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SUMMARY

We compare the asymptotic efficiency of the ordinary least squares estimator (OLSE) and
the weighted least squares estimator (WLSE) in a heteroscedastic linear regression model with
a large number of regressors but a small number of replicates at each regressor. The WLSE is
constructed by estimating the error variances by the (within-group) average of squared residu-
als. It is shown that the OLSE is more efficient than the WLSE if the maximum number of
replicates is not larger than two. Comparisons of the asymptotic efﬁciency of the WLSE and
OLSE are given for the situation where there are three or more replicates at each regressor. A
method of estimating the relative efficiency based on the observed data is also proposed and its

performance is examined in a Monte Carlo study.
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1. INTRODUCTION

The linear regression is one of the most useful model in statistical applications. If the
random errors have the same variance, the classical theory shows that the ordinary least
squares estimator (OLSE) of the unknown vector of regression coefficients is the best linear
estimator and asymptotically efficient. In many practical problems the error variances are
unequal (heteroscedastic) and therefore the optimal properties of the OLSE are lost. If the
variances are known, the best linear estimator is the weighted least squares estimator (WLSE)
with the reciprocals of the variances as the weights. However, usually the error variances are
unknown. A natural and frequently used approach is to obtain estimates of the error variances
from the observed data and use the reciprocals of the variance estimates as the weights in the

WLSE. Typically, one may face one of the following situations:

(A) The error variances vary smoothly with the regressors or the mean responses. In this
case, consistent estimators of the error variances can be obtained and the WLSE is asymptoti-

cally more efficient than the OLSE (see Carroll, 1982).

(B) There is no deterministic relation between the error variances and regressors and
there are some replicates at each regressor. Great effort has been expended in finding estima-
tors of the error variances in this situation. See Hartley, Rao and Kiefer (1969), Rao (1970),
Rao (1973), Horn, Horn and Duncan (1975), Fuller and Rao (1978) and Shao (1987). How-
ever, it is common in practice that the number of replicates is small for each regressor and
therefore no consistent estimator of the error variance is available. If the weights in the WLSE
are based on inconsistent variance estimators, there may be a cost due to not knowing the

error variances, i.e., the WLSE may not be more efficient than the OLSE.

The purpose of this paper is to compare the efficiency of the WLSE and OLSE in situa-
tion (B). Most of the previous researches of this problem are limited to empirical studies.
Simulation results (e.g., Jacquez, Mather and Crawford, 1968; Rao and Subrahmaniam, 1971;
Fuller and Rao, 1978; Shao, 1987) showed that neither WLSE nor OLSE is always more

efficient than the other estimator.

After an introduction of some necessary notations and a preliminary result in Section 2,

we compare the asymptotic efficiency of the WLSE and the OLSE in Sections 3 and 4 under



various situations. The WLSE we focus on is the one introduced by Fuller and Rao (1978).

The overall conclusions are:

(1) The OLSE is more efficient than the WLSE if there are at most two replicates at each

regressor;

(ii) When there are at least three replicates at each regressor, the WLSE is more efficient if

the variation in the error variances is sufficiently large.

Therefore, to compare the efficiency, a study of the error variance pattern is necessary.
Such a study usually requires some additional information about the error variances. We con-
sider several cases in Sections 3 and 4 and establish some conditions under which the WLSE
(or the OLSE) is more efficient. In Section 5, we discuss the estimation of the relative
efficiency of the WLSE with respect to the OLSE based on the observed data. Some simula-

tion results are also presented.

2. ASYMPTOTIC DISTRIBUTION OF THE WLSE

The following linear regression model will be studied in this paper:

’ . . k
Vi =% B+ ;€ j=l...n, i=1..k, Ei=1ni=n, 2.1

where B is a p-vector of unknown regression coefficients, x; is the ith regressor (design) vec-
tor, xl.' is the transpose of X ¥y is the jth response at the ith regressor, C;e; is the random

error and e; are independent and identically distributed (i.i.d.) with mean zero and variance

one. It is assumed that the error variance Giz and the regressor x; satisfy

for some positive constants G, 6_ and ¢_. We consider the common practical situations
where the number of replicates n; is small, ie., 1 £ ngsSn, Sn_<eco for all i, while the total

number of regressors k is large. Denote the response vector by

y=(yn...y1nl ...... Vi1 Vi, Y



and the design matrix by

X=(x,...x;... ... X, oo %)
The design matrix is assumed to be of full rank. The OLSE of P is
B = xX)"X’y.
We focus on the following WLSE (Fuller and Rao, 1978):

B* = @wx) xX'wy, W =block diag. ( w11,ll - wkIn, )

where I, is the n;xn; identity matrix and w; are the reciprocals of the error variance estimates
=1¢m; Y 1V
X045 =X B

This WLSE is more efficient than the WLSE with the variances Giz estimated by the cus-
tomary estimators: the within-group sample variances (see Rao, 1973; Carroll and Cline,
1988). Fuller and Rao (1978) established the asymptotic distribution of 8 under the assump-
tion that e; are normally distributed. Their result has been extended to the general situation

by Shao (1988):

Proposition 1. Suppose that k~'( the minimum eigenvalue of XX )2 ¢ o for a positive con-

stant ¢ and that the distribution of eij satisfies the moment conditions:

E(eIZ/E;IeIZ-") =0, E[elleIZ/(Z;ilelzj)I] =0, r=1,2,

2+d ng 2 \~(148)
Ele 1“°<c¢ and E(Zj=le1j) <c,

where ¢ and 8<1/2 are positive constants. Then the WLSE B is asymptotically (as k —oo)

normal with mean P and asymptotic covariance matrix

_a-1 “1p 4 -1 -1 -1
Vy=A+4A7'B AT +4A'B VB AT, 22)

where 4, = 3.7 07 n tn 1, B, = 3 07w xx’, wn) = E(TY ey, and
V, = (X’X)“Zi" 62n.x.x. (XX)™! | 2.3)

=]¢ 1

is the covariance matrix of the OLSE B



Note that the first two moment conditions in Proposition 1 are satisfied if the distributions
of e;; are symmetric. Examples of distributions satisfying the conditions in Proposition 1,
which include most of the error distributions encountered in practice if ny=3, can be found in

Shao (1988).

The efficiency of the WLSE and OLSE are compared in Sections 3 and 4 by comparing

the asymptotic covariance matrices given by (2.2) and (2.3).

3. EFFICIENCY COMPARISON: THE BALANCED CASE

When there are equal number of replicates at each regressor, i.e., n,=m for all i, the
model (2.1) is said to be balanced. In this section we focus on this important special case.

When the model is balanced, Vl:" reduces to
[t o) (AHm ™V, +4m™V,, V, =m (¥ o7 %xx, )7 3.1)

If m is large, the WLSE is more efficient than the OLSE since VkSVk and

limm_m[m't(m )J}l=1 (Lemma 1 in the Appendix), where Vk is the covariance matrix of the

OLSE. However, in practice m is seldomly large. If m is too small (m =1 or 2), there is no

gain in using the WLSE. This is because under the conditions of Proposition 1,

VY-V, = [mtm)I 1+4m ™)V, +@m™2-1)v, > 0

if m £2. Hence the WLSE with m =1 or 2 is not recommended. We now consider the case

of m = 3.

3.1. General Sitnation

From (2.3) and (3.1),
VY =V, = [mtm)]" (1+4m DV, - a(m)V,], (3.2)
where o(m )=(m2—4)t(m )/(m+4). Note that Vk is the covariance matrix of

B=@WX)'X'Wy, W =block diag.(c]I, ...0;70 ),
i *



which is the WLSE when 0".2 are known. (3.2) indicates that if B is a(m) times less variable

than the OLSE f, then the WLSE " is more efficient than f.

The value of o) depends on the distribution of €+ For several different distributions,

the values of ol(m) are given by Table 1 for m ranging from 3 to 8. A lower bound for a(m)
is (m2—4)/(m2+4m) since mt(m) =21 (Lemma 1 in the Appendix). The values of this lower

bound are also given in Table 1.

Table 1: Values of oum)

m 3 4 5 6 7 8
normal error 714 750 778 .800 .818 .833
uniform error 445 536 595 .643 678 709
R-distributed error * 357 500 583 .640 .682 714
lower bound 238 375 467 533 584 625

*The distribution of e; has a density 1z Iexp(—tz).

As an example, suppose that B is half times less variable than the OLSE. Then for nor-
mally distributed errors, the WLSE is more efficient than the OLSE as long as m 2 3. For
uniformly distributed errors, the WLSE is more efficient if m > 4. From the lower bounds in
Table 1, if m = 6, then the WLSE is more efficient regardless of the error distributions.

Thus, comparing the efficiency of the WLSE and OLSE is equivalent to comparing Vk
and V,. However, since Vk and V, depend on the regressors x; and the variances (Si2 which
are unknown, this can not be done without any further assumption. In the rest of this section,
we consider the case where additional information about the o,;’s is available. A study of

estimating Vk and V, based on the observed data is given in Section 5.

3.2. Estimation of Common Mean

A special case of (2.1) is

Y =R+0es  j=lam, izl .k (3.3)



Although this is the simplest case, the following analysis is heuristic and the results will be
used in more complex models. Under model (3.3), Vk=m_1(2ik=16i_2)‘1, szm_lk_zzik= 10‘?,

and V, < a(m)V, iff

[o(m )]—1 < (k—IE!C=16i—2)(k—lZ!C=16':2) = k_1+k_22, (py-}-p;l),

i<j

where pij=0'i2/o'j2. Note that A, = k'1+k'22i<j (pij+pi;1) is a measure of variability of the

o;’s. A2 1and A=l iff 67=c for all i and j. The WLSE is more efficient than the OLSE
iff 1 <A om), ie., the 0,’s are substantially different. This coincides with the simulation

results in Jacquez et al. (1968) and Fuller and Rao (1978). The asymptotic relative efficiency
(ARE) of the WLSE (with respect to the OLSE) in this case is

Y, = ViV, = 1+(1-4m ™D m)A -1,

However, Ak is unknown since the C; ’s are. Further information about o; ’s are required

for comparing A, and o¢m). We discuss the following cases for illustration.

Situation 1. o, is (nearly) constant for most i but is large for one or a few cases, which usu-

ally corresponds to response outliers.
For example, 0i2=62 for i<k—1 but ckzatcz. Then
A, = A~k D22+ 1~k ) (0%0 o7 %6)) — 1
since (0';2+Glf)/k —0. Therefore the OLSE is more efficient for large k.

Thus, in this situation the OLSE is recommended.

Situation II. Consider the Cochran and Carroll variance model (Fuller and Rao, 1978, Section
3). In this model one-third of the £ variances are equal to ¢, one-third variances are equal to

1

1 and the remaining one-third variances are equal to ¢~". Therefore,

At =9(c+1+c 72

The values of A;l for ¢ ranging from .2 to .6 are given in Table 2.



From Tables 1 and 2, for normal errors, the WLSE is more efficient than the OLSE if
m=3, ¢<.45 or m=4, ¢c<.5. For uniform errors, the WLSE is more efficient if m=3, c<.3 or
m=4, ¢<.35. Regardless of the error distributions, the WLSE is more efficient if m=3, c¢<.2

or m=4, ¢c<.25.

Table 2: Values of Ak_ 1

(4 2 25 3 .35 4 45 S5 S5 .6
Ay 1 234 327 419 508 592 .667 735 193 .843

Situation IIL. The o;’s are iid. random variables defined on (6, 6_). Let a=E 0".2 and

b=EG 2 Then EA, = k™ +k™2Y. 2ab = ab+k ' (1-ab). Hence as k —oo,
i k i<j
Ak —>ab as.

Note that ab is a measure of the variability of the Gi’s and ab=21. If a(m)>(ab )‘1, then the

WLSE is more efficient than the OLSE for large k. The ARE of the WLSE is

v = 14+(1-4m™ [0 (m )(ab ) -1].

For example, suppose that ©; is uniformly distributed on the interval (0 ©.). Then
a=(c.-o)/3(c,_~6y), b=1/c_0, and ab = (p>+p+1)/3p, where p=c_/,. Some values of

(ab )'1 for different ratios p are given in Table 3.

Table 3: Values of (ab )_1

p 1.5 2 25 3 3.5 4 45
(aby! | 947 857 769 693 627 571 524

P 5 55 6 7 8.5 10 115
(@bl | 484 449 419 368 312 270 238

Note that the WLSE is more efficient if ou(m )>(ab )_1. As an example, if p=2, the OLSE
is more efficient than the WLSE; if p=3, the WLSE is more efficient for normal errors; if

p=4, the WLSE is more efficient for uniform errors and m>5; if p=7 (e.g., c_=.7 and 00=‘1),



the WLSE is more efficient for m2>4 (regardless of the error distributions).

In conclusion, one may determine the relative efficiency between the WLSE and OLSE
through a careful study of the variation of the 0;’s and the error distribution by making use of
the available information. Another approach is to estimate A, and o(m) from the observed

data (see Section 5).

3.3. Random Variances

If the O'i’s are 1.i.d. random variables, the results in Situation III of Section 3.2 can be
extended to the general model (2.1). Let a=E ()'i2 and b=F 0.;—2. From the strong law of large

numbers, as k —yoo,

KV —amk (XX)" = mkXXYTEE oxx XX -amk(XX)! > 0 as.

=1 1717
and
KV b7 tmk XX ) = mk (T 07, x, Vb7 Imk X XY -5 0 as.

Hence for large k, the WLSE is more efficient than the OLSE iff o(m)>(ab )'1. Thus, the

results in Section 3.2 hold in this general case.

3.4. Random Regressors

Assume that xi’s are i.i.d. random vectors (independent of O'i’s) and that Z=Exl.xl.’ is

nonsingular. Then

kXY= m_lk(Zlk x5 mz! as.,

=

KFIZk okx - (7'Ek 6DE 50 as,
and therefore
kv, -m&EE DT 50 as.
Similarly,
7, -m T 67HE 50 as.
Thus, for large k, the WLSE is more efficient iff Ak=(k_12,-k= 1°i_2)(k_12,-k=1 Giz) > [om)

8



Hence all the results in Section 3.2 hold in this case.

3.5. Related Regressors and Variances

Carroll (1982) studies the case that given x;, o.iz is a smooth deterministic function of X;.
Here, we consider the situation where X and GiZ are related and are both random. For exam-
ple, given x,, ciz has a distribution with mean q(x, ’xi), where ¢ is a known function.

Assume (Giz, x;) are i.i.d. and Z=Exixi’ is nonsingular. Then
EXX) 5 mIE? as.
“ik 2 2
k=3, 0xx” = E(o;xx,)) as.
and
Ik -2 -2,
k Zi=10'i X X; —>E(oi xx") as.
Therefore, the WLSE is more efficient than the OLSE iff
[E©; 2% x )7 < am)ZE (62x,x,)E7,
or equivalently,
am)E (0] 2x,x,") > Z[E (c7x,x)'E. (3.4)
Note that in this case it is possible that some of the components of the WLSE are more
efficient than the corresponding OLSE while the other components of the WLSE are not. In

general, the evaluation of the matrices in (3.4) is not simple and involves the distribution of

(O'iz, x;). We study the following example for illustration.

Suppose that the model is a simple linear regression:
Vi = B1+thi+°ieij’ j=1l,...m, i=1,..k,

where t, are uniformly distributed on [a,b]. For simplicity, let a=.5 and b=5. Assume that

2

given 7, o, is uniformly distributed on [sz;, 2-s )ti], where O<s<l1 is a known constant.

Note that x,=(1, ¢ ). By a straightforward calculation (see the Appendix),



SE@Wxx N E = ( 50y 2718 35)

[ )

and

am)E (67 x,x,") = o) s )( 1555 ), (3.6)

where A (s)=[2(1—s )]"llog [2—s)/s]. Consider the normal distribution case. If s=.5,
S12h(s)=.562 and 2.75h(s)=3.021. From (3.5), (3.6) and Table 1, the OLSE is more
efficient than the WLSE. If s=.25, .512h(s5)=.664 and 2.75h(s)=3.567. Then the WLSE of
B, is more efficient than the OLSE iff m2>3 while the WLSE of B, is more efficient iff m>5.
If s=.2, then 2.75h (5s)=3.776 and the WLSE of B2 is more efficient iff m2>4.

4. EFFICIENCY COMPARISON: THE UNBALANCED CASE

The analysis in the general unbalanced model (n, #1; for some i, j) is more complicated

although the ideas are similar to those in the balanced model. We consider three cases.

4.1. Estimation of Common Mean

For the simple model (3.3),
VY = nTiE N HE M),
where
&k = n_lzl.’;lo'i—znizt(ni), n, = n‘lzl.’;l n T(n,) and Ck =n" Z .5 n 4.1
Then the WLSE is more efficient than the OLSE iff
g, = E71+4E M, +4E 20 ¢, > 0. (4.2)
The ARE of the WLSE with respect to the OLSE is y,=g, C_,,:1+1.

Note that n__ <§k nk ~1 , where n, and n_ are the minimum and maximum of the

number of replicates, respectlvely. Then
(+4n HE-(1-an2)E, < g, < (1+4n g e —(1-4n 2 )G, . 4.3)

An immediate consequence from (4.3) is that if the maximum of the number of replicates is

10



not larger than two, then the OLSE is more efficient than the WLSE.

. Ik 2 “Igk 2
Consider the case of nz23. Denote (n 12i=16i n)n IZ,- o’n.) by A, and

=111

k

(n§—4Yt(n_)/(n3+4) by aln ). From (4.3) and ngun Yn™'Y" 67%n,) <&, we have

=1"1
w .
Vk - Vk <0 if Aka(no) > 1.
Hence Ak o(n 0)>1 is a sufficient condition under which the WLSE is more efficient than the

OLSE. Similar results to those in Section 3.2 (Situations I-III) can then be established.

4.2. Random Variances

Under model (2.1) with i.i.d. o;’s (independent of x;), we have

“1gvk 2 =1y
n Zl.=lo".nixixi an " XX)—>0 a.s.,

1k -2 2 ’ 1k 2 ’
n Zi:loi n;t(n)x,x; ~bn Zi=1ni wn)xx,” >0 as.,

—1v—k -2 ’_ —1vk ’
n o, “n,t(n)x,x;'~bn Zi=1ni‘c(ni)xl.xi -0 as.,

i=1" i
nV, —an XXY'>0 as.,
where a=E 0'1.2 and b=FE 6;2. Let G=Z,-k=1”,-2"(”i )X, X, ‘, H =Zik=1ni‘c(ni)xixi’ and
F=b"G+4GTHG " y+4aG™'H X'’Xy'HG™ . Then nV}’-nF — 0 a.s. Hence the WLSE
is more efficient than the OLSE iff

F-axXxyl<o. (4.4)

To check (4.4), some information about a, b and (n;) is required. Since (XX Y l<t(n O)H -1

Hsn, 1G and G <[n ot 0)]'l(X’X )L, a sufficient condition for (4.4) is

ab[1-4n 2 w(n)/t(n )1 > 1+4n ")/ n u(n ).

4.3. Random Regressors

Let x;’s be i.i.d. random vectors and independent of o;’s. Using the notations in (2.2),

(2.3) and (4.1), we have

11



n‘lAk -§L—>0 as,
n‘lBk -N,X—-0 as,

n, -1 50 as.,
and
nVy — € HEZHEMI T 5 0 as,
where Z=Exixi’ is assumed to be nonsingular. Therefore, the WLSE is more efficient iff

g, +E2HaE M — (>0,

which is the same as (4.2). Thus, the rest of the discussion is the same as that in Section 4.1.

5. ESTIMATING THE RELATIVE EFFICIENCY

When there is little information about the error variances, an alternative approach is to

estimate the ARE of the WLSE with respect to the OLSE based on the data.

5.1. Estimators of the ARE

Let w=n,[X" 0,~BT, V=&X)'TLwlnxx &Xy?, A=%F wnxx

it 11 [ I A/

§k=zik=1wixixi’ and V:=Ak_l+4A; lﬁkzik”1+4ffk‘ lﬁkl}kék/ik'l. From Shao (1988, Theorem 3),

under the conditions of Proposition 1,

k() -V) >0 and k(V,—V,)— 0 in probability.

Thus, a consistent estimator of the ARE of the WLSE v ﬁw with respect to the OLSE t’ﬁ,

where ¢ is a known p -vector, is
Y=0V0t[tV 1.

In many situations (see Sections 3.2-3.4, 4.1-4.3), the ARE of the WLSE with respect to
the OLSE is V=8 §;1+1 (see (4.1) and (4.2)). We now concentrate on the estimation of Ve

in the balanced model (n,=m). Since y,=1+(1-4m [ (m)A, '~1] (see Section 3.2), its

12



consistent estimator is
Y, = A+4m™)(@b) +4m2,
a Ik -1 N ~Ik
where d=(k-1)"' Y7 w™ and b=(k—p) 'Y w,.
Note that the WLSE is more efficient than the OLSE iff Y, <1. Hence one may make a
decision of using the WLSE (the OLSE) when :{k<1 (:{kZI). Precision measures of ?k are
p; =P(%<lly,<l) and p,=P(y211y21), (5.1)

which are the probabilities that one makes a correct decision. The performance of i(k is

examined in the following Monte Carlo study.

5.2. A Monte Carlo Study
We study the following model:
Vi = [30 + leli + B2x2i + ;e j=1,2,3, i=1,...,24.
The eij’s are normally distributed and ©,=(h—I)u;+l, where u,’s are independent samples

from the uniform distribution on [0,1]. Thus, o;’s are independent samples from the uniform

distribution on [/,2]. The values of Xy Xoy and u; are listed in Table 4.

Under this model, the Monte Carlo approximations of p; and p, defined in (5.1) are
given in Table 5 for some different values of / and #. The true values of Y, and the bias and
root mean squared error (rmse) of :{k as an estimator of 7y, are also included. All the results

are based on 5000 simulations on a VAX 11/780 at the Purdue University.
The following are some conclusions drawn from the simulation results:

(a) The precision p; (or Py ) is small if Y, is close to one. This is reasonable since when Y,
is close to one, the difference between the WLSE and OLSE is not appreciable. If the rela-
tive gain in using the WLSE (or the OLSE) is beyond 25%, it is quite safe to use ?k for

choosing an efficient estimator of .

(b) It is clear that ?k is upward biased as an estimator of y,. Since the OLSE is computation-
ally simpler than the WLSE, it may be preferred if the WLSE is better but the relative gain is

small (e.g., less than 10%). For this reason, an upward biased estimator of Vs which

13



corresponds to a conservative estimator of the relative gain in using the WLSE, is acceptable.

Table 4. Values of X %o and U,

i 1 2 3 4 5 6 7 8
Xy 10 36 75 16 35 50 48 21
Xo; 0 8 5 4 5 8 4 1

u; 232 965 229 .089 771 .600 .038 .863

9 10 11 12 13 14 15 16
Xq; 66 30 55 49 23 66 10 70
Xy 10 3 9 6 3 7 2 10

u; .646 191 .880 438 715 715 .052 .952

i 17 18 19 20 21 22 23 24
Xy 44 42 69 58 26 14 62 63

u; 404 951 321 265 177 .027 .187 155

Table 5. The precision, bias and rmse of ?k

l h Yi precision * bias rmse
1.4 1.6 1.216 .825 .036 272
1.2 1.8 1.171 788 041 266
1.0 2.0 1.086 707 .049 254
0.8 24 939 S11 .062 228
0.7 2.8 .838 .695 .068 205
0.6 3.0 769 .818 071 .188
0.5 35 .684 938 075 .166
0.4 3.6 .634 976 076 153

* The precision equals p, (p,,) when Y <l (7, 21).

14



APPENDIX

Lemma 1. Assume the conditions in Proposition 1. Then for any m2n_, mt(m)=1 and

0’

limm - T(m)=1.

Proof. The first assertion follows from mt(m)=(m™ IZ Ee ) =1, Let g be the integer part

hn 2
_{’+(h_1)noeij. Then gny<m < (g+1)n, and

of m/ngyand u, =y

m(Z =1 :J)— -"o(g"'l)(zgnoe ot < nyg+hg™ Zh =1 h ‘

By the strong law of large numbers, m(Ej )'1 — 1l and g~ Zh " 15, Euh_1=1:(n 0 as.

as m—oo, Then the second assertion follows from the dominated convergence theorem (see

Royden, 1968, p.232). 0O

Proof of (3.5) and (3.6). Note that Eti=2.75 and Eti2=9.25. Since the conditional distribution
of Giz (given tl.) is uniform on [sz;, Q2-s )t 1, we have

Ec?=E[E(c]It)] = Et, =2.75,
Ec’t,=E[E(c}t;1t)] = Et} =925
and
Ec}t?=E[E(c]t]1)] = Et] = 34.719.

Note that E (0] It,)=[2(1—s )t,] " log[(2-s )/s]. Then
Ec;?=E[E(0;?1t)] = h(s)Et]" = 512A(s),

Ec;’t =E[E(c]%,1t)] = h(s)
and

EO'_Z 2 _ E[E (Gi—ztizlti)] = h(s)Et, =2.75h(s). O

15
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