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ESTIMATING COVARIANCE MATRICES II

BY WEI-LIEM LOH

Purdue University

Let S; and S2 be two independent p x p Wishart matrices with
S1 ~ Wp(21,n1) and Sz ~ Wy(Z2, n3). We wish to estimate ¢ =
%227 ! under the loss functions Ly = tr(¢ — ¢)'S71(§ — ¢)S1/tr¢
and Ly = tr(§ — ¢)'Z; (¢ — ¢)Z1/tr¢. In this paper under the
loss function L1, we shall derive alternative estimators for ¢ that
compare favorably with the usual estimators. We shall also show,
using Monte Carlo simulation, that these estimators, suitably
scaled, have excellent risk properties under Ls with respect to
the usual estimators. '

1 Introduction

Let S7 and S; be two independent p x p Wishart matrices where S; ~
Wp(Z1,71) and S ~ Wy(Z2,nz). For simplicity, we write ¢ = 2,371, Es-
timating the eigenvalues of ¢ has been an area of active research in recent
years. The eigenvalues of ¢ are important, for instance, in the problem of
testing Hp : 37 = X2 against Hy : 33 # 5. The literature includes Das-
Gupta (1986), Dey (1986), Muirhead and Verathaworn (1985) and Muirhead
and Leung (1988).

We shall use the following notation throughout. If a matrix A has entries
ai;, we shall indicate it by (a;;). Given a r X s matrix A, its s X r transpose
is denoted by A'. | A |, A~! denote the determinant, inverse of the square
matrix A respectively. The trace of A is indicated by trA and I denotes the
identity matrix. If the p x p matrix is diagonal and has entries a;;, we shall
write it as A = diag(ai1,...,pp). Finally, the expected value of a random
vector X is denoted by EX. :

In this paper, we consider the problem of estimating ¢ under the following
two fully invariant loss functions:

L1(§) $s Sla 22) = tl'(f - g)'z};l(f - S')S]_/tl'g',
Ly($51, %) = tr(¢ —¢)'S71(¢ — ¢) T/t

We observe that L; and L are both quadratic loss functions. Also, we write

Ri($281,82) = ELy(&¢,51,22),
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Ry($321,82) = EL(;5,%).

Here is a possible motivation for the choice of loss functions. Consider
the problem of estimating the common mean of two multivariate normal
populations with unknown covariance matrices. More precisely, let

Xi~ Ny(€,53),  Si ~ Wy(Si,m), i=1,2,

where X3, X2, S; and S2 are mutually independent. A natural invariant
loss function for estimating £ is

L(£;€,%1,82) = (£ - €)'(21 + 37 )(€ - 9).
If 31 and 35 were known, the best linear unbiased estimator for £ is
o= (3" +37) 7B X1 + 371X).

For simplicity, we write E = (27 1+2;) 127, As Z; and X are unknown,
following usual practice we consider estimators for £ of the form:

€=28X:+(I-B)Xs,

where the p X p matrix & is a function only of S; and S,. This reduces the
problem to the estimation of = under the loss function

L(831,52) = tr(8-E)(Z7+37)(E - B)(S1+ %)
La(&: By, (S + 330 Dee[(S5 + =51 1rY
+tr(8 - B)' (37" + 237)(E - B)3,.

The right hand side of the last equation is a weighted sum of two quadratic
loss functions; one of which is Ls. Since L; is analytically more tractable
than L3, we shall use L; as an approximation to Le. This, in a vague sense,
is a motivation for our choice of loss functions in estimating ¢.

In this paper, we shall derive alternative estimators for ¢, under the loss
function Ly, that compare favorably with the usual estimators. We shall also -
show, using Monte Carlo simulation, that these estimators, suitably scaled,
have excellent risk properties under Ly with respect to the usual estimators.

2 Equivariant Estimators

The problem we are considering is invariant under the following group of
transformations:

(1) =; - BS;B', S;— BS;B' VBeGL(p,R), i=1,2.



Theorem 1 Let S; ~ Wy(Z1,n1), Sa ~ Wy(Z2,ns) with Sy, Sy indepen-
dent. Then under the group of transformations given in (1), ¢ is an equiv-
ariant estimator for ¢ if and only if { can be expressed as

$(51,82) = A7'@(L) 4,

where @ is a diagonal matriz, AS1A' = I, AS;A' =L andly > --- > I, with
L = diag(ly, .. .1p).

PROOF. Suppose ¢ is an equivariant estimator for ¢. Then
(2) {(S1,8:) = B7'¢(BS,B',BS;B')B VB eGL(p,R).

We observe that JA € GL(p, R) such that AS;A' = T and AS;A' = L,
where L = diag(ly,...,l) with I3 > --- > I,,. Hence it follows from (2) that

§(S1,82) = A™1¢(1, L) A.
By invariance again, we have
éI,L)= D71, L)D, VD = diag(+1).
This implies that ¢ is diagonal. Writing
9(L) = ¢(I, L),

proves the necessity part. For the sufficiency part of the result, the proof is
straightforward and is omitted. O
3 Calculus on Eigenstructure
Let Sy ~ Wp(Z1,n1) and Sy ~ Wp(Z2, n2). For simplicity we write:

s = (S VO =/20+61)0/0s0 i, 5k,
where §;) denotes the Kronecker delta. We observe that 34 € GL(p, R) such
that AS;A' = I and AS;A' = L where L = diag(ly, .. dp) withly > .- > 1,

In this section, the partial derivatives of A~! and L with respect to S; and
Sy are computed.
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Proposition 1 Let S; ~ Wy(Z1,n1) and Sy ~ Wy(Za,n2). Then with
L, A= (aa), A~! = (a) as defined above, we have

65})1{ = —lLaga,
V;-i)l; = ajjai,
. . 1
Vg_]"c)a'l = —2-0, lal]alk + 2 Z a (ag ]a“c + al’kal]) l 4
’#l l
V(z) - = Z a* (a,,:_,,a,”, + a,rkaz:,)
r#[ "

PROOF. On differentiating S; = A71A"! and S; = A~1LA"1, we have

dS; = A7'(dA"1)+(daH4a' Y,
dS; = AT'L(dA™Y) + (dA"Y)LA"Y 4 A7Y(dL)A L.

Multiplying these equations by A on the left and A’ on the right we get

(3) A(d$1)4' = (dA'N)A'+ A(dA™Y),
(4) A(dS:)A' = L(dA™Y)A'+ A(dAY)L + (dL).
CASE I. Suppose dS; = 0. From (3) and (4), we arrive at
(5) dL = LA(dA™') - A(dA™Y)L — LA(dS))A';
which implies that
a; = - [A(dSl)A']..
= =)k a,j(ds ) asx.

1.k
Thus we conclude that -
VL = —Liaijai.
For i # j, it follows from (5) that
(dL)y; = O .
= L[A(dA™Y)i; — [AA™Y))isl; — L[A(dS1) A5

This reduces to

(6) [A(dA™Y)];; Z azk(dskz )aji.

b Jkl



Also we observe from (3) that

_ 1
(7) [A(dA™ )]s = 5[A(dS1) A
Now it follows from (6) and (7) that

dA™1); = [AT'A(dATY];
= Z;aﬁ'[A(dA—l)],-.,.

1 .. 1
= Ea'-” Za_.,-k(dsg))aﬂ + 3 E a l l Za,:k(dskl )aﬂ.
K, 1545 -

T

Hence we conclude that

1
V(l)ail =~ a.zja”, + = 2 Z a' (a, 15ak + a,:kal:,)

2 e ll'
CASE II. Suppose dS; = 0. The proof of
6(-2)1 ; = a;ja;k,
V(z) i = Z a* (a. 1jark + a,:ka;_.,) -
,# l;
is similar to that of Case I and is omitted. O

4 Two Identities

We shall now state two identities which are needed in the sequel. Their
proofs are given in Loh (1988) and hence are omitted.

A function g : RP*" — R is almost differentiable if, for every direction,
the restrictions to almost all lines in that direction are absolutely continuous.
If g on RP*"™ i vector-valued, then g is almost differentiable if each of its
coordinate functions are.

Theorem 2 (Normal Identity) Let X = (Xi,...,X,) ~ Np(£,Z) and
g : R? — RP be an almost differentiable function such that E[Y; ; | 8g:(X)
/0X; || is finite. Then

E[~Y(X - €)¢'(X)] = E[V4'(X)],
where V = (0/3X,,...,8/0X,).
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The Normal identity was first proved by Stein (1973).

Let S, denote the set of p X p positive definite matrices. Also we write
for1<4,5<p,

6 = (6,']')?)(},, where ‘”7,'_,,' = (1/2)(1 + 5,'j)8/33,‘j,
where §;; denotes the Kronecker delta.

Theorem 3 (Wishart Identity) Let X = (X3,...,X,,) be a p X n ran-
dom matriz, with the Xy independently normally distributed p-dimensional
random vectors with mean 0 and unknown covariance matriz 3. We suppose
n > p. Let g : S, — RP*P be such that x — g(zz') : RP*"™ — RP*P 45 almost
differentiable. Then, with S = XX', we have

Etr£~g(S) = Etr[(n — p— 1)S1g(8) + 2V¢(9)],
provided the ezpectations of the two terms on the r.h.s. ezi'st.

The Wishart identity was proved by Stein (1975) and Haff (1977) indepen-
dently.

5 TUnbiased Estimate of Risk

In this section, we shall compute, up to a constant which depends only on
the parameters, the unbiased estimate of the risk of an almost arbitrary
equivariant estimator of ¢ (= Z257!). First, we start with a lemma.

Lemma 1 Let A, ® = diag(¢1,...,¢p) and L = diag(l4,...,1,) be defined
as in Theorem 1. Then

d

VWA teAY) = S (¢ U ¢'+¢,Z .

D (A-1924"1) = Z(2¢16¢' +¢221. 11 )
it

PROOF.

trV( (41341
= Y VD)

11)



= 2V ™M) gra™ + (TP be)a™ + 0y (VD)

IJ!

= Z[2¢katk(v(1)a:lk)+a]lc ckz(vu)l ad::]

3,5,k

Now it follows from Proposition 1 that
trV((4~134' 1)

= Z{¢kaik[a1kaktakj + Z a’ (ai'Iak] + ap Jak:)
i5.k i'#k

—a’¥qtk Z am,-amjlm-aik-}

.
Z(¢i -

Ly
Iy —lk]

8

¢'+¢*Zz =

The second part of this lemma can be proved similarly. |
With this lemma, we shall now prove the main result of this section.

Theorem 4 Let ¢ be an estimator for ¢ where
§(S1,82) = A7 @(L)A,

o = dz'ag(¢1,...,¢p), AS]_A' = I, ASzA' =L = diag(ll,. . .,Ip) with 11 >
- > l,. Suppose ® satisfies the conditions of the Wishart identity in the
sense that
Btr(Z71A7'0AY) = Eu2V)(A1e4"Y) + (ny - p— 1)9),
Etr(z7'A710?AY) = Eu2V®(A104" 1) + (ng — p— 1) L7107,

Then under the loss function Ly, the risk of { is given by

1
l; -1

¢¢

A — _ 1 a
R]_(g'; 21,22) = n + Ez[n_2_lp_¢'2 + 2¢122 + 4¢i

#s
3¢.
—2(ny —p+ 1)¢,+4¢.El myp + 4l ]/t r¢.
i#it
PROOF. We observe from the Wishart identity that
Btr(Z7'A7I0AY) = Etr2VW(A'®4"Y) + (ny — p - 1)3)],
Etr(27'A710247Y) = Eu[2V®(A710%4' ) 4 (ng — p— 1) L7107,
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Now it follows from Lemma 1 that

Etr(z7'A7 @A) = EZ[(n1—P—1)¢£—2¢iZl. lj,
i it T
' 0¢;
(8) +2¢; — 21; al; ]’
—1 412 a-1y _ ne—p—1 2 !
Btr(S;1A719%41) = EZ,-:[ A +2¢1§1i_1j
d¢; |
9) +gig -

Finally the risk of ¢ is given by
Ri($21,83) = ELi(é¢,51,%9)
= Btr(¢ - ¢)'S3 (¢ - ¢)S/brg
Etr(§'2371¢81 + 27182718 — 25271¢8,) /tre
Etr(Z;14719%4" ! 4 n; 2,57t
-2271A7 194" ftre.
It follows from (8) and (9) that

A no—p-—1 1 0¢;
Ri(§%1,8:) = m+EY [2——= f ¢ +267) + 44,22
Py £

o li—1j ol;
_ l; a¢; :
—2(n1—p+1)¢; + 4¢iz -1 + 4l ol ] /trg.
i T :
This completes the proof. O

6 Usual Estimators

The usual estimators for ¢ are of the form ¢SSy ! where ¢ is a constant.
This class of estimators includes the maximum likelihood estimator {ML =
(n1/n2)S2S7 1 and also the uniformly minimum variance unbiased estimator

§UB = [(ny — p — 1)/ng)S2S7 . We define the best usual estimator to be
that usual estimator which minimizes the risk among the usual estimators.

Theorem 5 Let Sy ~ W,,(El,nl) end Sy ~ Wp(22,n2) with Sy, S tnde-
pendent. With respect to the loss function Ly, the best usual estimator {BV
for ¢ s [(ny — p— 1)/(n2 + p+1)|S2S. L. Furthermore, the risk of {BV is

Ri($PY;21,30) = (p+ 1)(n1 + n2)/(n2 + p+ 1).



PROOF. Under Ly, the risk of estimators of the form ¢SS, 1 is given by

Ry (cS3S7 151, Bo)
= Etr(cSeS7! — 237 (eS2S. ! — 2227 1) Sy Jtre
mlratptl)a o0 fn
ng—p-— 1
This is minimized when ¢ = (n; — p—1)/(n2+ p +1). m|
REMARK. We observe from the proof of Theorem 5 that for all £; and 2,

Ri(§BY;21,%3) < Ri(§VB; 21, %2) < Ri($ME; 54, 5,).

Theorem 6 Let S]_ ~ W,,(Z)l,nl) and Sz ~ W,,(Ez,nz) with Sl, Sz inde-
pendent. With respect to the loss function Ly, the best usual estimator for ¢
18
sy _ (n1—p)(ni—p-3)_ .
= Sy ST
O = DT prn) 2

Furthermore, the risk of {8V is

(n1—p)(n1—p—3)n,

BU, — 1 _
B 0 D) = 1 = N e — p—D(m 4 p ¥ 1)

PROOF. Under Lz, the risk of estimators of the form ¢S, Sy 1 is given by

Ry(cS2S71; 34, 23)
= Etr(cS2Sy ! — T2 )27 (eS2St — D227 By /tre
(n1 - 1)(n2 +p+ l)nz 2 2n4
c —
(n1—p)(n1—p—1)(n1—p-3) n—p-—1

This is minimized by ¢ = (n; — p){(n1 —p—3)/[(n1 — 1)((n2+p+1)]. O
REMARK. We observe from the proof of Theorem 6 that for all £; and X5,

c+ 1.

R (¢PY; 21, 59) < Ro($VB; 241, 50) < Rp($ME; 34, 3).

7 Alternative Estimators

It is well-known that the eigenvalues of S Sy 1 are more spread out than the
eigenvalues of its expectation. By correcting for this eigenvalue distortion,
we derive alternative estimators for ¢ which compare favorably with the
best usual estimator {3V under L, loss. Furthermore, these estimators give
substantial savings in risk when the eigenvalues of 2221_1 are close together.



10 7 ALTERNATIVE ESTIMATORS

7.1 Adjusted Usual Estimator

Under L; loss, the best usual estimator for ¢ can be written as

¢BY = [(m-p- 1)/(n2 + p + 1)]S287
A~19BU 4

where the j’th diagonal element of the diagonal matrix ®BV is [ i1 —p—

1)/(nz + p + 1). A natural way to improve on this estimator would be

to consider estimators of the form { = A~1®A, where for some constants

¢j, 3 =1,...,p, the j’th diagonal element of the diagonal matrix @ is ¢ =
cil;. We deﬁne the adjusted usual estimator to be

S.AAU — A_IQAUA

where, for j =1,..., p, the j’th diagonal element of the diagonal matrix $4V
is ¢#7 = lj(n1 — p— 1)/(nz+ p + 3 — 25). We shall show in this subsection
that ¢4V dominates {BU with respect to the loss function Li. First we need
a lemma. ‘

Lemma 2 For each i, 1 <1< p, we have

1—1

2 )? < -
o n2+P+3 2" 7 (n2+p+1)(n2+p+3-2)
PROOF. This follows directly from mathematical induction on 1. o

Theorem 7 With respect to the loss function Ly, AU dominates {BU .

PROOF. For simplicity, we write ¢; = (ny —p — 1)/(nz + p + 8 — 25) for
1 < 7 < p. We observe that ®4V satisfies the conditions of the Wishart
identity in the sense of Theorem 4. Hence it follows from Theorem 4 that

Ry (¢47; 33, B)
2 (- 1)
= n1+EZ(n2—p+3)cl+2Z?+ZZ

(e} — )

i<i i<i li - lj
~2(n1 — p — Leils +4ZM] Jtxg
i>i l;
< nmy+ EZ[(nz —p+3)cil; —2(ng —p— 1)egd; + 2 3l + 1)) /tre

i<t
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= n1+EZ[(n2+p+3 2¢)c? —2(n1—p —1)c,+2202]l/tr§
j<i

Z[ 1—1

= (nz2+p+1)(n2+p+3—2)

= Ri(¢PY;21,82) — 2(n1 —p - 1)E

1 .
=2 s mgy) s

i<i

< Ri(¢PY521,3).
The second last equality follows from Theorem 5 and the last inequality
follows from Lemma 2. This completes the proof. O
7.2 Berger-type Estimators

In this subsection, we shall use a technique of Berger (1980) to derive a class
of estimators for ¢ which dominates ¢4V under L loss. First we need some
additional notation. We let

?BE — A_IQBEA,

where ®BF = diag(¢PE,..., ¢fE) with

BE __ n1—p—1 . C

¢ _n2+p+3—2i‘+b+u’

Z[n2+p+3_2j]2

(ni—p-1)l;

¢ : Rt — R being a suitable function of u and b being a suitable positive
constant. First we state two rather technical lemmas.

Lemma 3
m ax Yi% _ VP .
b+3ivf 2vh
PROOF. This follows easily by taking partial derivatives with respect to the
y;’s. O

Lemma 4 Letd; = (ny —p—1)/(na+p+3—27) for 1 < j < p. Then if
p=>3,n1 > p and ng > p, we have

p—1
O _d)-d,>0.
i=1
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PROOF. We observe that

—p—1)[-n3 +2ny(p—3) — p* + 6p — 1]

(n1
10)d, —dp_1 —dp_2 =
(10) dp = dp-1 — dp-s (n2—p+3)(n2—p+5)(n2—p+7)

Maximum of —n2 + 2ns(p — 3) — p? + 6p — 1 occurs at ny = p — 3. Since
n1 > p and ny > p, by taking n; = p in the right hand side of (10) we
conclude that '

_ nl—p—l
(nz2 —p+38)(n2—p+5)(n2—p+7)
0.

dp — dpy — dp_s

IA

IA

This completes the proof. O
Now we shall prove the main result of this subsection.

Theorem 8 With the above notation, {B% dominates ¢AU in estimating ¢
under Ly loss whenever

1. p23,n12p, n2 2p,
2. ¢(u) >0, c'(u) >0 for allu >0,
3. sup, c(u)/vVb < 4(p® +p—4)(nz — p+ 3)/[\/p(n1 —p—1)(ng — p+7)].

PROOF. For simplicity, we write for 1 < j < p,

dj = (n1—p—1)/(n2+p+3-2j),
a; = cfldilj(b+u)].
Then taking partial derivatives, we have

day 1 [ 2¢ e 2¢' ]
al; dil3(b+ u) " 22(b + u) diz

Next we observe that

it i 3d
(11) Z L —1; =0

i>i

Also,

ot} — d2al? dioglily — djojlil;
D D T A

i 5>t i>t
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= b+u§]§: i o)

_ d(l ) l(d dj), pP-p
B b+u{zz[ ; L —1; ==

£ I>1

(12) = biupzp Zd(l’—'HZEl(d

t >4

Furthermore we observe that

D (d + di)iF(9cu/Bls)

]

-2 2d;
< — 2 o da4 =7
= M T e
<
= d212(b+u)]
c p-1
& _—Zp_9_ .
< b+u[p 2 dp'*'gdi]
[
< - —-2).
(13) < —r-2)

The first inequality follows from the assumption ¢'(u) > 0, the second in-
equality follows from dy < -.- < dp and the last inequality follows from
Lemma 4. Finally, since ¢'(u) > 0, we have

> l(n2 — p+ 3)d20? + 4d212a; (3 /31;)]
i

2
e CRERE DI
cdp 3o;(dili) ~?

(b+u)?
(i—p-U(ma—p+7e? = Fiu

(n2 —p+3)(b+u) § b+ Xyl
(14) (n1—p—1)(n2 —p+T)c*\/p

2(nz —p+3)(b+ u)vb

The last inequality follows from Lemma 3. We observe that ®BE satisfies
the conditions of the Wishart identity in the sense of Theorem 4. Hence

IA

IA

(n2—p+7)

IA
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from Theorem 4 we have
Ri(¢B%;%1,2,) — Ri(¢47; 21, 22)

= EZ[("I (n:’+;)+(gz 27 1)1(2 o+ of)

i

n—p—1 g . 90 doy \
+4(n2+p+3 2')1(1 al; ‘Ha;al + 20; + o)
ny—p 2
+2(n2+p+3 % ) (204 + );l s
(nl—P+1)(n1-— _1)1. .
n2+p+3 21 1o
n1—p Ba,
l;——
o
= EZ[(”Z—P+3)d2Ia +4(d2+d)1.2%?'+4d2l,2 ‘aolz‘.
%

d2 212 d2 212
~dlioidi(p— i) +2) = e
i>i i1

d2 — d?a;12 —
42 a; jogli +4Zd,a,ll dja;lil; ]
I -1 e Li-1
j>i 3>t
It follows from (11) to (14) that

R1(¢PF;34,5,) — Ri(¢47;24,39)

¢ (ni—p—1)(n2—p+T)c\/p 9
< b+u[ 2(n2_p+3)\/‘ _2(17 —P)
—4(”_2”4221 (ld—ld)]
¢ (ni—p—1)(nz—p+Te/p .
< b+u[ 2(n2—p+3)\/(; —2(p +p_4)]
< 0.

The last inequality follows from assumption 3. This completes the proof.

7.3 Stein-type Estimators

By an approximate minimization of the unbiased estimate of the risk of an
almost arbitrary orthogonally invariant estimator of a covariance matrix,
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Stein (1975) derived an estimator whose risk compares very favorably with
the minimax risk under Stein’s loss. In particular, substantial savings in
risk is obtained when the eigenvalues of the population covariance matrix
are close together.

In this subsection, this technique is applied to construct alternative
equivariant estimators ¢3! and ¢¥2 for ¢ under the loss function L;. The
construction is as follows:

Let ¢ be an estimator for ¢ where

{(S1,82) = A719(L)A

® = diag(¢1,...,Pp), AS1A"' = I, AS;A' = L = diag(ly,...,Ip) with I; >
> l,. Under loss function Lj, we observe from Theorem 4 that

R -p-1 1 9¢;
B35 = m+ B[Pttty %
¢ : J#t
3¢¢
—2(n1 — p+ 1) + 4 Zz St/
g#
This is equivalent to
[R1($; B, Z2) — naltrg
+3
= B[ 2 ()
- l; —l
t j;éc
2 0 &
—2(n1 —p—1)¢: +4¢; Z T 4l - ()]
l; - ol; *l;
J#it
= ER,
where
~ p +3 g ,¢
B o= Y[Ry )
- l; — ol
1 jAi
1.
—2(n1 - 1)¢1 + 4¢; Z —L"' z ( )]
- l- ol;
#t
By ignoring the derivative terms in R, we get
A +3 1
i : i T
L:

~2(n1 —p—1)¢i +4¢; ) L. _Jl.]'
gt A
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Now we minimize B with respect to ¢;, ¢ = 1,...,p. This gives

¢ = li(ng — —1—221
J#i FES)

(15) = (Li/)(1/B:)7", say,

where for 1 <1 < p,

l—l

Q; = ’
#‘I—l

Bi = n1— —1—22
J#t i

We note that the ¢;’s should follow a natural ordering. That is
$1 =2 ¢y 2 0.

However with the ¢;’s defined in (15), this natural ordering may be altered.
Here are two methods for correcting this. In both methods, the use of
Stein’s (1975) isotonic regression is crucial. For a detailed description of
Stein’s isotonic regression, see for example Lin and Perlman (1985).
METHOD 1.
Let ¢; = l;/oy; for 1 < ¢ < p. As it is, the condition ¢y > -+ > <pp >0
may not be satisfied. By applying Stein’s isotonic regression to the ©i’s, we
arrive at a new set of ;’s, denoted by ©fT, ¢ =1,...,p such that <pST >
R ST > 0. Writing the adjusted usual estlmator as (AU = A-1p4U 4
where

¢i7 = [li/(na+p+3 - 20)][1/(ny — p — 1))

and comparmg it with (15), suggest replacing the factor (1/4;)~! by [1/(n;—
—1)]71. Hence we define an alternative estimator for ¢ to be

es1 = A-1pS1g

where the j’th diagonal element of the diagonal matrix 5! is ¢S 1= (n; —

- l)qp_,, ST 1t is clear that the natural ordering of the ¢S Lg js preserved.
METHOD II.
For 1 < 5 < p, let the pr’s be defined as in Method I and p; = 1/6;.
The natural ordering of the p;’s, that is g > .-+ > gy 2> 0, may not be
satisfied. Applying Stein’s isotonic regression to the g;’s, we get a new set
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of g;’s, denoted by ng, 1 < 7 < p, such that o§T > ... > ggT > 0. We now
consider ¢§7 = gofT /ng, 1 < 7 < p. Again, the natural ordering on the
¢33 T is given by ¢$7 > ... > ¢5T > 0. To preserve this ordering, we apply
Stein’s isotonic regression to qofT / gJ’-sT to get a new set of ¢fT ’s, denoted by
¢3-92, 1 < j < p, such that ¢§% > .- -¢‘32 > 0 is satisfied. Finally we define
an alternative estimator for ¢ to be

S‘,\S2 — A—IQS2A

where the j’th diagonal element of the diagonal matrix 52 is ¢_:,3 2,

8 Monte Carlo Study

From the rather complicated construction of the Stein-type estimators, we
observe that an analytical treatment of the risk performance of these esti-
mators is not possible at this point. In this section we shall use Monte Carlo
simulations to study

1. the risk performances, under L; loss, of the alternative estimators for
¢ which we have constructed in previous sections.

2. the risk performances of suitably scaled versions of these estimators
under L4 loss.

For the simulations, independent standard normal variates are generated by
the IMSL subroutine DRNNOA and the eigenvalue decomposition uses the
IMSL subroutine DEVCSF.

UNDER L; Loss _

For this study, we take p = 10, n; = 12, 25 and ny; = 12, 25. Tables 1 to 4
give the average losses and their estimated standard deviations of the esti-
mators: {BU ¢AU ¢BE 51 anq ¢52 baged on 500 independent replications.
As it is, the estimator ¢BF is not well-defined. In this study, we choose

b = 25000,
¢ = 2" +p—4)(na—p+3WVb/[yB(ns - p— 1)(nz — p+ 7))
These values of b and ¢ are chosen to ensure good risk performance of ¢B€

at n3 = 12, ng = 12 when the eigenvalues of 2221_1 are equal.
We shall now summarize the results of this numerical study.
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1. Under L, loss, the average losses of the estimators {AU ¢BE &S1 5png
£52 compare favorably with that of ¢BU. This is most significant when
the eigenvalues of ¢ are close together.

2. Among the alternative estimators, $52 gives the most substantial sav-
ings in risk when the eigenvalues of ¢ are equal.

3. As a check on the accuracy of the Monte Carlo study, we observe that
as predicted by theory, the following order holds: average loss of {8V
> average loss of {AU > average loss of {BE, Also we note that the risk
of {BU is known exactly and is given in Theorem 5. We observe that
the simulated average losses of ¢BU agree with the theoretical values.

UNDER Lo LOSS

For this study, we take p = 10, n; = 14, 25 and ny = 14, 25. From the
forms of the best usual estimator ¢BU under L; loss and the best usual
estimator ¢BY under L, loss, we observe that a natural scaling factor would
be ¢ = (n; — p)(n1 — p — 3)/[(n1 — 1)(n1 — p — 1)]. Hence we define our
alternative estimators for ¢ to be

XY 2 XY
§F =c§

where XY represents one of the following: AU, BE, S1, $2. Tables 5 to 8
give the average losses and their estimated standard deviations of the esti-
mators §BU, gAU ¢BE Sl and £52 based on 500 independent replications.
The results of this simulation study are summarized as follows:

1. This study indicates that the risk performances of these estimators
are similar to that of their L; counterparts. However the effects are
somewhat lessened.

2. Among the alternative estimators of ¢, 5% does best when the eigen-
values of ¢ are equal.

3. We observe that in every instance the following order holds: average
loss of {BU > average loss of ¢AU > average loss of ¢BE. This suggests
a strong possibility that {#Z dominates ¢4V and ¢AV dominates ¢BU.

4. As a check on the accuracy of the Monte Carlo simulations, the risk
of ¢BU is known exactly and is given in Theorem 6. We observe that
the simulated risks of {8U agree with the theoretical values.
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Finally we wish to remark that in our simulation, for a fixed set of eigen-
values of 2221_1, the estimators are computed from the same set of 500
independently generated samples. This suggests that there is a high cor-
relation among the average losses of these estimators. Since we are more
interested in the relative risk ordering of these estimators, we conclude that
the estimated standard deviation (as given in Tables 1 to 8) is probably
a pessimistic measure of the variability of the relative magnitude of the
average losses.
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TABLES

TABLE 1
ny = 12 Nng = 12
Average losses of estimators for the estimation of 2221"1 under
L, loss (Estimated standard errors are in parenthesis)

Eigenvalues of

2221—1 S':BU s'.\AU sl:BE S:\Sl §S2
(1,1,1,1,1, 11.33 1094 928 10.86 6.36
1,1,1,1,1) (0.07) (0.07) (0.08) (0.07) (0.11)

(10,10,10,10,10, 11.26 11.10 11.07 11.08 9.56
0.1,0.1,0.1,0.1,0.1) | (0.10) (0.10) (0.10) (0.10) (0.10)
(25,25,25,25,25, 11.34 11.05 11.02 11.00 7.99
25,25,25,0.1,0.1) (0.08) (0.08) (0.08) (0.08) (0.10)
(30,30,30,0.1,0.1, 11.37 11.30 11.29 11.28 10.58
0.1,0.1,0.1,0.1,0.1) | (0.14) (0.14) (0.14) (0.14) (0.13)
(50,0.1,0.1,0.1,0.1, | 11.44 11.43 11.42 11.43 11.36
0.1,0.1,0.1,0.1,0.1) | (0.21) (0.21) (0.21) (0.21) (0.21)
(20,20,20,5,5, 11.34 11.12 10.72 11.10 8.69
5,5,1,1,1) (0.10) (0.10) (0.10) (0.10) (0.10)
(100,90,80,70,60, | 11.30 10.98 10.89 1093 7.25
50,40,30,20,10) (0.08) (0.08) (0.08) (0.08) (0.10)
(512,256,128,64,32, | 11.34 11.23 11.19 11.23 10.14
16,8,4,2,1) (0.13) (0.13) (0.13) (0.13) (0.12)
(10°,10%,107,106,10%, | 11.42 11.40 11.40 11.41 11.34
104,10%,102,10%,10%) | (0.19) (0.19) (0.19) (0.19) (0.19)




TABLE 2
n = 25 Ne = 25
Average losses of estimators for the estimation of 2221_1 under
Ly loss (Estimated standard errors are in parenthesis)

Eigenvalues of

222;1 S':BU S':AU S'.\BE S:~Sl 652
(1,1,1,1,1, 15.34 12.47 11.86 10.48 4.58
1,1,1,1,1) (0.11) (o0.11) (0.11) (0.11) (0.14)

(10,10,10,10,10, 15.33 14.36 14.27 1358 11.97
0.1,0.1,0.1,0.1,0.1) | (0.13) (0.13) (0.13) (0.13) (0.14)
(25,25,25,25,25, 15.28 13.30 13.27 11.85 7.93
25,25,25,0.1,0.1) (0.12) (0.12) (0.12) (0.12) (0.13)
(30,30,30,0.1,0.1, 15.23 14.81 14.76 14.41 14.15
0.1,0.1,0.1,0.1,0.1) | (0.17) (0.18) (0.16) (0.16) (0.17)
(50,0.1,0.1,0.1,0.1, | 15.11 15.05 14.98 15.02 15.48
0.1,0.1,0.1,0.1,01) | (0.27) (0.27) (0.27) (0.27) (0.29)
(20,20,20,5,5, 15.30 14.05 1398 13.70 12.06
5,5,1,1,1) (0.14) (0.13) (0.13) (0.13) (0.13)
(100,90,80,70,60, 15.32 13.21 13.20 12.17 8.52
50,40,30,20,10) (0.12) (0.12) (0.12) (0.12) (0.12)
(512,256,128,64,32, | 15.26 14.77 14.76 14.78 14.49
16,8,4,2,1) (0.17) (0.17) (0.17) (0.17) (0.17)
(10°,10%,107,10%,10%, | 15.12 15.09 15.09 15.12 15.16
10%,10%,10%,101,10%) | (0.25) (0.25) (0.25) (0.25) (0.25)
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TABLES

TABLE 3
n; =12 ng = 25
Average losses of estimators for the estimation of EgE‘II under
Ly loss (Estimated standard errors are in parenthesis)

Eigenvalues of

2221—1 §BU fAU SI:BE §SI S'.\Sz
(1,1,1,1,1, 11.17 1082 5.71 10.75 5.01
1,1,1,1,1) (0.07) (0.07) (0.05) (0.07) (0.12)

(10,10,10,10,10, 11.12 1097 10.82 1095 8.87
0.1,0.1,0.1,0.1,0.1) | (0.10) (0.10) (0.10) (0.10) (0.10)
(25,25,25,25,25, 11.16 1090 10.79 10.85 6.97
25,25,25,0.1,0.1) (0.08) (0.08) (0.08) (0.08) (0.11)
(30,30,30,0.1,0.1, 11.21 1115 11.09 11.13 10.06
0.1,0.1,0.1,0.1,0.1) | (0.13) (0.13) (0.13) (0.13) (0.12)
(50,0.1,0.1,0.1,0.1, | 11.45 11.44 11.37 11.44 11.37
0.1,0.1,0.1,0.1,0.1) | (0.21) (0.21) (0.21) (0.21) (0.21)
(20,20,20,5,5, 11.20 11.00 10.18 11.00 8.05
5,5,1,1,1) (0.10) (0.10) (0.09) (0.10) (0.10)
(100,90,80,70,60, 11.17 1088 10.74 1085 6.21
50,40,30,20,10) (0.08) (0.08) (0.08) (0.08) (0.09)
(512,256,128,64,32, | 11.25 11.15 11.08 11.16 9.73
16,8,4,2,1) (0.12) (0.12) (0.12) (0.12) (0.12)
(10°,108,107,108,105, | 11.41 11.40 11.40 11.40 11.31
10%,10%,10%,101,10°) | (0.19) (0.19) (0.19) (0.19) (0.19)




TABLE 4

ng = 12

Average losses of estimators for the estimation of 22)31"1 under
Ly loss (Estimated standard errors are in parenthesis)

n1=25

Eigenvalues of

2221—1 SeBU S‘.‘AU S:\BE s':Sl S':Sz
(1,1,1,1,1, 17.67 1446 14.01 1268 8.15
1,1,1,1,1) (0.10) (0.11) (0.10) (0.12) (0.13)

(10,10,10,10,10, 17.72 1664 16.60 16.06 15.00
0.1,0.1,0.1,0.1,0.1) | (0.13) (0.13) (0.13) (0.13) (0.13)
(25,25,25,25,25, 17.63 1545 1544 14.30 11.61
25,25,25,0.1,0.1) (0.11) (0.12) (0.12) (0.12) (0.13)
(30,30,30,0.1,0.1, 17.66 17.19 17.18 16.89 16.68
0.1,01,0.1,0.1,01) [ (0.17) (0.17) (0.17) (0.17) (0.17)
(50,0.1,0.1,0.1,0.1, | 17.75 17.69 17.67 17.67 17.88
0.1,0.1,0.1,0.1,01) [ (0.27) (0.27) (0.27) (0.27) (0.28)
(20,20,20,5,5, 17.66 16.13 16.07 15.73 14.38
5,5,1,1,1) (0.13) (0.13) (0.13) (0.13) (0.12)
(100,90,80,70,60, | 17.67 15.19 15.18 14.11 11.15
50,40,30,20,10) (0.11) (0.11) (0.11) (0.11) (0.11)
(512,256,128,64,32, | 17.70 17.07 17.07 17.05 16.70
16,8,4,2,1) (0.17) (0.16) (0.16) (0.16) (0.16)
(10°,108,107,108,10%, | 17.74 17.71 1771 17.714 11.71
10%,103,10%,101,10%) | (0.25) (0.25) (0.25) (0.25) (0.25)

23
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TABLE 5
n; = 14 ny = 14
Average losses of estimators for the estimation of 2221_1 under
L3 loss (Estimated standard errors are in parenthesis)
Eigenvalues of

2221—1 SvBU {AU SVBE . gSl 5152
(1,1,1,1,1, 0.923 0912 0.898 0.915 0.894
1,1,1,1,1) (0.002) (0.002) (0.002) (0.002) (0.003)

(10,10,10,10,10, 0924 0918 0917 0920 0.915

0.1,0.1,0.1,0.1,0.1) | (0.003) (0.003) (0.003) (0.003) (0.003)
(25,25,25,25,25, 0.923 0914 0913 0.916 0.904
25,25,25,0.1,0.1) | (0.002) (0.002) (0.002) (0.002) (0.003)
(30,30,30,0.1,0.1, 0920 0917 0917 0918  0.918

0.1,0.1,0.1,0.1,0.1) | (0.002) (0.002) (0.002) (0.002) (0.002)

(60,0.1,0.1,0.1,0.1, | 0925 0924 0924 0924 0.929

0.1,0.1,0.1,0.1,0.1) | (0.005) (0.005) (0.005) (0.005) (0.003)

(20,20,20,5,5, 0.921 0914 0912 0917 0.904
5,5,1,1,1) . (0.002) (0.002) (0.002) (0.002) (0.002)
(100,90,80,70,60, | 0.923 0.913 0.913 0.916  0.898
50,40,30,20,10) (0.002) (0.002) (0.002) (0.002) (0.003)
(5612,256,128,64,32, | 0.922 0918 0918 0.920 0.916
16,8,4,2,1) (0.003) (0.003) (0.003) (0.003) (0.003)
(10°,10%,107,10%,10°, | 0.924 0.923 0923 0.924 0.923
104,10%,10%,101,10°) | (0.005) (0.005) (0.005) (0.005) (0.005)
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TABLE 6
ny =25 ny = 25
Average losses of estimators for the estimation of 2221_1 under
Ly loss (Estimated standard errors are in parenthesis)

Eigenvalues of

2221—1 S!BU SrAU SvBE fSl S:.fSZ
(1,1,1,1,1, 0.623 0548 0533 0.515  0.408
1,1,1,1,1) (0.008) (0.008) (0.008) (0.007) (0.005)

(10,10,10,10,10, 0.625 0.595 0593 0.578  0.551
0.1,0.1,0.1,0.1,0.1) | (0.009) (0.009) (0.009) (0.008) (0.007)
(25,25,25,25,25, 0621 0566 0.565 0.540  0.468

25,25,25,0.1,0.1) | (0.008) (0.008) (0.008) (0.007) (0.006)
(30,30,30,0.1,0.1, 0.624 0611 0610 0601 0.604
0.1,0.1,0.1,0.1,0.1) [ (0.008) (0.008) (0.008) (0.008) (0.008)
(50,0.1,0.1,0.1,0.1, | 0629 0628 0.626 0.627  0.650
0.1,0.1,0.1,0.1,0.1) | (0.010) (0.010) (0.010) (0.010) (0.007)

(20,20,20,5,5, 0.625 0.588 0586 0.582  0.544
5,5,1,1,1) (0.009) (0.009) (0.009) (0.008) (0.007)
(100,90,80,70,60, | 0.623 0.565 0.565  0.547  0.472
50,40,30,20,10) (0.008) (0.008) (0.008) (0.008) (0.005)
(512,256,128,64,32, | 0.626 0.611 0.611 0.612 0.604
16,8,4,2,1) (0.009) (0.009) (0.009) (0.009) (0.008)
(10°,108,107,10%,10%, | 0.627 0.626 0.626 0.627 0.628
10%,10%,102,101,10°) | (0.009) (0.009) (0.009) (0.009) (0.009)
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TABLE 7
ny =14 ng =25
Average losses of estimators for the estimation of 2221_1 under
Ly loss (Estimated standard errors are in parenthesis)
Eigenvalues of

2221—1 szU g:AU S:.'BE g:Sl gtSZ
(1,1,1,1,1, 0919 0910 0.889 0.913  0.898
1,1,1,1,1) (0.012) (0.012) (0.012) (0.012) (0.011)

(10,10,10,10,10, 0912 0.907 0905 0.909  0.907

0.1,0.1,0.1,0.1,0.1) | (0.007) (0.007) (0.007) (0.007) (0.006)
(25,25,25,25,25, 0.917 0.909 0.909 0.912  0.903
25,25,25,1,1) (0.011) (0.011) (0.011) (0.011) (0.010)
(30,30,30,0.1,0.1, 0912 0909 0909 0910 0915
0.1,0.1,0.1,0.1,0.1) | (0.008) (0.008) (0.008) (0.008) (0.007)
(50,0.1,0.1,0.1,0.1, | 0915 0915 0914 0915 0.928
0.1,0.1,0.1,0.1,0.1) | (0.011) (0.011) (0.011) (0.011) (0.010)
(20,20,20,5,5, 0918 0911 0909 0914 0.901
5,5,1,1,1) (0.012) (0.012) (0.012) (0.012) (0.011)
(100,90,80,70,60, | 0.917 0.909 0.909 0.912  0.896
50,40,30,20,10) (0.012) (0.012) (0.012) (0.011) (0.010)
(512,256,128,64,32, | 0914 0910 0910 0.912  0.907
16,8,4,2,1) (0.009) (0.009) (0.009) (0.009) (0.006)
(10°,10%,107,10%,105, | 0.913 0913 0913 0.913 0.913
104,108,102,101,10°) | (0.009) (0.009) (0.009) (0.009) (0.009)




Ly loss (Estimated standard errors are in parenthesis)

TABLE 8
ng = 14
Average losses of estimators for the estimation of 2221_1 under

n1=25

Eigenvalues of

222;1 s7:BU SYAU §BE S7.'Sl SrSZ
(1,1,1,1,1, 0.691 0.603 0.590 0.567 0.473
1,1,1,1,1) (0.005) (0.005) (0.005) (0.004) (0.005)

(10,10,10,10,10, 0.689 0.655 0.654 0.641 0.620
0.1,0.1,0.1,0.1,0.1) | (0.005) (0.005) (0.005) (0.005) (0.005)
(25,25,25,25,25, 0.691 0.627 0.627 0.601 0.541
25,25,25,0.1,0.1) | (0.005) (0.005) (0.005) (0.005) (0.004)
(30,30,30,0.1,0.1, 0.687 0.672 0671 0663 0.661
0.1,0.1,0.1,0.1,0.1) | (0.008) (0.008) (0.006) (0.006) (0.005)
(50,0.1,0.1,0.1,0.1, | 0.687 0.685 0.684 0.685 0.704
0.1,0.1,0.1,0.1,0.1) | (0.008) (0.008) (0.008) (0.008) (0.007)
(20,20,20,5,5, 0.689 0.645 0.643 0.638 0.601
5,5,1,1,1) (0.005) (0.005) (0.005) (0.005) (0.004)
(100,90,80,70,60, | 0.690 0.621 0.621 0.600 0.531
50,40,30,20,10) (0.005) (0.005) (0.005) (0.004) (0.004)
(512,256,128,64,32, | 0.687 0.668 0.667 0.668  0.659
16,8,4,2,1) (0.006) (0.006) (0.008) (0.005) (0.005)
(10°,108,107,10%,10°%, | 0.686 0.685 0.685 0.686 0.687
10%,10%,10%,101,10%) | (0.007) (0.007) (0.007) (0.007) (0.007)
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