

weakly consistent sequence of solutions ﬁn,
—hLe YR
TTXET -1 0.
n nn )4

(ii) Suppose that Assumption (A3) holds and { v, (5)) }; ) is bounded and Lipschitz continu-

ous on N(g). Then for any strongly consistent sequence of solutions [3",

SLS R 1 50 as.
n nn

Proof. Assume wiEI. Let
Y PP n T, 2,48 « 2,,-1.5

An - Mn (Bn)zizlxixi hi (Bn)ei Mn (Bn)

and
-1,4 n T, 2,4 2.,-1.4a

Bn - Mn (Bn)zi=1xixihi (Bn )ui Mn (Bn)

From Theorems 2 and 3, Condition (C) and the proof of Theorem 35,
158 51 = 0 (or =0 as.)
n nn p

under the conditions in (i) (or in (ii)). Then it suffices to show

AR 1 50 (or =0 as.)
n n n p
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under the conditions in (i) (or in (ii)). Assume the conditions in (i). By Lemma 3, (D2) and
(D3),

SUPs e zi"zlxixfhf(ﬂ)(ef—of) IA_(D )0 as.
which implies, via (C) and the weak (or strong) consistency of Gn,
A = Z:ALM;I(Bn)Z;lxix:hiz(f}n)(eiz—o'iz)M;l(ﬁn )2:/2” =0 (or =0 as.).
Since
B = 0, T G O Iol
what remains to be shown is that
MBOZ] x5 b Bk BYlo M PB) - 0 (or 50 as).  (513)

If { hi2([3) };1 is bounded and Lipschitz continuous on N(g), then there is a constant ¢ > 0

such that
2.5 2 a
max. Ihi (Bn)—hi (BO)I <cl Bn_BO I (5.14)

for lgne N(e). From the remarks in the end of Section 2, the compactness of X implies that
{ hl,z(B) }; i is bounded and Lipschitz continuous on N(g). Hence the proof is completed by
noting that (5.13) follows from (C), (5.14) and the weak (or strong) consistency of [3n. O

6. The special case of 0.=0

From 6i2=¢ivi ([30), estimates of ¢i are (T)i=6i2/vi (ﬁn). When (])isq), Zn reduces to cl)M;l.
Thus, consistent estimator of Zn can be obtained by estimating ¢ consistently. A natural esti-

mator of ¢ is the average of (T)i:
O Ty 4 2 Al A 2
¢=n Z,-=1Zi (Bn)ﬁi =n Zi=1zi (Bn)wiri ’

where z, (BFI/V,- (B) and [3" is any sequence of weakly (or strongly) consistent solutions of
(1.3). For the classical linear model where zisl and ¢=Var (yi), @ reduces to the sum of resi-
dual squares if wiE(l—p /n )-1. The consistency of (f) is proved in the following theorem.

Thus, a consistent estimator of T s &)M;l(ﬁn ). It should be remarked that ¢ M:(Gn) is not
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« - . A _1 A . .
consistent if some of ¢i are not equal, i.e., ¢ Mn (Bn) is not consistency-robust.

Theorem 7. (i) Suppose that (5.8) and Assumption (A2) hold. Also, {zi B }:l and

{ v, () };: , are bounded and Lipschitz continuous on N(€) for an € > 0. Then
6 0.
(i1) Suppose that Assumption (A3) holds and { v, ®B) }; . is bounded and Lipschtiz continu-

ous on N(g). Then

6)—) o as.

Proof. Assﬁme wisl. Write
e ~ 2 . ) A 2 1l A
O=n Zi=1zi(Bn)ei +n Z,':lzi(ﬁn)ui + 2n Zi=lzi([3n)eiui.
From the proof of Theorem 5,
max, u,2—-> 0 (or -0 as.)
i<n 1 p

under the conditions in (i) (or in (ii)). Since { z, (B) }; ) is bounded on N(g), z, (ﬁn )<c for a

constant ¢ > 0 and ﬁneN(e). Thus,
-1 A\ 2
n E‘_":lzi (Bn)ui —>p0 (or -0 as.)
under the conditions in (i) (or in (ii)). From Lemma 3,
-1 n 2 2
supBeN(s)n lz,-=1zi (B)(ei —0; ) =0 as.,
which implies
-1 A 2
n Z;zi (Bn)(el_ --O'iz) —>p0 (or -0 as.)
under the conditions in (i) (or in (ii)). Hence the proof is completed if we can show
-1 A 2
n Zi=lzi(Bn)0'i ) —>p0 (or = 0 as.). | (6.1)
Since { z, B }:i . is bounded and Lipschitz continuous on N(g),

max,_ Iz, (Bn)—zi By scl ﬁn—sou

22



for ﬁneN(e), where ¢ is a constant. Hence (6.1) follows from ¢=n-12_" lzi (130)(7',2 and the
1=

weak (or strong) consistency of Bn. a
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