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ON THE COVERAGE PROBABILITY
OF SOME CONFIDENCE SETS FOR
A MULTIVARIATE NORMAL MEAN

BY WEI-LIEM LOH

Purdue University

In 1981, Stein introduced a method of obtaining asymptotic ap-
proximations to the average coverage probability of confidence
sets based on prior distributions. We shall adapt his method to
the following problem. Let X ~ N,(¢,%/n) and S ~ W,(Z,n —
1) where X and S are independent. Furthermore let H;, i =
1,...,p, denote the normalized eigenvectors of S. We are inter-
ested in getting approximations to the coverage probability of
confidence sets for £ of the form Q= {£: H}(£ — X) < ¢(X, S)}
where ¢(X, S) is a suitably chosen function. For each « strictly
between 0 and 1, we shall show that ¢(X, S) can be chosen such
that the average coverage probability of 2 under an almost arbi-
trary twice (thrice) continuously differentiable prior density for
(¢, ) is asymptotically o with error of the order of n=1 (n~3/2)
respectively.

1 Introduction

In 1981, Stein introduced a simple but ingenious method of obtaining asymp-
totic approximations to the average coverage probability of confidence sets
based on prior distributions. His method uses almost exclusively Taylor ex-
pansions. In this paper we shall adapt this method to the following problem.

Let Y3,...,Y, be independent p X 1 multivariate normal random vectors
where ¥; ~ Np(§,2),1 < i < n, p < n and ¥ nonsingular. Then X,S are
sufficient statistics for £, % where

X=( ¥)/m  §=3(Y-X)(%-X)

Since S is positive definite w.p.1, there exists an unique orthonormal matrix
H = (hi;) such that HSH' = L = diag(ly,...,l,) with I; > --- > l, and
hiy > 0 for 1 < ¢ < p. For simplicity of notation, we write for { = 1,...,p,

H; = (hi, ..., k).



2 1 INTRODUCTION

We are interested in obtaining approximations to the coverage probabil-
ity of confidence sets for ¢ of the form

(1) {¢: H:’(f - X) < ¢(X, S)}

where ¢(X,S) is a suitably chosen function of X and S. The geometrical
interpretation of (1) would be a confidence interval for the projection of
£ — X onto the ith eigenvector of S. Since S/n approximates 3, an obvious
application of this is in the area of linear discriminant analysis where in
many cases it would be advantageous to know (or at least to have some
information on) the direction of the mean vector relative to the eigenvectors
of the covariance matrix. Furthermore, bounded confidence sets for ¢ can
be obtained from the Bonferroni inequality by considering confidence sets
given in (1) foreach i =1,...,p. v

Also we observe that there is a need for higher order asymptotics in
multiparameter problems since crude first-order asymptotics often fails.

Motivated by the above statements, the following principal results are
obtained. Let S, denote the set of p X p positive definite matrices, R? denote
the p-dimensional Euclidean space and =, (£, X) be an almost arbitrary twice
continuously differentiable prior density for (£, X) with respect to d¢ dX. For
0 < a<1,¢(X,S) can be chosen independently of x, such that

L[ Pestie - %) < e(x,$)}m(6,5) dEde = at-0(n/2),
(2)

This gives the average coverage probability of the confidence set defined by
(1) with respect to x,(¢,%). Furthermore second-order approximations to
(2) are also determined. An important corollary of this is that ¢(X, S) can
also be chosen independently of x, in such a way that

L, [ Pes{Bi(e — X) < (X, )}m.(&, %) ddg = a+ 0(n7).

Finally third-order approximations to (2) are obtained for an almost ar-
bitrary thrice continuously differentiable prior density x,. An interesting
corollary is that ¢(X, S) can be selected independently of x, such that

/R,/S Pes{H;(§ - X) < ¢(X, 8)}m.(€,%) d=d¢ = a+ O(n™%/2),

Woodroofe (1986), (1987) gives the following argument for the consider-
ation of average coverage probabilities: Average coverage probabilities are



much simpler and give a better picture of the confidence level near a given
parameter point than does the value at the parameter point. Futhermore in
repeated applications, parameters may also vary.

We should also mention that Welch and Peers (1963), Peers (1965) and
Welch (1965) have worked on related problems using a different method.
However it appears that their technique is not applicable to the problem at
hand.

Finally we wish to remark that in this paper, the level of rigor is set
somewhat at the level of Stein (1985) and Welch and Peers (1963).

2 Preliminaries

We shall use the following notation throughout. If a matrix A has entries
a;j, we shall denote A by (a;;). Given a r X s matrix A, its s X r transpose
is indicated by A'. | A |, A1 denote the determinant, inverse of the square
matrix A respectively. The trace of A is indicated by trA. If the p x p matrix
A is diagonal and has entries a;;, we shall write A = diag(aii, ..., app). For
any positive definite matrix A = (a;;), we write dA=IL;<; da;;. Finally the
expected value of a random vector X is denoted by EX and I{Q} denotes
the indicator function of the event ().

Let X and S be defined as in the previous section. Then X isa p x 1
multivariate normal random vector and S is a p x p Wishart matrix inde-
pendent of X, where X ~ N,(£,E/n), S ~ W,(Z,n — 1). For convenience,
we write

S = (s),  8'=(s),
r = (T;J'), rfi=x= (Tij).

Given (&,T), we write pg r (X, S) to be the density of (X, S) with respect to
dXdS and
(3) . Mr(X,5) =log per(X,S).

Finally, in this paper, the symbol C denotes a generic constant which does
not depend on &, I'.

Lemma 1 With the above notation, we have the following:
Mer(X,5) = €= 2(¢~X)T(¢ - X) - 3tr(rS)

n
+—2-Iog [T,
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~nlL(€ - X)),
(6~ X)(6- %) - 3]

—diag[l™! - (¢ - X)(¢ - X)' - -i:]}ej,

S {2 -

—ntiy,

—n(&k — 2k)8ij — n(&5 — z;) 6
+n(& — ;)6 i,
=3 (2= 8)(2 = Bu) (e 4 o),

0,
~n(8x651 + Subjx — Eixbabix),
0,

1‘-(2 — 6a)(2 - 5.-,-)(2 — 611) (77

+Tbs7_akryl + TalTbJT:k + Tbl aj tk + TathlTJk
+Tln al,ryk +1.ak7_bJTil + TkaaJTtl),

where §;; denotes the Kronecker delta and X=(z,...,z,)'.

PROOF. This follows from a straightforward calculation using the fact that
X ~ Np(€,Z/n) and S ~ Wy(Z,n - 1). O
Next for 1 < 1 < p, we consider sets of the form

{¢: Hi(§ - X) < (X, S)}.

For definiteness, we shall assume that ¢ = 1 hereafter. We wish to remark

that similar calculations and results hold for § = 2,

n'(nS~

..., p. We write

ln) = (\/I_l/n,O,...,O)H

= (\/I:/H)Hi:



where Iy, H;, H are defined in section 1. Also we observe that

{¢: Hi(¢ - X) < c(X,9)}
= {€:(VIi/n,0,...,00Hn*S™ (¢ - X) < ne(X, S)/Vi1}

(@) = (€ (a5t - X) < ne(X, 5)/VE)
and
(5) n'(nS~ 1, n)n?S y(ns1,n) =1.

3 On Posterior Probabilities

For any prior probability density function = (€,T) for (£,T') with respect to
d{dT, let Py be the joint distribution of (£,T, X, S) where for a fixed set of
parameters (§,T), X ~ N,,(E,E/n) and S ~ W,(Z,n — 1). We write the
conditional probability given (X, S) as PX:5.

Now let 7g(£,T') be a nonvanishing continuously dlﬁ'erentlable (general-
ized) prior density for (£,T') with respect to d¢dT' such that its posterior
distribution exists. For 0 < a < 1, determine ¢(X, S) such that

(6) PXS(H)(€ - X) < o(X,S)) =

It follows now from (4) that (6) can be rewritten as

(7) Pry®(n'(nS™%, n)n?S 1€ — X) < ea(X, 5)) = ,
with ¢,(X, S) = ne(X, S)//I1. Writing

(8) Qa(X,8) = {€: 7' (nS71,n)n?S7 (¢ - X) < ca(X, S)},
we have

(9) a=N/D,

where

(10) N = /ﬂ ) /; exp(Mer)ro(£,T) dIde,

(11) D /R ,, /S exp(Me r)mo(€, T) dTdE.

Next let x,(£,T) be an arbitrary continuously differentible prior density
for (¢,T') with respect to d¢dT’. Then

(12) PX5(¢ €0,) = N./Ds,
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where
(13) N, = /ﬂ fs exp(M r)m.(€,T) dTde,
(14) D, = -/;ZP/;‘ exp(Mgr)m.(€,T) dIdE.

For simplicity of notation, we write

p(6,T) = ﬂ*(f,P)/WO(f,I‘)
4 = %Z(a "")[agas My ns-1)(6 = 25),

B = Z ("'u —ns '1) XnS -1(7m — "SH)
.<_1 k<l aT Brk

F = Z[B P(X "S_l)](ft —-zi)+ Z _P(X nS~ 1)](7' k= ns’k)
H _1<lc

where 3°My ,,5-1/8£:8¢; = 02 Mg 1 /0£:0E; | x ns-1, etc.
First we shall prove four rather technical lemmas which will greatly sim-
plify the algebraic manipulations that follow.

Lemma 2 With N and N, defined as in (10) and (13), we have
N. = p(X,nS"H)N
+xo(X, "S-I)BIP(Mx,ns—l)L '/; ezp(A+ B)F dTd€ + Ry,
avSp
where

[ [, emp(®Mer)mole D6 1) - (X, m5 )] drag

—ezp(My ng—1)mo(X, nS™Y) / / ezp(A+ B)F dTde.
0. Js,
PROOF. We observe that
N, = /n /S exp(Mg r)mo(€, T)p(€,T) dTd¢
avSp

= /ﬂa-/.; exp(Me,r)Wo(f,P){P(X:"S_l)

+[p(f’ P) - p(X) ns_l)]} drdf
= p(X,nS"Y)N

+mo(X, nS'l)exp(Mx,ns_x)/‘; / exp(A+ B)F dT'dé + R;.
@« Sp



The third equality makes use of the definition of N. O

Lemma 3 With D and D, defined as in (11) and (1{), we have
D, = p(X,nS"Y)D+ Ry,

where
R, = /Rp/.; ezp(Me,r)7o(€,T)[p(€,T) - p(X,nS™1)] drdE.

PROOF. The proof is similar to that of Lemma 2 and hence is omitted. O

Lemma 4 With D defined as in (11), we have

D ezp(—Myx ps-1)/7o(X,nS™1)
ANy SN

£

where

_ 7o(€,T) ~ mo(X, nS7Y)
R3 et </I;P ‘/Sp ezP(ME,I‘ MX,nS"‘l) WO(X, nS—l)

+ ,/Rp /s, lezp(Mer — Mx n5-1) — ezp(A+ B)] dT'd€.

drd¢

PROOF. We observe that

D exp(—My n5-1)/7o(X, nS1)
= / / exp(A+ B) dT'd¢ + Ry
RrJs,

o2
= p/2 ) (_ Ly (-2
Y | (~5e5g Mrns-)| [, exe(B) ar+ Re

P
= (2x)P/?| §/n? |1/2/ exp(B) dT + Rs.
SP
We note that | (—82My ,5-1/8£;0€;) | denotes the determinant of the ma-

trix whose tjth element is —82Mx,ns..1 [8&0E;. Also the last equality fol-
lows from Lemma 1. O



8 3 ON POSTERIOR PROBABILITIES

Lemma 5 If p(X,nS™1) > 0, we have

mo(X,nS7Y) fy Js eA+PF dTde
p(X,nS-1)e Mxms—1 D
—(27) Y %ezp(—cqo(X, S)2/2)n'(nS™1, n)Viog p(X,nS™Y)
+fn°, Is, eAtB 5 ;[8logp(X,nS 1) /d7;)(rij — ns™) dTdE
(27)?/2 | S/n? M2 [ eBdl
(27)~?/2 | §/n? |72 Ry [y fs eAtBF dlde
p(X nS-1) fs eB dr'[(2x)?/2 | S/n? ]1/2 f eB dT + R3]’

where V=(3/3¢1,...,8/8&,) and n(nS~2,n), ca(X,S) are defined as in
(7).

PROOF. We observe from Lemma 4 that

7o(X,nS™1) o, Js, eAtB P drd¢
p(X,nS1)e” Mxns—1p
Jo Is, €**BF dTd¢
p(X,nS-1)[(27)P/2 | S/n? |12 [ €P dT + Ry|
Jo. Is, eAtB P drd¢
p(X,nS- 1)(27r)P/2 | S/n? |12 fg €B dT
(27)~P/2 | S/n? |~1/2 Ry fn Js, e*TBF drd¢

" p(X,nS-1) [5 €B dr[(27)/% | S/n? Il/"' Js, €8 dT + Rs]

(2x)~*/2 | S/n? |-1/2 /ﬂ eA[VIoge(X, nS™)]'(€ - X) d¢

a

fn, Js, €18 Ti<j[8logp(X, nS1) /875 (ri; — ns*?) dTd¢
(27)P/2 | S/n? |12 [s ePdl
(27)7P/% | S/n? |72 Ry [, fs eATBF drd¢
~ p(X,n571) J5, eB dT[(27)/2 | S/n? 572 Js, €® dT + Rs]’

(15)

Furthermore we observe from Lemma 1 that the first term of the right hand
side of the last equation can be written as

@)% | $/® 2 [ eA(Vioga(X, ns )] (€ - X) d

[-3



= (2n)7P/2 | g/n? |71/
(16) N /ﬂ e~ (&= X)P*STHE-X)/2[logp( X, nS)]'(€ - X) dE.

Hence from the above equation, we have £ ~ N,(X,S/n?). With that in
mind we define

Y = g'(nS71,n)n?S71(¢ - X),
Z = [Viogp(X,nS™Y)]'(¢ - X).

Then
EY =FEZ=0
and it follows from (5) that
Y
o(%)r o
1 n'Viogp(X,nS™1)
n'Vlegp(X,nS~1) [Vlogp(X,nS~1)]'S[Vlogp(X,nS~1)]/n? |*

Consequently we have

I .S'/n2 ,—1/2
(27)e/2

EZI{Y < ca(X, S)}

E(EYZ)I{Y < c4(X,S)}

En'(nS™1,n)[Vioge(X,nS V)Y I{Y < co(X,S)}

—(27)" %' (S, n) [Viogp(X, nS~Y)]exp(—ca(X, S)?/2).

/ e-(e-X)'nzs_l(f”X)/z[Vlogp(X, nS—l)]'(f - X) 13
Na

(17)_

Here EY Z denotes the conditional expectation of Z given Y and the first
equality uses (8). Now the result easily follows from (15), (16) and (17). O

With these four lemmas in hand, we shall compute the posterior proba-
bility of (), under the prior ,(£,T).

Proposition 1 If p(X,nS~1) > 0, the posterior probability of U, under the
prior 7, (€,T) is given by
Pl (Een,)
= a- (27r)"1/2e:z:p(——ca(X, 5)?/2)n'(nS™1,n)Vliog p(X,nS™1) + Rs,
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where

Ry/lp(X,nS71) D],
Ry = I{p(X, nS~

=
I

R aR
0> 0Hgg R4)p()1(, nS-0D 1+ 7
Rymo(X,nS™1) [ Js, ezp(A+ B)F drd¢
(1+ Ry)p(X,nS—)ezp(—Mx ng-1)D
+fn., fs,, eAtB >i<;[0logp(X, nS~1)/87;](ri; — ns') dT'd¢
(27)/2 | S/n? |V/2 [ eBdl
(27)7P/2| S/n? |12 Rg [, Js, €*tPF drd¢
p(X,nS-1) fs,, eB dT|(2x)P/2 | S/n? |1/2 Js, eB dI' + R3] "’

with Ry, Ry, Rs defined as in Lemmas 2, 8, 4 respectively.

PROOF. It follows from (12), Lemmas 2 and 3 that

PX5(€ € )
p(X,nS-1)N
p(X,nS~1)D+ R,
+7ro(X, nS~1)exp(Mx pg-1) fa. fs,, exp(A+ B)F dT'd¢ + Ry
p(X, nS‘l)D + Ry

_r
D(1+ Ry)

7o(X, nS~)exp(Mx ns-1) fn. Js, exp(A + B)F dld¢ + Ry
+ p(X,nS~1)D(1+ Ry)

7o(X,nS™1) [o, [s, exp(A+ B)F dTd¢
p(X,nS~1)exp(—Mx pns-1)D

Rymo(X,nS™Y) [y [5, exp(A+ B)F dTd¢
"L+ Ra)o(X,nSVexp(— My s ) D
+ R1 _ aR4

(1+ Ry)p(X,nS-1)D ~ 1+ R,

The last equality uses (9) and now the result follows easily from Lemma 5.
0O
For the case where p(X,nS~1) = 0, we have the following result.
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Proposition 2 If x,(§,T) s twice continuously differentiable, then
Pr.(p(X,nS™Y) = 0) = O(n~%/?).

PROOF. For this and all subsequent proofs, we make the following simpli-
fying observations. X,nS~! are the maximum likelihood estimators for ¢, T’
respectively. From classical large sample theory, the posterior distribution
of (¢,T) given (X,nS1) is asymptotically multivariate normal with error
of the order of n~1/2. That is to say, fori,5=1,...,p,

El' - Ty = Op(ﬂ_llz), Tij — ns"j = Op(n_l/z)_

However for all the integrals that we shall be dealing with, the contribution
arising from those values of | & — z; | or | 7;; — ns'/ | that exceed O(n~1/2)
decreases exponentially with n. Hence to the order of accuracy that we are
interested in, we shall assume that

(18) §i—zi= o(n—I/Z), Tij — nsij = O(ﬂ_l/z),

whenever 1,5 =1,...,p.
We observe that

Pr.(p(X,nS"1) =0)

- -/;(an~1)—0_/ _/SeMc'P”*(E,I‘) drdédsdXx
dn.(X,nS 1
B /ﬂ(an ‘)—0-/;21’/.; eMer [, (X, "S“)+E_"_L."__l(a—m)

1 .
+ E .‘?W—’mg__)_(fij — ns”)

i<j 3T,'j
8 m.(X,nS"1) "
+ Z (& - —""__(Tjk - ng’¥)
$,5<k BE or,
8 T (X,nS™1) Xl
+ (rij ~ ns")—" 21y — s )
.<§<1 v 0707k

1
+ Z(f. 2—"1%%‘3—)(55 — z;)] dTd¢dSdX + O(n=3/2)

= O(n‘s/z).

The second equality follows from (18) and a Taylor expansion about (X
nS~1). The final equality makes use of the observation that since =, is
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twice continuously differentiable, on the set {X,S : p(X,nS"1) = 0}, the
first and second partial derivatives of 7, vanish except possibly on a subset
of probability zero. O

Finally, we shall conclude this section by obtaining an identity which
will be needed in the approximations of the next two sections.

Theorem 1 Suppose no(£,T) is a nonvanishing continuously differentiable
(generalized) prior density for (£,T) with respect to d€dT' such that its pos-
terior distribution ezists. Let Q1 be defined as in (8). Then under any twice
continuously differentiable prior density 7.(£,T) for (£,T), the average cov-
erage probability of (0, 1s given by

Pr (£ € 04)
= ot (2n) VRPN /RP /S ,, n'(T, n)[Vo(€, T)|75 (€, T)

(19)  xmi(6,T) drde+ BB+ [ [ Rom(6,T) drdg +0(n~202),
P JSp
where Rs 18 defined as in Proposition 1 and
Ry = —(27r)"1/2E$;r{e°“’(x's)2/2r)'(nS"l,n)[VIog p(X,nS™1))
xH{p(X,nS™") > 0}} + (2) M2 (27 /20! (1 ) Viogp (£, T).
PROOF. We observe from Propositions 1 and 2 that

Pr (£ € Q)
= Er PX%(¢£ € M)I{p(X,nS™Y) > 0} + O(n~%/2)

= a- (291")"1/2E,_{e"c"(x's)z/zn'(nS'l, n)[Vlogp(X,nS~1)]
XI{p(X,n5™) > 0}} + Ey. Rs + O(n~>/2)

= a—(2m) 2@ [ [ (0, n)Viogo(€, T)m (¢, T) drde
Rre s,
-38/2
+E e+ [ [ Ron.(6,1) drd +0(n~)
— -1/2_-[8~}(a)]?/2 ' _ mVmg
= a-(21)" % /R , /S A (,m)(Vm, - TR0 ) ardg
-8/2
+Ey. R +/RP -/;, Rem(f,r) dl‘df+0(n )
- ~1/2_~[8~(a)]?/2 ' T Vo
a+ (2x)" e /RP -/;, n (I‘,n)——--7r0 drd¢

+ By Rs+ /m /S Rema(£,T) dTd€ + O(n=3/2).,
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The last equation follows from the observations that 5(T, ) is independent
of £ and that for all T,

Vr. d¢ =0,
RP

since 7,(€,T) is a probability density. This completes the proof. O

4 Second-Order Asymptotics

We shall now obtain a second-order approximation to Py, (¢ € Q) defined
as in Theorem 1 by imposing a relatively mild boundary condition on ..
First let us introduce some additional notation. We consider Sp, the set of
all p x p positive definite matrices, as a subset of RP(P*1)/2 For each € > 0,
we define dSp(€) as the open subset of S, that lies within ¢, in the sense of
Euclidean distance, of the boundary of Sp.

Theorem 2 Suppose mo(£,T) is @ nonvanishing twice continuously differen-
tiable (generalized) prior density for (€,T) satisfying (7). Let Q0 be defined
as in (8) and 7, (€,T) be a twice continuously differentiable prior density for
(&, T) satisfying the following boundary condition: There ezists an € > o,
such that for all § and T € Sy (), we have 7,(¢,T) = 0. Then the average
coverage probability of 1, with respect to x, is given by

Pr. (€ €9y)
= a+ (2r) Y2 BT/ /m /; ' n'(T,n)[Vro(€,T)]ng " (€,T)
xm,(€,T) d'd¢ + O(n~1).

PROOF. To prove this theorem, it suffices to show that the third and
fourth terms on the right hand side of (19) are of the order of n~1. First we
observe from (18) and Lemma 1 that by using appropriate Taylor expansions,
we have

(20) %o(6,T) - mo(X,n8™Y) = O(n~V/%),
(21) p(fa P) - p(X, nS—l) -F = O(n—l))
(22) Mgr— My,s-1—A—B = O(n 12,

Now we consider E,,R;. To do so, we need to take a closer look at Ry to
R4. We observe from (20), (22) and the definition of R that

82
07;;07h

l ‘S’/n'2 rllzl ('_ MX,nS") |1/2 RgI{p(X, nS—l) > 0}
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az

— 2 -1/2) (_
|8/n° 17 (- 55—

My ns-1) M2 I{p(X,nS™1) > 0}

mo(§,T) — mo(X,nS1)
X /Rp /Sp exp(Mr — My n5-1) mo(X, nS-1)
+exp(Mer — Mx nS -1) — exp(A + B) dI'd¢

= | 8/n* |7V (-

My ps-1) [M? I{p(X,nS7") > 0}

o7;; 31'
* o o, P (g osma(,nS (6~ =)

+>71 —T—logwo(X nS1)|(n; — ns J)

1<j5 1

+ E 3&66,(% Mx ns- 1)(& — 2:)(&5 — z5) (v — ns* )

i,7,k<1
33

—_— — gV — potT
aTabaTijaTkI MX,nS—‘] (Tab ns )(T‘J ns )

+ 2
+<7,k<l,a<b
X (i — ns®)} dT'd¢ + O(n™?)

= O(n7Y). |

Here (—82Mx ,5-1/37;;0711) denotes the p(p+1)/2x p(p+1)/2 matrix whose
t7, klth element is —BZMX,,,S_l /87j01h. Also the second last equality uses
Lemma 1 and the last equality uses the observation that the boundary con-
dition on x, and (18) allow us to replace S, by RP(F+1)/2 in the second
integral,

Furthermore it follows from (18) that

| 5/n* |71/ (-

32
My o 1/2/ /eA+BF drd¢ = O(n~1/?),
a'rgjaTkl XS I)I Q. JSp ¢ (n )

Hence if p(X,nS~1) > 0, we have

(2x)~?/? | S/n? |-1/2 Ry [, . Js, €*TPF dld¢
[o(X,nS~1) [5, €B dT][(2m)7/2 | S/n2 |[*/2 [5, B dT + Ry]
(23) = o(n3%.
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Next it follows from the boundary condition on 7, that with an error which
decreases exponentially with n, we can write for p(X,nS~1) > 0

fn“ fs,, eA+B > i<il0logp(X, nS~1)/87;)(r; — ns'?) dTd¢
(27)P/2 | S/n2 |1/2 Js, €8dl

fn., Trew1)/2 eAtB Yi<s [8logp(X, nS‘l)/Br;j]('r,-J- — ns') dTd¢
(x)?/2 | 5/t /2 [, cBdr
P

= 0.

Consequently we conclude that for X,nS~! satisfying p(X,nS~1) > 0, we
have

Ja, Js, €**P Lic;[0logp(X,nS 1) /07;](rij — ns'?) dTd€

— -8/2y
(2x)?/2 | S/n? |1/ fs, eBdl' O(n™>%)

(24)

We note that this bound is extremely crude. However it suffices for our
purposes. Now we look at Ry. We observe that

mo(X,nS~1)eMxms-1 p—1 / ‘ f eATBF drde
RrJS,
- xo(X,nS‘l)eMx.nS“D‘I/ / (A+B
RP SP

3 .
x > _[5—p(X,nS™)](r;j — ns”) dTd¢
i<y M

(25) = 0O(n~%?).
Again we note that although the bound above is very crude, it is sufficient

for our purposes. The final equality follows from an argument similar to
that given for (24). With this bound in hand, we have

R, D1
= eMXmS“D‘I/ /{WO(X,nS‘l)eA+BF
Re s,

+mo(X, nS1)eAtBp(¢,T) — p(X,nS) - F)

+eA*B[xo(€,T) — mo(X,nSY)][p(£,T) — p(X,nSY) - F]
+eAtE [ro(€,T) — mo(X, nS‘l)]F

+[eMer—Mxpns=1 _ gA+B[x0(£,T) — mo(X,nS™Y)|F

+m0(X, nS 1) [eMerMxns-1 — ATB][5(£,T) - p(X,nS™Y) - F]
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+[eM€'p— Xns—1 __ 6A+B]7TQ(X, nS—l)F
+[eMer—Muns—r _ eA+B]iro(£, T) — mo(X, nSY)
x[p(€,T) - p(X,nS™') — F} dTd¢

= O(n"l).

The last equality uses (20), (21), (22) and (25). Now it follows from the
definition of R4 given in Proposition 1 that

(26) RJI{p(X,nS"1) > 0} = O(n"%).
By an argument similar to that given for Ry, it can easily be shown that
(27) RiD™1=0(n™1).

From (23), (24), (26) and (27), we conlude that Rs = O(n~1). This implies
that ‘
(28) E..Rs =0(n}).

Next from classical large sample theory, we observe that given X,nS -1
the posterior distribution of 7'(X,nS~!)n28-1(¢ — X) is asymptotically
standard normal with error of the order of n=1/2. Thus it follows from (N
that

ca(X,8) = @~} (a) + O(n~1/%).

Also we observe that n;, 1 = 1,..., pis of the order of n=1/2, Hence it follows
from (18) that Rg, defined as in Theorem 1, is of the order of n—!. This
implies that

(29) /R ,, /S Rem.(€,T) dT'de = O(n™1).
We conclude from (28) and (29) that
Pr.(§ €0a)

= at (@n) BT [ ]y, ) (Vao(e, Ding (6, T)
xx.(€,T) dT'd¢ + O(n™Y). ,
This proves the theorem. |
Corollary 1 Under the conditions of Theorem 2, we have
Pr(fe)=a+ o(n~Y?).
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PROOF. We observe that the components of 5 are each of order of n=1/2.
Hence

(2m) 2@ [ [ (2, m) o€, Tlng (6, TIma(6, T) drde
rr s,
= o(n~112),
and the result follows immediately from Theorem 2. ]

Corollary 2 Under the conditions of Theorem 2, suppose that no(£,T) is
independent of €. Then

Pr.(E€Q) =a+0(nh).

PROOF. This is immediate from Theorem 2 since Vrp(¢,T) = 0. |
Finally Theorem 2 suggests that for most parameter values, especially
those that are not too close to the boundary of S,

Per(€ € )
= a+ (2r) V2 [2THAP 20 (1 ) [Vao(€,T)]r5 (€, T) + O(n7Y).
5 Third-Order Asymptotics

Here we shall obtain a third-order approximation to Py, (£ € §1,) defined as
in Theorem 1. First we need two lemmas.

Lemma 6 Let co(X,S) be defined as in (7) and € > 0. Then for all X and
nS~1 € S,\85,(€), we have

ca(X,8) = &7 () + ' (nS™1,n)Viogmo(X, nS1) + O(n71).

PROOF. We observe that for all X and nS~1 € 5,\85,(¢),

82
—p(p+3)/4 2 -1/2) ¢ N2 N
(27) | 8/5 |72 (=g M) |
= (2,‘.)—p(p+8)/4 | S/n? |~1/2| (~ o 1) |1/2 Myt ns—-1

ar--ar, Mxins~

A+B
f / Pty E[as.af,am Xins=1]

k<




18 5 THIRD-ORDER ASYMPTOTICS

X (& — 2:)(& — 2;) (11 — ns™)

1 FE B b
*5 Z [_.—MX, s-1)(ri; — ns* ) (74 — ns® )
Gt‘Si.kSI,asb O7ij 0T O7ap " + a

X(rit = ns")Hmo(X, nS71) + Z[-a%vro(x, nS=](& - =)

+ 2[5277’0(}(, nS™)]|(r; - ns¥)} dTdé + O(n™")

i<y Y
= (27)7P/%| §/n? |71/ eMxins—1yy(X, nS1)

X /‘; eA{1 + [Vlogmo(X, nS~1))'(€ — X)} d¢ + O(n™Y).

The second equality uses Lemma 1. Similarly, to the same level of approxi-
mation, we have

62
3T,'J'37k[
= eMX."S“wQ(X, nS"l) +o0(n™Y).

(2x)~PP43)/4 | g /02 |-1/2) (- My ps-1) |M* D

Hence
a = N/D
= (2n)"/2 | s/n? |12
x /ﬂ _e*{1+ [Viogro(X, nS (€ - X)) d€ + O(n™)
= (2n)~?/2| S/n? |12 / ¢~ (E-X)'S 71 (e-X) /2
(30) x{1 + [Vlogmo(X, nS“;]’(f - X)} d¢ +0(n7Y).

The final equality uses Lemma 1. As in the proof of Lemma 5, we define
Y = g'(nS7L,n)n?s71(¢ - X),
W = [Vlogmo(X,nS™1)]'(€ - X).

Then
EY =EW =0

and

E(%’,)(Y W)
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_ 1 n'Viogmo(X,nS™1)
- 7' Vlogno(X,nS~1) [Vlogno(X,nS~1))'S[Vlogno(X,nS~1)]/n?

Now it follows from (30) that

a = EWIKY < co(X,8)}+ I{Y < ca(X,S)} +0O(n71)
= ‘"(2”)_1/271'(115“1, n)Vlogmo(X, nS‘l)e""'(X'S)z/z
+@(ca(X, S)) +0(n )

and hence
ca(X,S) = & 1(a) + n'(nS™1, n) Vlogno(X,nS™1) + O(n™1).
This completes the proof. O

Lemma 7 Let Rg be defined as in Theorem 1. Under the conditions of
Theorem 2, we have

EnRs = (2n) Y2 B (@P/25-1(q) fR /S 7' (T, n)[Vlogro(¢,T)]

xn'(T, n)[Vr.(&,T)] - [n'(T, n)Viogmo (€, T) 7. (£,T) dI'd¢
+0(n~3%/ 2.

PROOF. From the definition of R and Lemma 6, we observe that for
p(¢,T) >0

Rg = (27)7"/2 BT (@72 {n! (T, n) Viogp(¢,T)
—E{T[1 — @7 Y(e)n'(nS™, n) Viogro(X, nS )0’ (nS™L, n)
x[Vlogp(X, nS™ 1) I{p(X,nS~!) > 0}} + O(n~%/?)
= (2n)" V227291 (o) [n'(T, n) Viogmo(€, T))n' (T, n)

x[Vlogp(£,T)] — E,é;r[z: -5%(17'(1‘, n)Vlogp(¢,T))(zi — &)

+ Z -6—3-;(17'(1‘, n)Vlogp(€,T))(ns" — 7;)]} + o(n—3/2)

i<y Ot
= (2r)7 20T 2071 () (T, ) [Viogro(€, T)]'(T, m)
x[Vlogp(¢,T)] + O(n~3/%).
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Thus
Er.Rs = (2r) Y2 1271 /2g-1(4) / / n'(T, n)[Viogmo(€,T)]
RrReJsS,

xn'(T, n)[Vlogp(€, T)]mu(€,T) dTdE + O(n=3%/%)
= (2n) 12l g1 ) /R , /S 7'(T, n)[Viogro(&, T)]
xn'(T,n)[Vx.(€,T)] - [n'(T, n) Vlogno(£, T)|2m. (€, T) dTdg

+0(n=3%/%).
This completes the proof. 0
For simplicity, we write
Viskl = E(T,‘j - ns"")(rk; - nsk'),
Vabijilrs = E(rap— ns“b)(r,-j —ns'?)(ry — nsk')('r,.a —ns"),

where I' is multivariate normal with mean n.S~! and precision matrix given
by (—8*Mx ng-1/87:;074). Now we are ready to prove the main result of
this section.

Theorem 3 Suppose no(€,T') is a nonvanishing thrice continuously differ-
entiable (generalized) prior density for (€,T) satisfying (7). Let Qg be de-
fined as in (8) and x,(€,T) be a thrice continuously differentiable prior den-
sity for (§,T) satisfying the following:

1. There ezists an € > 0, such that for all € and T € 98,(€), we have .
m(¢,T)=0.
2. For all {, T we have fori,5=1,...,p,

lim ,(¢,T)0logmo(¢,T)/3& = lim m. (&, T)dlogmo(€,T)/0¢;.
§j—+=—o00 §j—+oo
Then the average coverage probability of Q, with respect to , is given by

P (E€y)

= at @R [ w6, DI drae

+(2r) 2B @ 201 o) fR /S n'(T, n)[Vlogro(€, T)]
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x1' (T, n)[Va.(€,T)] = [0'(T, n) Viogno(€, T)]*x. (£, T) dT'd¢
+/;:»./.; Z.:{_—_affafj [mo(&,T)[(@ = 1)n~1r?

_(2m)" 1281 (a)e~ 8@ 29 (1 p)oi(T, n)].-,-]}————z’:o((fé?) arde

4 2 -1p-1
-L [ , Z{EE[(B—&M(& I)l(@- 1T

—(27)"Y2@ " (a)e 2 N /2y (T, n) (T, n))i] 3 = Eg 8 drde¢

/R / {?a—["o(f’ T)viju(T)[(e — )n~ir?
IS Tkl

P $<5,k<l
—(2r)~Y2@ 1 (a)e 127 (/2 (1, n) (T, n)]cJ]}?’mf?;‘; drde
+O(n"3/2).

PROOF. Using Taylor expansions and (18), it can be shown by a straight-
forward though tedious calculation that for p(X,nS1) > 0,

Ry/|Dp(X,nS71)]
mo(X,nS™?)
27:J (X,nS-1) £ E 35,35

p(X, nsﬁl)]

x[an~28 — (27f) 291 () T N iy (051 n)p! (nS Y, )5
ang(X,nS™1) a?
27, (X, nS-1) 2

<7, k<l

b¢ ~1 .. -1
57‘,1_37,“/’( » 1S ™) iz u(nS ™)

+7 (X, nS™1)" IZ 2 ro(X,nS [ 7 P(X,nS57Y)]

& &
X[an%8 - (27)” 1/2¢>“1(a)e‘[°°1(°‘)]°/2 ] i

_c 9 -1y -1 1
+7r,.(X,nS =) <Zk<l{a" mo(X,nS~ )][ p(X nS™ )i u(nS™*)
mo(X,nS~1) a3 -1
TolX,nS7) — O My s1][=p(X, nS
67.(X,nS—1) ",Zt:aq[afeafjarkz Xin§ 1H(’?Tab‘o( nS7l

XVkl b (nS1) [an=28 — (27r)_1/""<I>_1 (a)e”[q’_l("‘)lz/znn']ﬁ
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amy(X,nS™1) -8 3 1
Y oIy 555 Mxns-1)l[53—p(X,nS7)]
67.(X,nS-1) isj'ksgg,rg[ar,,,ara,,ar,, m ][BT,-J-

xvij,kz,ab,ra(ns_l) + O(n—s/Z).

Furthermore we observe from (25) that by replacing a by 1 in the above
equation, we obtain an approximation for Ry with the same level of precision.

Hence

R}_ _ aR4
(1+ Rg)p(X, ns-l)D 1+ Ry
= mo(X,nS7) p(X,nSV)][(a ~ 1)n-28

27, (X, nS-1) 2[3&66,

—(2r)" V23~ l(a)e-lfb Nl 2y (ns-1, n)r)'(nS'l,n)],,

+m(X,nS“)“12[ g¢,mo(Xon5” 1)][ p(X nS™1)]
£,5

x[(o ~ 1)n=28 — (27r)—1/='<1>—1(a)e—l""‘“”z/znn’],-,-

mo(X,nS1) PY 3 1
67, (X,n5"1) Se.0c.9. M X, nS-
6m. (X, nS-1) i,j,kszl,asb[a&afjafkl X, nS~ 1][ p( )]

X Vi1 ap(nS™1)[(a - 1)n"28 — (27.-)“1/2Q—1(a)e—[Q“(a)]"’/znnr]ﬁ _
+0(n~%/?),
Using integration by parts and Lemma 1, we get

[ R1 aR4
(1+ R)p(X,nS-1)D ~ 1+ R4]

d? L
‘/R" /s, %,:{5'&3_61.[“0(6,1‘)[(&_ 1)n-1p-1

—(27) Y20 (a)e~ BT @ /20(1 n)p(T, n)],-,-]}z—’;io(% drde¢

a 0 —1p—
- Joo f;, g g ol D - e

..(27,-) 1/24- l(a)e [&— l(a)]2/2n(r ’7')’7 (P )]z:]} g?;‘; drd¢

_/R,_/S > { [WO(E,P)Vij,kz(I‘)[(a— 1)n-1p-1

P i<7,k<l

E".
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—(2r) 281 (o) O @ 2 (T, ) (T, n)];,-]}% arag

+0(n~%/%),
Also we observe from (23), (24) and the definition of Rs that

[ R1 _ C!R4
(14 R)p(X,nS-1)D ~ 1+ R,

This observation together with Lemma 7 give the result. ]

Ey.Rs = E,. ]+ 0(n=%2).

Corollary 3 Under the conditions of Theorem 8, suppose that mo(€,T) is
independent of £. Then

P (£€Qy)
= a- /R»[S 2 {5’%[7’0(1‘)%'.“(1‘)[(& = D707t~ (20) 7

P i<y k<l

XQ_I(Q)C—[Q—I(a)]Q/zﬂ(P’ n)n’(r, n)]‘J]}-n;;—c()fl,:‘_)I:)- deE + O(n—3/2).

PROOF. This is immediate from Theorem 3. Here we note that condition
2 of Theorem 3 is always satisfied. O

Corollary 4 Under the conditions of Corollary 8, suppose mo(T') satisfies
3] 1

>~ {5~ lmo(T)wisu(0)(e~ )~

i<ik<t OTH

~(27) 7128 (@)e™ BT 2n(T, n)n'(T, m)]i5]} = 0,

for allT'. Then
Pr.(§€0Q.) = a+0(n~%?).

PROOF. Immediate from Corollary 3. O
Finally, Corollary 4 suggests that for most parameter values, especially
those that are not too close to the boundary of Sp,

Per(€ € Q) = a+0(n~%?).
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