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ABSTRACT

A wide class of statistics, the generalized L-statistics, was introduced in
Serfling (1984). The generalized L-statistics are asyniptotically normal under
weak conditions. This report consists of two parts. In part I, we show that the
jackknife estimators of the asymptotic variances of generalized L-statistics are
consistent. In part II, bootstrap methods for generalized L-statistics are studied.
The results provide methods for large sample statistical analysis based on gen-

eralized L-statistics.



PART I

JACKKNIFE VARIANCE ESTIMATORS FOR GENERALIZED
L-STATISTICS

1. Introduction

The generalized L-statistics was introduced by Serfling (1984). It general-
izes the classes of U-statistics and L-statistics and consists of other types of
statistics such as trimmed sample variance, trimmed U-statistics and Winsorized
U-statistics. See Serfling (1984, 1985) for other examples. Let X 10ees X, bE
independent and identically distributed samples from an unknown population
distribution F, m be a fixed positive integer and A (x,...,x,,) be a given sym-
metric function. Denote the distribution function of 4 (X;,...,X,,) by H(y), i.e.,

H®)=Pp{ h(X1..X,) <y}, yeR.

Let
H,0) = ngp X, Ih X, X, )], (1.1)

where I[A] is the indicator function of the set A, Rmy=n(n—1) - -+ (n—-m+1)
and ¥, is the summation taken over the ., m-tuples (iy,...,i,, ) of distinct ele-

ments from {1,...,n }. We consider a class of smooth generalized L-

statistics defined by T (H,,), where T is defined to be
TG)= Jy] [G()IdG(y), for any distribution function G, (1.2)

and J is a function on [0,1] (Serfling, 1984). When & =x, H, reduces to the
ordinary empirical distribution and T (H,,) reduces to the ordinary L-statistics.
When J=1, T(H,) is a U-statistic. It was shown in Serfling (1984) that the

influence function of T (H,,) is
0(z) = -m[g (v.,2)-H )W [H ()]dy,
where

g.2) =] [Ih@ ity 12)<y].



Furthermore, under either condition A or condition B stated below, the general-
ized L-statistics are asymptotically normal, i.e.,

n'"[TH,) - TH) - N©, 6 in distribution,

where 6% = Ep¢*(X,) and is assumed to be finite.

Condition A. J(z) =0 for 0<z <a or B<z<1, where O<o<f<1 are constants, J

is continuous on [a,B] and H is continuous.

Condition B. J is continuous on [0,1] and H is continuous and satisfies

i) a-HE) "y < o. 13)

The statistics with J functions satisfying condition A are referred to as
trimmed statistics in the literature and they usually provide robust estimators
(Huber, 1981). Condition (1.3) is equivalent to Eph2(X,,....X,,) < oo if the dis-
tribution H has regularly varying tails (see Feller, 1966, p.268) with a finite

| 2+3

exponent. It is implied by Er | h (X ,....X,,,) < oo for a §>0.

For various purposes in statistical analysis, we need a consistent estimator
of the unknown asymptotic variance 6. In this paper, we prove that the estima-
tors of 62 obtained by using the jackknife method (Quenouille, 1956; Tukey,
1958) are strongly consistent. For i=l,..,n, let H,; be defined as in (1.1)
corresponding to n—1 samples X,..., X;_y, X;,1,..., X,,. The jackknife estimator

of 62 is defined to be
sf = (=D [THy) - T, (14)
where T, = nTYYr T(Hy).
In Section 2, the strong consistency of s ,2 is proved for trimmed general-
ized L-statistics. The case of untrimmed generalized L-statistics is treated in

Section 3. Since U- and L-statistics are special cases of generalized L-statistics,

our result includes the existing results in jackknifing U- and L-statistics (see



Arvesen, 1969; Parr and Schucany, 1982) as special cases.

2. Trimmed generalized L-statistics
Let U, be a U-statistic (see Hoeffding, 1948) defined to be

Up = 1y T,k Ki e X)),

where k(x4,...,x,,) is a symmetric kernel. For each i, let
Upi = [(0=D) )] " i k(X X ),

where (n—1)(,y= (n-1) - -+ (n—m) and Y. is the summation taken over the
(n—1)¢ny m-tuples (iy,....i,) of distinct elements from the integers
{1,...,i-1ji+l,..., n }. The jackknife estimator of the asymptotic variance
of U, is

¢ = (=-DEL Uu=U,)

Lemma 1. Assume that EFkZ(Xl,...,Xm) < oo, Then
52 5 mYo?G)F @) as.,

where 0() = Ep[k (X 1,...X,,) I X1=y] — Epk (X 1,-..X 0 ).

This result was proved in Arvesen (1969, Theorem 5), although he stated a
weaker version of this result (the weak consistency). The following lemmas are

also needed for the proof of the main results.

Lemma 2. Let H, H, and H,; be defined as in Section 1. Then
(@) 7, [H, () = Hy ()] = 0 for any y.
(i) 1H, —Hyll, <m(n—m)™, where Il Il is the sup norm.

Proof. Let



Ay ) = [0 =1 )] ' Fei TR XX, )SY] @.1)

where (n—1),_1y5=(n-1) - - - (n-m+1) and Xci, is the summation taken over
the (n—1),_1y) m—1-tuples (iy,....i,,_;) of distinct elements from the integers
{1,...,i~Li+1,..., n }. A straightforward calculation shows that

H,(0) = Hy @) = m(n-m) ' [Au;») — H, )],
Then (i) follows from n'lzi"z 1Am-(y) =H,(y) and (i) follows from both

IA,; I, and I1H, Il are bounded by one. O

Lemma 3. Assume that H is continuous. Then

l\H, -HIl,—0 as.

Proof. For each y, H,(y) is a U-statistic. From theory of U-statistic,
H,(y) > H(@)as. Let D=/{ all rational numbers in R }. Then almost
surely, H,(y) = H(y) for all yeD. Let o= (X, X,,...) be fixed such that
H,(y) > H(y) for all yeD. Since D is a dense subset of R and H,, is a distri-
bution function, H, converges weakly to H. From the continuity of H, we have

IH,-H I, — 0. This completes the proof. U

We now establish the strong consistency of s ,2 given by (1.4) for trimmed

generalized L-statistics.

Theorem 1. Assume condition A. Then

s 5 0% as.

Proof. Define

Hai(y)
H,,(y)‘,(t)dt - J[H(x)] 2.2)

for H,;(y)#H,(y) and W,;(y) =0 if H,(y)=H,(y). From Lemma 8.1.1B in
Serfling (1980),

Wni o) = [Hni O )_Hn 6% )]_1



T(H,) — T(H,) = J[H, )H,y 0V H)dy 2.3)
+ Wi 0)[H,, 0)~H, & )1dy .
Let Uy =|[Hy,0)-HOVHEHG)y, U, =J[H,0)H)WIH)dy,
Ry = Wy O)H,y)-H,;(»)ldy and R,=n"'y" R,. From Lemma 2,
U, =n"'Y" Up. Then
s} = (-DXL Uy=U,)? 2.4)
(DY Ry—R, Y + 20D Ry (Upi=U,).
Note that U, is a U-statistic with f{I [A (X 150X, )<y 1-H ()} [H (y)]dy as the

kernel. Hence from Lemma 1,

(=D Uy — U2 - 6% as.
Using Cauchy-Schwarz inequality, the result follows from
(r-DY” RE >0 as. (2.5)

Let a and b be two constants such that H(a) < o and H(b) > B. From Lemma
2(ii) and Lemma 3, for almost all ® = (X, X5,...), there is an #n,>0 such that
H,(a) < o,H,(a) < a, H,;(b) > B and H,(b) > B hold for all i<n and n2n,
ThenR,; = I:Wni(y)[Hn(y)—Hni(y)]dy , since J(t) =0 if <ot or ¢ >B. Thus,
ax,-SanZi <(b-a )Zmax,-s,,(IIWm- Mo WH,~H,; Il.)
< Cn~2max;c, 1W,; Il..,
where C is a constant. Since J is a continuous function on [a,p],
IH,—H, o € m(n—-m)™* and I1H,-H I, — 0 a.s., max;c, |W,; I, > 0 a.s.

Hence (2.5) holds and the result follows. O

3. Untrimmed generalized L-statistics

For untrimmed generalized L-statistics, we prove the following similar

result.



Theorem 2. Assume condition B. Then

s = o as.

Proof. From (2.2)-(2.4), we only need to show (2.5) holds. Using Lemma 2(i),

we obtain

(n=DE R2 = (=Dm*n-mY 25" (W04, 0) — H)ldy 12
<Cnlyr (J14,0) - HO)dy Pmax;e, 1 W, Il

where C is a constant. From the proof of Theorem 1, max

Then (2.5) follows from

ien Wi ll, = 0 aus.
nsr J14w0) - H.)1dyP=0() as. (3.1)
Let&, =n~! i';1[-[|A”i(y) — H(y)!dy]% Using the notation in (2.1), we have
En < n 7 Dgup] I T IR R XX, )<y - H(y)ldy )

= neh S TR . X, )<y] - Ho)dy )2, 3.2)

which is a U-statistic with a kernel {flI[h (X 150Xy )y — H(y)1dy }2. Under

condition (1.3),
Ep(JUh Xy X, )] - H)ldy ) (3.3)

= JIEz TR (X, X,)9] = HO) WA (X . X, )<2] — H (2) | dydz
< {ERU TR (X 1, X,)Sy] - H)PY rdy )2
= (JH-HEN dy }? < .
From the almost sure convergence of U-statistics, the quantity in (3.2) converges
almost surely to the quantity in (3.3). Hence &, =O(1) a.s. Similarly,
[1H,()-H (7)1dy is bounded by
non X, JIIThK; X, )<y1 ~ H(y)!dy,
which converges almost surely to
Ep[I[(X 1 X,)<y] — H) 1y < oo
under condition (1.3). Then (3.1) follows from

w14, 0) — H,0)1dy P < 28, + 21 H, (v)-H () 1dy ]2



This completes the proof. U

4. Remarks

A different type of generalized L-statistic (Serfling, 1984) is T'(K,,), where
T is given by (1.2) and
Kn(y) = n—mZ{::l e Zl:=ll[h (X,-l,...,X,-m)Sy].

T(H,) and T(K,) are closely related and have the same limiting distribution.
Note that Kn(y) is a V-statistic. Consistency of jackknife estimators for V-
statistics can be established using similar techniques in treating jackknife esti-
mators for U-statistics (e.g., Sen, 1977). Therefore, our results in the previous

sections can be extended to the statistics T (K,,) with some modifications.



PART II

BOOTSTRAPPING FOR GENERALIZED L-STATISTICS

1. Introduction

Let X;,..., X,, be independent and identically distributed (i.i.d.) samples
from an unknown population distribution F and T, =T, (X;,....X,,) be a statis-
tic. The bootstrap (Efron, 1979) is a useful nonparametric method for statistical
analysis based on T,,. For example, the bootstrap can be used to approximate
the sampling distribution of a function L, =L,(Tr, T,,) and its other charac-
teristics for various purposes in statistical inferences for Tr, where Tr depends

on F and is an unknown parameter of interest.

Let X ’{ peees X,’,k be ii.d. samples drawn from the empirical distribution
F,(x)= n_lzi"zll [X;<x], where I[A] is the indicator function of the set A. X,-*
are called bootstrap samples. A bootstrap analog for T, is T = T,, (X} ,....X,;).
The sampling distribution of L, Pr{ L,(Tr, T,) <t }, is approximated by the
bootstrap estimate P« { L, (T,,T,) <t }, where P is the probability correspond-
ing to the bootstrap sampling.

In many situations L, is n"(T, — T) and it can be approximated by an

average of i.i.d. random variables, i.e.,

T, —Tp =n'Y 0X;) +R,, (1.1)
where ¢ is a function depending on F and T, and satisfies Er¢(X;) =0 and
0< EF¢2(Xi) < o, Note that n™! in=1¢(Xi) =0, (n~"). Hence usually
R, =o, (n~"). More generally, we have

T,-Tr=U, +R,, (1.2)

where U, =U,(X;,...X,) is a U-statistic (see Hoeffding, 1948) satisfying

EprU, =0 and R, =0, (n~h). Serfling (1984) gives a wide class of statistics,



the generalized L-statistics, which have property (1.2). More details for the gen-

eralized L-statistics is given in the next section.
A bootstrap analog of (1.2) is
T,~T,=U;-U, +R), (1.3)
where U, = U, (X],...X,;) and R, satisfies
Ry =o0,(n™". (1.4)

Note that the o, in (1.4) is with respect to the unconditional probability P
defined by P{A} = ErP«{A} for any measurable set A. Equation (1.3) can be
called a bootstrap representation for the bootstrap statistic T, — T,,. A direct
consequence of (1.3)-(1.4) is that the bootstrap estimator of the sampling distri-

bution Pr{ n'/Z(T,,—Tp) <t } is weakly consistent, i.e.,
sup, | Puf n"*(T}-T,) <t } —Pp{ n'*(T,—Tp) <t } | = 0,(1). (1.5)

This follows from (1.4) and a well established bootstrap theory for U-statistics
(see Bickel and Freedman, 1981).

For several classes of statistics such as (ordinary) L-statistics and differen-
tiable statistical functionals, (1.1) holds and the bootstrap representation holds
with U, = n—lzleq)(x,-*) (see Babu and Singh, 1984; Gill, 1987). The purpose
of this paper is to show the bootstrap representation (1.3) holds for a wide class
of statistics, the generalized L-statistics. The result includes that for ordinary

L-statistics since n"lzl.": ,0(X;) is a special case of U-statistics.

2. Bootstrap representations
Let A(xy,...,X,,) be a symmetric function on R” and Hp (x) be the distribu-
tion function of 4 (X,,....X, ), i.e.,

Hp(x) =Pp{ h(Xy,...X,,) <x }, xeR.



An empirical version of Hr (x) is
H,(x) = Q)Y I X, X; )<x], 2.1)

where Y. is the summation taken over all combinations of m integers (iy,....i,,)
chosen from the integers 1,...,n. Note that H,(x) is a U-statistics. LetJ be a
function defined on the interval [0,1], G be a distribution function and

T(G) = [\ [G(x)]dG (x).

A class of generalized L-statistics is defined to be T,,=T (H,) (Serfling, 1984).
The corresponding Ty is T (Hr). Examples of generalized L-statistics include
U-statistics, (ordinary) L-statistics, trimmed variances, trimmed U-statistics and

Winsorized U-statistics (see more examples in Serfling, 1984).

It was shown in Serfling (1984) that T, satisfies (1.2) with R, = o, (n™")

and
U, = JIHp (6)=H,, (01 [Hp (x)dx 22)

under the following condition.

Condition A. (1) The functions J and Hy are continuous.

(2) The distribution H. satisfies _[[H r)(1-Hp(x N17dx < oo.

h(X;,....X; ). To establish the bootstrap representation (1.3)-(1.4), we need to

assume

Condition B. f[ ,‘;‘ """ b 6 ) (1= 1‘;‘ """ inx)N]"dx < o for any integers
< <ip,.

Note that for a random variable Y with distribution G, the condition
I[G ()(1-G (x)]2dx < oo is almost equivalent to the condition Eg Y2 < oo (sée
Serfling, 1980, p.276) and is implied by E; |Y 123 < oo for a §>0. Hence con-

dition B is almost the same as Ephz(X,-l,...,Xim) <o and implied by

10



Eg IR (X;,,....X; )1?*® < oo for any integers i ;< - - + <i,.
Lemma 1. Let H: be the bootstrap analog of H,, i.e., H,’: is defined by (2.1)
with X; replaced by the bootstrap samples X ,’: If Hy is continuous, then

IH; —Hpl >0 as. and IH;-H, I -0 as.,
where || Il is the sup norm.

Proof. For any fixed x, since H,(x) is a bounded U-statistic and H,(x) is its
bootstrap analog, H,(x) — Hp(x) a.s. (Athreya et al., 1984). Then almost
surely, H,;(x) — Hg(x) for all rational x, which implies H} converges weakly
to Hy a.s. since all rational numbers form a dense set in R and H,, is a distribu-
tion function. Then WH, — Hp Il = 0 a.s. follows from the continuity of Hg.

A similar argument shows that |H,, — Hr | — 0 a.s. Hence the results hold. O

Theorem 1. Assume conditions A and B. For the generalized L-statistics
T, =T(H,), the bootstrap representation (1.3)-(1.4) holds with U, given by
(2.2).

Proof. Let W, (x) = M[H, (x),H,(x)] ~ J[Hp(x)] if H,(x)#H}(x) and = 0 if
H, (x)=H?(x), where M (s, t) = J:J(u)du/(z—s). Then from Lemma 8.1.1B of
Serfling (1980),

T = T, = Uy = Uy + [W00)H, 0)-Hyi001dx,

where U, is the bootstrap analog of U, given by (2.2) with H,, replaced by H.
From Lemma 1 and the continuity of J, | W,’: I - 0 a.s. It remains to show

that
N\H: () - Hy0)1dx = 0,07, 2.3)

Let E« and Vi« be the expectation and variance taken under the bootstrap proba-

bility P« , respectively. Since Ex[H,(x)] = K, (x), where

11



K,)=n"3r_ - 3t T (XX, )<x), jex

i=1
we have
EpEx[|H;(x) = H, ()11 < {EpVa [Hy (0] + Ep[K, (0)—-H, ()P} ™.
Hence (2.3) follows from
J{ER K, ()-H, 0)12) dx = O (n ™) 2.5)
and
JEERVaTHy00]) Rdx = 0 (07, (2.6)
Let Z, (x) be the average of all terms 7 [4 (X,-l,...,Xim)Sx] with at least one equal-
ity i;=i;, j#I. From Serfling (1980, p.206),
H,(x) = K, (x) = [1=1 4,py/n™ 1[H, (x) — Z,, (0], @7

where n(,y =n(-1) - - - (n—m+1). Then
Ep[H,(x) — K, (x)I* < Cn 2 {Ep[H, (x )-Hp (x)]*
+Ep[Z, (0)~Zp ()1 + [Zp (0)-Hp ()]},
where C is a constant and Zrp(x) =ErlZ,(x)]. Then (2.5) follows from condi-
tion B; Since for given X ;,..., X,,, H: (x) is a U-statistic, we have
Vi [Ha()] < mn™K, ()[1-K, (x)]
(see Serfling, 1980, p.183). Then (2.6) follows from
An = J(EF 1K, (6)(1-K, )1} *dx = O (V).
Note that A, is bounded by
[ BRI, 0N dx + [ (Ep 11K, (o)) .

From (2.7),

Ep[K, ()] = [nguy/n™ Hp (x) + [1=n(,/n™ 1Z (x).
Hence A,, is bounded by

[ trpeonax + [ (zp e ax + [T0-Hp 0o1Rdx + [T11-Zp )1,

12



which is finite under condition B. This completes the proof. U

If the function J is more smooth (condition C), then we can obtain a

stronger result than (1.4) under less requirement on the moment of A (X; . €3 X

Condition C. J is Lipschitz continuous of order 8 (0<8<1), i.e., there is a con-

stant C>0 such that IJ(z‘)-—J(s)ISCIs—tI8 for any s,te[0,1], and

Theorem 2. Assume condition C. Then (1.3) holds with

R: = Op (n—(1+8)/2).
Proof. Using the same notation as in the proof of Theorem 1, we have
IWr(x)| < CIH}(x)-H, (x)1® + |H, (x)-Hp(x)1?] by the Lipschitz continuity
of J. Then

IR} < CJIH: 0o)~H,, (x) 13

2.8)
+ [1H, (0)~Hp ) 131 H (0)=H, (x) | dx].

Since EpEx |Hf(x)~H, (x) 1'% < (Ep Ex« [H*(x)-H,, (x)]}**92, the first integral
on the right hand side of (2.8) can be shown to be O, (n"1*¥2) by using the
same argument as in the proof of Theorem 1. Note that
EpEx \H,(x)-Hp () |11 H}(x)-H,, (x) |
= Ep |H, (x)—Hp () | %Ex | H}(x)-H,, (x) |
< Ep |H, (x)—Hp (x) | 3{E« [H}(x)-H,, ()12} "
< [Ep | H, (x)-Hp (x)12°] " {Ep Ex [H,y (x)-H, (6)12} "
and
[Ep | H,, (6)=Hp () 121" < (m/n )Y [Hp (0 )(1-H (£))1¥2
Using the same argument as in the proof of Theorem 1, we have

[t (o) 1=H o)1 {Ep Ex [H()-H,, (0)]3) #dx = O (n=1+912)

13



under condition C. Hence the result follows. O

3. Complements

(1) From (2.1), U,, defined in (2.2) is a U-statistic with a kernel

k(X o) = J{HR GO~ [R (i, )< 1) [Hp ()1
Under condition B, Epkz(X,-l,...,X,-m) < oo for any integers i1<--- <i,, (see
Serfling, 1980, Lemma 8.2.5A). Hence (1.5) holds with T,,=U,, and T,=U,; (see
Bickel and Freedman, 1981). Then Theorem 1 or 2 implies that (1.5) holds for
the generalized L-statistics T,,=T (H,,) satisfying condition A and either condi-

tion B or condition C.

(2) Under condition A, Serfling (1984) showed that the distribution of
nl/z(Tn—T ) converges weakly to N (0, (52), where o2 is given in (3.3) of Serfling
(1984) and ié generally unknown. In statistical analysis, we often need a con-
sistent estimator of the asymptotic standard deviation ¢. Let Q, and q be the
interquartile ranges of Px{ nl/’(T:—Tn) <t } and N(0,1), respectively. Then
from (1.5), Q,,/q is consistent for o, i.e.,
0,/q —o= 0, (1).
(3) Serfling (1984) introduced another type of generalized L-statistics T'(K,,),
where K, is defined in (2.4). With some minor changes in the proofs of
Theorems 1 and 2, we can establish the bootstrap representation (1.3)-(1.4) for
T (K,,) with U, and U, replaced by _
V, = J[HF 00)K,, ()W [Hp (x)1dx

and the bootstrap analog V,;, respectively. Note that V, is a V-statistic. Since

V-statistics are closely related to U-statistics, result (1.5) can be extended to

T, =T (K,) in a straightforward manner.

14
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