

Department of Statistics Purdue University

November 1988

RESAMPLING ESTIMATORS FOR GENERALIZED L-STATISTICS

Jun Shao

Department of Statistics
Purdue University
West Lafayette, IN 47907

ABSTRACT

A wide class of statistics, the generalized L-statistics, was introduced in Serfling (1984). The generalized L-statistics are asymptotically normal under weak conditions. This report consists of two parts. In part I, we show that the jackknife estimators of the asymptotic variances of generalized L-statistics are consistent. In part II, bootstrap methods for generalized L-statistics are studied. The results provide methods for large sample statistical analysis based on generalized L-statistics.

PART I

JACKKNIFE VARIANCE ESTIMATORS FOR GENERALIZED L-STATISTICS

1. Introduction

The generalized L-statistics was introduced by Serfling (1984). It generalizes the classes of U-statistics and L-statistics and consists of other types of statistics such as trimmed sample variance, trimmed U-statistics and Winsorized U-statistics. See Serfling (1984, 1985) for other examples. Let $X_1, ..., X_n$ be independent and identically distributed samples from an unknown population distribution F, m be a fixed positive integer and $h(x_1, ..., x_m)$ be a given symmetric function. Denote the distribution function of $h(X_1, ..., X_m)$ by H(y), i.e.,

$$H(y) = P_F\{h(X_1,...,X_m) \le y\}, y \in \mathbb{R}.$$

Let

$$H_n(y) = n_{(m)}^{-1} \sum_{c_m} I[h(X_{i_1}, ..., X_{i_m}) \le y],$$
(1.1)

where I[A] is the indicator function of the set A, $n_{(m)}=n(n-1)\cdots(n-m+1)$ and \sum_{c_m} is the summation taken over the $n_{(m)}$ m-tuples $(i_1,...,i_m)$ of distinct elements from $\{1,\ldots,n\}$. We consider a class of smooth generalized L-statistics defined by $T(H_n)$, where T is defined to be

$$T(G) = \int y J[G(y)] dG(y)$$
, for any distribution function G , (1.2)

and J is a function on [0,1] (Serfling, 1984). When h=x, H_n reduces to the ordinary empirical distribution and $T(H_n)$ reduces to the ordinary L-statistics. When $J\equiv 1$, $T(H_n)$ is a U-statistic. It was shown in Serfling (1984) that the influence function of $T(H_n)$ is

$$\phi(z) = -m \int [g(y,z) - H(y)] J[H(y)] dy,$$

where

$$g(y,z) = \int \cdots \int I[h(x_1,...,x_{m-1},z) \le y].$$

Furthermore, under either condition A or condition B stated below, the generalized L-statistics are asymptotically normal, i.e.,

$$n^{1/2}[T(H_n) - T(H)] \rightarrow N(0, \sigma^2)$$
 in distribution,

where $\sigma^2 = E_F \phi^2(X_1)$ and is assumed to be finite.

Condition A. J(t) = 0 for $0 \le t < \alpha$ or $\beta < t \le 1$, where $0 < \alpha < \beta < 1$ are constants, J is continuous on $[\alpha, \beta]$ and H is continuous.

Condition B. J is continuous on [0,1] and H is continuous and satisfies

$$\int [H(y)(1-H(y))]^{1/2} dy < \infty.$$
 (1.3)

The statistics with J functions satisfying condition A are referred to as trimmed statistics in the literature and they usually provide robust estimators (Huber, 1981). Condition (1.3) is equivalent to $E_F h^2(X_1,...,X_m) < \infty$ if the distribution H has regularly varying tails (see Feller, 1966, p.268) with a finite exponent. It is implied by $E_F |h(X_1,...,X_m)|^{2+\delta} < \infty$ for a $\delta > 0$.

For various purposes in statistical analysis, we need a consistent estimator of the unknown asymptotic variance σ^2 . In this paper, we prove that the estimators of σ^2 obtained by using the jackknife method (Quenouille, 1956; Tukey, 1958) are strongly consistent. For i=1,...,n, let H_{ni} be defined as in (1.1) corresponding to n-1 samples $X_1,...,X_{i-1},X_{i+1},...,X_n$. The jackknife estimator of σ^2 is defined to be

$$s_J^2 = (n-1)\sum_{i=1}^n [T(H_{ni}) - \overline{T}_n]^2,$$
 (1.4)

where $\overline{T}_{n} = n^{-1} \sum_{i=1}^{n} T(H_{ni})$.

In Section 2, the strong consistency of s_J^2 is proved for trimmed generalized L-statistics. The case of untrimmed generalized L-statistics is treated in Section 3. Since U- and L-statistics are special cases of generalized L-statistics, our result includes the existing results in jackknifing U- and L-statistics (see

Arvesen, 1969; Parr and Schucany, 1982) as special cases.

2. Trimmed generalized L-statistics

Let U_n be a U-statistic (see Hoeffding, 1948) defined to be

$$U_n = n_{(m)}^{-1} \sum_{c_m} k(X_{i_1},...,X_{i_m}),$$

where $k(x_1,...,x_m)$ is a symmetric kernel. For each i, let

$$U_{ni} = [(n-1)_{(m)}]^{-1} \sum_{c_m^i} k(X_{i_1}, ..., X_{i_m}),$$

where $(n-1)_{(m)} = (n-1) \cdots (n-m)$ and $\sum_{c_m^i}$ is the summation taken over the $(n-1)_{(m)}$ m-tuples $(i_1,...,i_m)$ of distinct elements from the integers $\{1,\ldots,i-1,i+1,\ldots,n\}$. The jackknife estimator of the asymptotic variance of U_n is

$$s_U^2 = (n-1)\sum_{i=1}^n (U_{ni} - U_n)^2$$
.

Lemma 1. Assume that $E_F k^2(X_1,...,X_m) < \infty$. Then

$$s_u^2 \rightarrow m^2 \int \phi^2(y) dF(y) \ a.s.,$$

where $\phi(y) = E_F[k(X_1,...,X_m)|X_1=y] - E_Fk(X_1,...,X_m)$.

This result was proved in Arvesen (1969, Theorem 5), although he stated a weaker version of this result (the weak consistency). The following lemmas are also needed for the proof of the main results.

Lemma 2. Let H, H_n and H_{ni} be defined as in Section 1. Then

- (i) $\sum_{i=1}^{n} [H_n(y) H_{ni}(y)] = 0$ for any y.
- (ii) $\|H_n H_{ni}\|_{\infty} \le m(n-m)^{-1}$, where $\|\|_{\infty}$ is the sup norm.

Proof. Let

$$A_{ni}(y) = [(n-1)_{(m-1)}]^{-1} \sum_{c_{m-1}^{i}} I[h(X_{i}, X_{i_{1}}, ..., X_{i_{m-1}}) \le y]$$
 (2.1)

where $(n-1)_{(m-1)}=(n-1)\cdots(n-m+1)$ and $\sum_{c_{m-1}^i}$ is the summation taken over the $(n-1)_{(m-1)}$ m-1-tuples $(i_1,...,i_{m-1})$ of distinct elements from the integers $\{1,\ldots,i-1,i+1,\ldots,n\}$. A straightforward calculation shows that

$$H_n(y) - H_{ni}(y) = m(n-m)^{-1}[A_{ni}(y) - H_n(y)].$$

Then (i) follows from $n^{-1}\sum_{i=1}^{n}A_{ni}(y)=H_{n}(y)$ and (ii) follows from both $\|A_{ni}\|_{\infty}$ and $\|H_{n}\|_{\infty}$ are bounded by one. \square

Lemma 3. Assume that H is continuous. Then

$$||H_n - H||_{\infty} \to 0$$
 a.s.

Proof. For each y, $H_n(y)$ is a U-statistic. From theory of U-statistic, $H_n(y) \to H(y)$ a.s. Let $\mathbf{D} = \{$ all rational numbers in $\mathbf{R} \}$. Then almost surely, $H_n(y) \to H(y)$ for all $y \in \mathbf{D}$. Let $\omega = (X_1, X_2,...)$ be fixed such that $H_n(y) \to H(y)$ for all $y \in \mathbf{D}$. Since \mathbf{D} is a dense subset of \mathbf{R} and H_n is a distribution function, H_n converges weakly to H. From the continuity of H, we have $\|H_n - H\|_{\infty} \to 0$. This completes the proof. \square

We now establish the strong consistency of s_J^2 given by (1.4) for trimmed generalized L-statistics.

Theorem 1. Assume condition A. Then

$$s_J^2 \to \sigma^2 \ a.s.$$

Proof. Define

$$W_{ni}(y) = [H_{ni}(y) - H_n(y)]^{-1} \int_{H_n(y)}^{H_{ni}(y)} J(t) dt - J[H(x)]$$
 (2.2)

for $H_{ni}(y) \neq H_n(y)$ and $W_{ni}(y) = 0$ if $H_{ni}(y) = H_n(y)$. From Lemma 8.1.1B in Serfling (1980),

$$T(H_{ni}) - T(H_n) = \int [H_n(y) - H_{ni}(y)] J[H(y)] dy$$

$$+ \int W_{ni}(y) [H_n(y) - H_{ni}(y)] dy.$$
(2.3)

Let $U_{ni} = \int [H_{ni}(y) - H(y)] J[H(y)] dy$, $U_n = \int [H_n(y) - H(y)] J[H(y)] dy$, $R_{ni} = \int W_{ni}(y) [H_n(y) - H_{ni}(y)] dy$ and $\overline{R}_n = n^{-1} \sum_{i=1}^n R_{ni}$. From Lemma 2, $U_n = n^{-1} \sum_{i=1}^n U_{ni}$. Then

$$s_J^2 = (n-1)\sum_{i=1}^n (U_{ni} - U_n)^2$$

$$+ (n-1)\sum_{i=1}^n (R_{ni} - \overline{R_n})^2 + 2(n-1)\sum_{i=1}^n R_{ni} (U_{ni} - U_n).$$
(2.4)

Note that U_n is a U-statistic with $\int \{I[h(x_1,...,x_m) \le y] - H(y)\}J[H(y)]dy$ as the kernel. Hence from Lemma 1,

$$(n-1)\sum_{i=1}^{n} (U_{ni} - U_n)^2 \to \sigma^2$$
 a.s.

Using Cauchy-Schwarz inequality, the result follows from

$$(n-1)\sum_{i=1}^{n} R_{ni}^{2} \to 0 \quad a.s. \tag{2.5}$$

Let a and b be two constants such that $H(a) < \alpha$ and $H(b) > \beta$. From Lemma 2(ii) and Lemma 3, for almost all $\omega = (X_1, X_2,...)$, there is an $n_{\omega} > 0$ such that $H_{ni}(a) < \alpha$, $H_n(a) < \alpha$, $H_{ni}(b) > \beta$ and $H_n(b) > \beta$ hold for all $i \le n$ and $n \ge n_{\omega}$. Then $R_{ni} = \int_a^b W_{ni}(y)[H_n(y)-H_{ni}(y)]\mathrm{d}y$, since J(t) = 0 if $t < \alpha$ or $t > \beta$. Thus,

$$\begin{aligned} \max_{i \le n} R_{ni}^{\ 2} & \le (b-a)^2 \max_{i \le n} (\|W_{ni}\|_{\infty} \|H_n - H_{ni}\|_{\infty}) \\ & \le C n^{-2} \max_{i \le n} \|W_{ni}\|_{\infty}, \end{aligned}$$

where C is a constant. Since J is a continuous function on $[\alpha,\beta]$, $\|H_{ni}-H_n\|_{\infty} \leq m(n-m)^{-1}$ and $\|H_n-H\|_{\infty} \to 0$ a.s., $\max_{i\leq n} \|W_{ni}\|_{\infty} \to 0$ a.s. Hence (2.5) holds and the result follows. \square

3. Untrimmed generalized L-statistics

For untrimmed generalized L-statistics, we prove the following similar result.

Theorem 2. Assume condition B. Then

$$s_J^2 \to \sigma^2 \ a.s.$$

Proof. From (2.2)-(2.4), we only need to show (2.5) holds. Using Lemma 2(i), we obtain

$$\begin{split} (n-1) \sum_{i=1}^{n} R_{ni}^{2} &= (n-1) m^{2} (n-m)^{-2} \sum_{i=1}^{n} \{ \int W_{ni}(y) [A_{ni}(y) - H(y)] \mathrm{d}y \}^{2} \\ &\leq C n^{-1} \sum_{i=1}^{n} \{ \int |A_{ni}(y) - H(y)| \mathrm{d}y \}^{2} \max_{i \leq n} \|W_{ni}\|_{\infty}, \end{split}$$

where C is a constant. From the proof of Theorem 1, $\max_{i \le n} \|W_{ni}\|_{\infty} \to 0$ a.s. Then (2.5) follows from

$$n^{-1} \sum_{i=1}^{n} [\int |A_{ni}(y) - H_n(y)| \, \mathrm{d}y]^2 = O(1) \quad a.s.$$
 (3.1)

Let $\xi_n = n^{-1} \sum_{i=1}^n [\int |A_{ni}(y) - H(y)| dy]^2$. Using the notation in (2.1), we have $\xi_n \le n^{-1} [(n-1)_{(m-1)}]^{-1} \sum_{i=1}^n \sum_{c_{m-1}^i} \{\int |I[h(X_i, X_{i_1}, ..., X_{i_{m-1}}) \le y] - H(y)| dy\}^2$ $= n_{(m)}^{-1} \sum_{c_m} \{\int |I[h(X_i, ..., X_{i_m}) \le y] - H(y)| dy\}^2, \tag{3.2}$

which is a U-statistic with a kernel $\{\int |I[h(x_1,...,x_m) \le y] - H(y) | dy \}^2$. Under condition (1.3),

$$E_{F}\{\int |I[h(X_{1},...,X_{m}) \leq y] - H(y) | dy \}^{2}$$

$$= \iint E_{F} |I[h(X_{1},...,X_{m}) \leq y] - H(y) ||I[h(X_{1},...,X_{m}) \leq z] - H(z) | dy dz$$

$$\leq \{\int \{E_{F}[I[h(X_{1},...,X_{m}) \leq y] - H(y)]^{2}\}^{1/2} dy \}^{2}$$

$$= \{\int [H(y)(1-H(y))]^{1/2} dy \}^{2} < \infty.$$
(3.3)

From the almost sure convergence of U-statistics, the quantity in (3.2) converges almost surely to the quantity in (3.3). Hence $\xi_n = O(1)$ a.s. Similarly, $\int |H_n(y)-H(y)| dy$ is bounded by

$$n_{(m)}^{-1} \sum_{c_m} \int |I[h(X_{i_1},...,X_{i_m}) \le y] - H(y) dy$$
,

which converges almost surely to

$$E_F \int |I[(X_1, ..., X_m) \le y] - H(y) | dy < \infty$$

under condition (1.3). Then (3.1) follows from

$$n^{-1} \sum_{i=1}^{n} [\int |A_{ni}(y) - H_n(y)| \, \mathrm{d}y]^2 \le 2\xi_n + 2[\int |H_n(y) - H(y)| \, \mathrm{d}y]^2.$$

This completes the proof. \Box

4. Remarks

A different type of generalized L-statistic (Serfling, 1984) is $T(K_n)$, where T is given by (1.2) and

$$K_n(y) = n^{-m} \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n I[h(X_{i_1},...,X_{i_m}) \le y].$$

 $T(H_n)$ and $T(K_n)$ are closely related and have the same limiting distribution. Note that $K_n(y)$ is a V-statistic. Consistency of jackknife estimators for V-statistics can be established using similar techniques in treating jackknife estimators for U-statistics (e.g., Sen, 1977). Therefore, our results in the previous sections can be extended to the statistics $T(K_n)$ with some modifications.

PART II

BOOTSTRAPPING FOR GENERALIZED L-STATISTICS

1. Introduction

Let $X_1,...,X_n$ be independent and identically distributed (i.i.d.) samples from an unknown population distribution F and $T_n = T_n(X_1,...,X_n)$ be a statistic. The bootstrap (Efron, 1979) is a useful nonparametric method for statistical analysis based on T_n . For example, the bootstrap can be used to approximate the sampling distribution of a function $L_n = L_n(T_F, T_n)$ and its other characteristics for various purposes in statistical inferences for T_F , where T_F depends on F and is an unknown parameter of interest.

Let $X_1^*,...,X_n^*$ be i.i.d. samples drawn from the empirical distribution $F_n(x) = n^{-1} \sum_{i=1}^n I[X_i \le x]$, where I[A] is the indicator function of the set A. X_i^* are called bootstrap samples. A bootstrap analog for T_n is $T_n^* = T_n(X_1^*,...,X_n^*)$. The sampling distribution of L_n , $P_F\{L_n(T_F,T_n) \le t\}$, is approximated by the bootstrap estimate $P_*\{L_n(T_n,T_n^*) \le t\}$, where P_* is the probability corresponding to the bootstrap sampling.

In many situations L_n is $n^{1/2}(T_n - T_F)$ and it can be approximated by an average of i.i.d. random variables, i.e.,

$$T_n - T_F = n^{-1} \sum_{i=1}^n \phi(X_i) + R_n, \qquad (1.1)$$

where ϕ is a function depending on F and T_n and satisfies $E_F \phi(X_i) = 0$ and $0 < E_F \phi^2(X_i) < \infty$. Note that $n^{-1} \sum_{i=1}^n \phi(X_i) = O_p(n^{-1/2})$. Hence usually $R_n = O_p(n^{-1/2})$. More generally, we have

$$T_n - T_F = U_n + R_n, (1.2)$$

where $U_n = U_n(X_1,...,X_n)$ is a U-statistic (see Hoeffding, 1948) satisfying $E_F U_n = 0$ and $R_n = o_p(n^{-1/2})$. Serfling (1984) gives a wide class of statistics,

the generalized L-statistics, which have property (1.2). More details for the generalized L-statistics is given in the next section.

A bootstrap analog of (1.2) is

$$T_n^* - T_n = U_n^* - U_n + R_n^*, (1.3)$$

where $U_n^* = U_n(X_1^*,...,X_n^*)$ and R_n^* satisfies

$$R_n^* = o_p(n^{-1/2}). (1.4)$$

Note that the o_p in (1.4) is with respect to the unconditional probability P defined by $P\{A\} = E_F P_* \{A\}$ for any measurable set A. Equation (1.3) can be called a bootstrap representation for the bootstrap statistic $T_n^* - T_n$. A direct consequence of (1.3)-(1.4) is that the bootstrap estimator of the sampling distribution $P_F\{n^{1/2}(T_n-T_F) \le t\}$ is weakly consistent, i.e.,

$$\sup_{t} |P_{*}\{ n^{1/2}(T_{n}^{*}-T_{n}) \le t \} - P_{F}\{ n^{1/2}(T_{n}-T_{F}) \le t \} | = o_{p}(1). \quad (1.5)$$

This follows from (1.4) and a well established bootstrap theory for U-statistics (see Bickel and Freedman, 1981).

For several classes of statistics such as (ordinary) L-statistics and differentiable statistical functionals, (1.1) holds and the bootstrap representation holds with $U_n^* = n^{-1} \sum_{i=1}^n \phi(X_i^*)$ (see Babu and Singh, 1984; Gill, 1987). The purpose of this paper is to show the bootstrap representation (1.3) holds for a wide class of statistics, the generalized L-statistics. The result includes that for ordinary L-statistics since $n^{-1} \sum_{i=1}^n \phi(X_i)$ is a special case of U-statistics.

2. Bootstrap representations

Let $h(x_1,...,x_m)$ be a symmetric function on \mathbf{R}^m and $H_F(x)$ be the distribution function of $h(X_1,...,X_m)$, i.e.,

$$H_F(x) = P_F\{ h(X_1,...,X_m) \le x \}, x \in \mathbb{R}.$$

An empirical version of $H_F(x)$ is

$$H_n(x) = \binom{n}{m}^{-1} \sum_c I[h(X_{i_1}, ..., X_{i_m}) \le x],$$
 (2.1)

where \sum_{c} is the summation taken over all combinations of m integers $(i_1,...,i_m)$ chosen from the integers 1,...,n. Note that $H_n(x)$ is a U-statistics. Let J be a function defined on the interval [0,1], G be a distribution function and

$$T(G) = \int x J[G(x)] dG(x).$$

A class of generalized L-statistics is defined to be $T_n=T(H_n)$ (Serfling, 1984). The corresponding T_F is $T(H_F)$. Examples of generalized L-statistics include U-statistics, (ordinary) L-statistics, trimmed variances, trimmed U-statistics and Winsorized U-statistics (see more examples in Serfling, 1984).

It was shown in Serfling (1984) that T_n satisfies (1.2) with $R_n = o_p(n^{-1/2})$ and

$$U_n = \int [H_F(x) - H_n(x)] J[H_F(x)] dx$$
 (2.2)

under the following condition.

Condition A. (1) The functions J and H_F are continuous.

(2) The distribution H_F satisfies $\int [H_F(x)(1-H_F(x))]^{1/2} dx < \infty$.

For any integers $1 \le i_1 \le i_2 \le \cdots \le i_m \le n$, let $H_F^{i_1,\dots,i_m}$ be the distribution of $h(X_{i_1},\dots,X_{i_m})$. To establish the bootstrap representation (1.3)-(1.4), we need to assume

Condition B. $\int [H_F^{i_1,\dots,i_m}(x)(1-H_F^{i_1,\dots,i_m}(x))]^{1/2} dx < \infty \text{ for any integers } i_1 \le \dots \le i_m.$

Note that for a random variable Y with distribution G, the condition $\int [G(x)(1-G(x))]^{1/2} dx < \infty$ is almost equivalent to the condition $E_G Y^2 < \infty$ (see Serfling, 1980, p.276) and is implied by $E_G |Y|^{2+\delta} < \infty$ for a $\delta > 0$. Hence condition $E_G |Y|^{2+\delta} = 0$ is almost the same as $E_F h^2(X_{i_1},...,X_{i_m}) < \infty$ and implied by

 $E_F |h(X_{i_1},...,X_{i_m})|^{2+\delta} < \infty$ for any integers $i_1 \le \cdots \le i_m$.

Lemma 1. Let H_n^* be the bootstrap analog of H_n , i.e., H_n^* is defined by (2.1) with X_{i_i} replaced by the bootstrap samples $X_{i_i}^*$. If H_F is continuous, then

$$||H_n^* - H_F|| \to 0$$
 a.s. and $||H_n^* - H_n|| \to 0$ a.s.,

where $\| \|$ is the sup norm.

Proof. For any fixed x, since $H_n(x)$ is a bounded U-statistic and $H_n^*(x)$ is its bootstrap analog, $H_n^*(x) \to H_F(x)$ a.s. (Athreya et al., 1984). Then almost surely, $H_n^*(x) \to H_F(x)$ for all rational x, which implies H_n^* converges weakly to H_F a.s. since all rational numbers form a dense set in \mathbb{R} and H_n^* is a distribution function. Then $\|H_n^* - H_F\| \to 0$ a.s. follows from the continuity of H_F . A similar argument shows that $\|H_n - H_F\| \to 0$ a.s. Hence the results hold. \square

Theorem 1. Assume conditions A and B. For the generalized L-statistics $T_n = T(H_n)$, the bootstrap representation (1.3)-(1.4) holds with U_n given by (2.2).

Proof. Let $W_n^*(x) = M[H_n(x), H_n^*(x)] - J[H_F(x)]$ if $H_n(x) \neq H_n^*(x)$ and $H_n(x) = H_n^*(x)$, where $M(s, t) = \int_s^t J(u) du/(t-s)$. Then from Lemma 8.1.1B of Serfling (1980),

$$T_n^* - T_n = U_n^* - U_n + \int W_n^*(x) [H_n(x) - H_n^*(x)] dx$$

where U_n^* is the bootstrap analog of U_n given by (2.2) with H_n replaced by H_n^* . From Lemma 1 and the continuity of J, $\|W_n^*\| \to 0$ a.s. It remains to show that

$$\int |H_n^*(x) - H_n(x)| \, \mathrm{d}x = O_p(n^{-1/2}). \tag{2.3}$$

Let E_* and V_* be the expectation and variance taken under the bootstrap probability P_* , respectively. Since $E_*[H_n^*(x)] = K_n(x)$, where

$$K_n(x) = n^{-m} \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n I[h(X_{i_1}, ..., X_{i_m}) \le x],$$
 (2.4)

we have

$$E_F E_* [|H_n^*(x) - H_n(x)|] \le \{E_F V_* [H_n^*(x)] + E_F [K_n(x) - H_n(x)]^2\}^{1/2}.$$

Hence (2.3) follows from

$$\int \{E_F[K_n(x) - H_n(x)]^2\}^{1/2} dx = O(n^{-1/2})$$
(2.5)

and

$$\int \{E_F V_* [H_n^*(x)]\}^{1/2} \mathrm{d}x = O(n^{-1/2}). \tag{2.6}$$

Let $Z_n(x)$ be the average of all terms $I[h(X_{i_1},...,X_{i_m}) \le x]$ with at least one equality $i_i = i_l$, $j \ne l$. From Serfling (1980, p.206),

$$H_n(x) - K_n(x) = [1 - n_{(m)}/n^m][H_n(x) - Z_n(x)], \tag{2.7}$$

where $n_{(m)} = n(n-1) \cdot \cdot \cdot (n-m+1)$. Then

$$\begin{split} E_F[H_n(x) - K_n(x)]^2 &\leq C n^{-2} \{ E_F[H_n(x) - H_F(x)]^2 \\ + E_F[Z_n(x) - Z_F(x)]^2 + [Z_F(x) - H_F(x)]^2 \}, \end{split}$$

where C is a constant and $Z_F(x) = E_F[Z_n(x)]$. Then (2.5) follows from condition B. Since for given $X_1, ..., X_n, H_n^*(x)$ is a U-statistic, we have

$$V_*[H_n^*(x)] \le mn^{-1}K_n(x)[1-K_n(x)]$$

(see Serfling, 1980, p.183). Then (2.6) follows from

$$A_n = \int \{E_F[K_n(x)(1-K_n(x))]\}^{1/2} dx = O(1).$$

Note that A_n is bounded by

$$\int_{-\infty}^{0} \{E_F[K_n(x)]\}^{1/2} dx + \int_{0}^{\infty} \{E_F[1-K_n(x)]\}^{1/2} dx.$$

From (2.7),

$$E_F[K_n(x)] = [n_{(m)}/n^m]H_F(x) + [1-n_{(m)}/n^m]Z_F(x).$$

Hence A_n is bounded by

$$\int_{-\infty}^{0} [H_F(x)]^{1/2} dx + \int_{-\infty}^{0} [Z_F(x)]^{1/2} dx + \int_{0}^{\infty} [1 - H_F(x)]^{1/2} dx + \int_{0}^{\infty} [1 - Z_F(x)]^{1/2} dx,$$

which is finite under condition B. This completes the proof. \Box

If the function J is more smooth (condition C), then we can obtain a stronger result than (1.4) under less requirement on the moment of $h(X_{i_1},...,X_{i_m})$.

Condition C. J is Lipschitz continuous of order δ (0< $\delta \le 1$), i.e., there is a constant C > 0 such that $|J(t)-J(s)| \le C|s-t|^{\delta}$ for any $s, t \in [0,1]$, and $\int [H_F^{i_1,\dots,i_m}(x)(1-H_F^{i_1,\dots,i_m}(x))]^{(1+\delta)/2} \mathrm{d}x < \infty \text{ for any integers } i_1 \le \dots \le i_m.$

Theorem 2. Assume condition C. Then (1.3) holds with

$$R_n^* = O_p(n^{-(1+\delta)/2}).$$

Proof. Using the same notation as in the proof of Theorem 1, we have $|W_n^*(x)| \le C[|H_n^*(x)-H_n(x)|^{\delta} + |H_n(x)-H_F(x)|^{\delta}]$ by the Lipschitz continuity of J. Then

$$|R_n^*| \le C \left[\int |H_n^*(x) - H_n(x)|^{1+\delta} dx + \int |H_n(x) - H_F(x)|^{\delta} |H_n^*(x) - H_n(x)| dx \right].$$
(2.8)

Since $E_F E_* | H_n^*(x) - H_n(x) |^{1+\delta} \le \{E_F E_* [H_n^*(x) - H_n(x)]^2\}^{(1+\delta)/2}$, the first integral on the right hand side of (2.8) can be shown to be $O_p(n^{-(1+\delta)/2})$ by using the same argument as in the proof of Theorem 1. Note that

$$\begin{split} E_{F}E_{*} \mid & H_{n}(x) - H_{F}(x) \mid^{\delta} \mid H_{n}^{*}(x) - H_{n}(x) \mid \\ &= E_{F} \mid H_{n}(x) - H_{F}(x) \mid^{\delta} E_{*} \mid H_{n}^{*}(x) - H_{n}(x) \mid \\ &\leq E_{F} \mid H_{n}(x) - H_{F}(x) \mid^{\delta} \left\{ E_{*} \left[H_{n}^{*}(x) - H_{n}(x) \right]^{2} \right\}^{1/2} \\ &\leq \left[E_{F} \mid H_{n}(x) - H_{F}(x) \mid^{2\delta} \right]^{1/2} \left\{ E_{F}E_{*} \left[H_{n}^{*}(x) - H_{n}(x) \right]^{2} \right\}^{1/2} \end{split}$$

and

$$[E_F | H_n(x) - H_F(x) |^{2\delta}]^{1/2} \le (m/n)^{\delta/2} [H_F(x)(1 - H_F(x))]^{\delta/2}.$$

Using the same argument as in the proof of Theorem 1, we have

$$\int [H_F(x)(1-H_F(x))]^{\delta/2} \{E_F E_* [H_n^*(x)-H_n(x)]^2\}^{1/2} dx = O(n^{-(1+\delta)/2})$$

under condition C. Hence the result follows.

3. Complements

(1) From (2.1), U_n defined in (2.2) is a U-statistic with a kernel

$$k(x_1,...,x_m) = \int \{H_F(x) - I[h(x_1,...,x_m) \le x]\} J[H_F(x)] dx.$$

Under condition B, $E_F k^2(X_{i_1},...,X_{i_m}) < \infty$ for any integers $i_1 \le \cdots \le i_m$ (see Serfling, 1980, Lemma 8.2.5A). Hence (1.5) holds with $T_n = U_n$ and $T_n^* = U_n^*$ (see Bickel and Freedman, 1981). Then Theorem 1 or 2 implies that (1.5) holds for the generalized L-statistics $T_n = T(H_n)$ satisfying condition A and either condition B or condition C.

(2) Under condition A, Serfling (1984) showed that the distribution of $n^{1/2}(T_n-T_F)$ converges weakly to $N(0, \sigma^2)$, where σ^2 is given in (3.3) of Serfling (1984) and is generally unknown. In statistical analysis, we often need a consistent estimator of the asymptotic standard deviation σ . Let Q_n and q be the interquartile ranges of $P_*\{n^{1/2}(T_n^*-T_n) \leq t\}$ and N(0,1), respectively. Then from (1.5), Q_n/q is consistent for σ , i.e.,

$$Q_n/q - \sigma = o_p(1).$$

(3) Serfling (1984) introduced another type of generalized L-statistics $T(K_n)$, where K_n is defined in (2.4). With some minor changes in the proofs of Theorems 1 and 2, we can establish the bootstrap representation (1.3)-(1.4) for $T(K_n)$ with U_n and U_n^* replaced by

$$V_n = \int [H_F(x) - K_n(x)] J[H_F(x)] dx$$

and the bootstrap analog V_n^* , respectively. Note that V_n is a V-statistic. Since V-statistics are closely related to U-statistics, result (1.5) can be extended to $T_n = T(K_n)$ in a straightforward manner.

References

- Arvesen, J. N. (1969). Jackknifing U-statistics. Ann. Math. Statist. 40, 2076-2100.
- Athreya, K. B., Ghosh, M., Low, L. Y. and Sen, P. K. (1984). Laws of large numbers for bootstrapped U-statistics. *J. Statist. Planning and Inference* 9, 185-194.
- Babu, G. J. and Singh, K. (1984). Asymptotic representations related to jack-knifing and bootstrapping L-statistics. *Sankhya* A **46**, 195-206.
- Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. *Ann. Statist.* **9**, 1196-1217.
- Efron, B. (1979). Bootstrap methods: another look at the jackknife. *Ann. Statist.* 7, 1-26.
- Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York.
- Gill, R. D. (1987). Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part I). To appear in *Scand. J. Statist*.
- Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. *Ann. Math. Statist.* **19**, 293-325.
- Huber, P. J. (1981). Robust Statistics. Wiley, New York.
- Parr, W. C. and Schucany, W. R. (1982). Jackknifing L-statistics with smooth weight functions. *J. Amer. Statist. Assoc.* 77, 629-638.
- Quenouille, M. (1956). Notes on bias in estimation. Biometrika 43, 353-360.
- Sen, P. K. (1977). Some invariance principles relating to jackknifing and their role in sequential analysis. *Ann. Statist.* 5, 316-329.
- Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
- Serfling, R. J. (1984). Generalized L-, M- and R-statistics. *Ann. Statist.* 12, 76-86.
- Serfling, R. J. (1985). A class of problems in statistical computation: Generalized L- and related statistics. Proceedings of the sixteenth symposium on the interface, L. Billard (ed), 85-88. North-Holland Publishing Co., Amsterdam, Netherlands.
- Tukey, J. (1958). Bias and confidence in not quite large samples. *Ann. Math. Statist.* **29**, 614.