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Purdue University

Consider the situation of v balls and k urns. We assume that
each of the v balls gets into the tth urn with equal probability
independently of the other balls. Let us denote by N, the num-
ber of urns containing exactly r balls. In this paper we shall use
the Chen-Stein method to obtain conditions whereby the law of
N,, or some appropriate function of N,, converges to a Pois-
son distribution. This is quantified in terms of upper and lower
bounds on the rate of convergence in terms of the total variation
distance.

1 Introduction

Consider the situation of v balls and k urns. We assume that each of the
v balls gets into the ¢th urn with equal probability independently of the
other balls. Let us denote by N, the number of urns containing exactly r
balls. In this paper we shall use the Chen-Stein method (see Chen (1975),
Stein (1970), (1986)) to obtain conditions whereby the law of N,, or some
suitably normalized function of N,., converges to a Poisson distribution. This
is quantified in terms of upper and lower bounds on the rate of convergence
in terms of the total variation distance d which is defined as

d(p1, u2) = Sup, | n1(A) — p2(4) |,

where p3, pa are arbitrary probability measures on Z*, the set of non-
negative integers. More precisely, in Section 2 we shall compute explicit
non-asymptotic upper bounds on the rates of Poisson convergence of

1. N, r >0, as v/k — oo,

2. (No—k+v), [(v—Ny)/2] and N,, r > 2, as v/k — 0. Here .| denotes
the greatest integer function.

In Section 3, we construct lower bounds on the rates of Poisson convergence
of
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1. Ny, r >0, as v/k — oo,
2. (No—k+v)and N,,r>2,asv/k— 0.

Under very weak conditions, an example being the expectation of the statis-
tic of interest tending to a nongero finite limit, the lower bounds are com-
parable to that of the corresponding upper bounds.

For simplicity of notation, we write P, as the Poisson distribution with
mean A and

[o o] Aw
Ph=e? 3" h(w)—,
-0 w!

where h is a bounded real-valued function defined on Z*. Furthermore
for any random variable X, we denote the law of X by £(X). Kolchin,
Sevastyanov and Chistyakov (1978) give a very comprehensive survey of
this subject and related areas. We first state two preliminary results.

Proposition 1 (Poisson Identity) In order that the random variable W
taking values in Z* has a Poisson distribution with mean ), it is necessary
and sufficient that , for all bounded functions f : Z+ — R,

E{QAf(W +1) —Wf(W)} =0.

This proposition was observed by Chen (1975). The proof can be found in
Stein (1986).

Proposition 2 Let A C Z*t and I4 denote the indicator function of A.
There ezists a function f : ZT — R satisfying

AMw+1) - wf(w) = Ly(w) — Pala,
for ell w € Zt such that
sup | f(w)| < 1AL4A"YZ

wezt
sup | f(w+1)— f(w) |
weZt

IA

A1 —e™?).

Proposition 2 was proved in Barbour and Eagleson (1983).



2 Upper Bounds

In this section, we shall compute upper bounds on the rates of convergence
of the distributions of

1. N,, r > 0, to appropriate Poisson distributions as v/k — oo.

2. No—k+v, [(v—N1)/2], Ny, r > 2, to appropriate Poisson distributions
as v/k — 0. Here [z] denotes the greatest integer less than or equal
to z. '

Let X; denote the number of balls in urn ¢. For integers r and s, we define
N,g") to be a random variable having the conditional distribution of N, given
that X; = s. As Stein (1986) observed, for s fixed, N, and N,gs), r =
0,...,v, can be defined on a common probability space in the following way.
Uniformly distribute v balls independently among k urns. This determines
N,, r =0,...,v. Now choose s balls and an urn at random, uniformly
distributed over all possible choices, independent of N, r = 0,...,v. We
denote this urn as urn I. Remove the balls from urn I and distribute these
balls uniformly among the remaining urns. Now put the s balls originally
selected into urn I. This determines N,gs), r=0,...,v.

Lemmma 1 With N, and N,-a) defined on the above common probability space,
we have

E|N,+ Iy — N© |

1.v 1 v rsk 1
< —(2\(1 - =T z ren R T
< r!(k) (1 k) {1+k+ ” +s(1 k)
r2 v+r—1

1.4, r
+r(1_;)1 +(V—|—r—1)( v )}

PROOF. Given Xj,..., X}, wedefinefor 1 <4;<...<4;<s,0<n< v,

1 if out of the s balls picked, the 1;th,
v ..., 1;th balls come from the same
Sty T urn originally containing n balls,
0 otherwise.

Let I be uniformly distributed over the integers 1,.. .,k and is independent
of the Yi(;,‘.)..,i,-’s and X;’s. Given I, Xy,..., X, we define for 1 <1; < ...<
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i <X,0<n<,

1 if out of the X7 balls in urn I, the ¢;th,
(ny _ ..., t;th balls are placed in the same
Sy T urn originally containing n balls,

0 otherwise.

Then we have

E(N( ) - - I{r—a})+
(rim) |, (r—m)
5y Y L ZANETD DD DI\
m=11<¢;<...<t,, <8 m=1 1<i;<...<i,, <X

E{Z s'(r + m)!(v - m)'

(s— m)‘m'r‘v'

IA

IA

{u2r+m} Neim

r/\X, X

+ E m'(XI

(7)™ Nem}

m)!'k

a/\(v—r)

E{Z (s

+ E E m'(X m)|I{X,Zm}( ) Z {X; —r—m}}

IA

Py Tl )( - )"" 1( "

m)|m|,-|

On simplification, we get

(8)_ _ _!‘_Zr _lv—r _l—e
E(N I{r—a})+ < f!(k) (1 k) {8(1 k)
r2 v+r—1,, 1.,
) T Y +r(t- 2
Similarly, we have
E(N, + Iypmgy — N), < E{ZY"’+}:Z‘ V¥ I}
=1 1 =1
Lovy, yer ﬂ
(@) < SEra-rra+ e,

The lemma follows immediately from (1) and (2). O



Theorem 1 Let L(N,) denote the law of N, and A = E(N,). Then

dL(N), Pr) < 1(1—«:—*)(5)'(1—1)"-2'{1”,

2 y4r— 2k

FoEE L IR Yy

v

PROOF. We observe from Proposition 2 that for each A C Z*, there exists
an f such that

E{I4(N,) — Prl4}

k
= EM(Ne+1) =) Ix—ry f(N:)}

=1

k
= B{Af(N,+1) =) Iix—n E(f(N,) | X; =)}

=1

= E{A(f(N,+1) - F(NO)Y.
Consequently,

| E{Ia(N,) — Pala} |
A( sup | flw+1) - f(w) NE| N, +1- N |
we

IA

l(1 - eNEy -

IA

v+r-— r’k v
( Sy TR 2y

The second inequality uses Proposition 2 and Lemma 1. O
Here are two immediate corollaries.

Corollary 1 Let A = EN, where r is a fized integer grealer than or equal
to 2. Then d(L(Ny), P») tends to O as v/k — 0. More precisely,

AL, P < (1 - e E) (14 o)

Corollary 2 Let A = EN, where r is a fized integer greater than or equal
to 0. Then d(L(N,), P)) tends to 0 as v/k — co. More precisely,

A(L(N), P) < (1= ) (B = 1) (1 +o(1).
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Next we consider the asymptotic distribution of No — k + v as v/k — 0.
To do so, it would be convenient to have the following lemma which follows
directly from Lemma 1.

Lemma 2 Let A = E(No) - k+ v. With N,’s and N2 defined on the
common probability space described at the beginning of this section, we have

Y (r—1)E| N, + Iy — N® |

r=2
v 1 v,3 s 1 8 v.,, 1 8
< Z(1 — Z\yw-38.2v/(k-1) Yl %ty ° AV TN .
< Fa-Pe e B 2a - D Y G+ Yy
Theorem 2 Let W = No— k+v and A = E(W). Then

d(ﬁ(W), PA)

ko o3 _ Ly-r sokje-r2 4 Bv  vP 4 4
< A(1-e )(k)(1 k) e (3+ + + +k2).

4k = 4k Kk
Thus d(L(W), P,) tends to O as v/k — 0. More precisely,

dLMW), P) < 31— ) 2(L+o(1).

PROOF. We observe that W = 3_/_,(r — 1) N,. It follows from Proposition
2 that for each A C Z, there exists an f such that

E{I4(W) — P\I4}
= BMW+1)- 3 (- )N.f(W)}

v k
= BQSW+1)- 2 (r- 1)) Ixi=n ()}

=1
v

= Y (r-DEN){E(FW +1)) - E(GF(W) | X1 =r)}.
r=2
Consequently, it follows from Lemma 2 and Proposition 2 that

| EIA(W) — P4 |
< AM1-eM)D (r-DEW){r-2

r=2



+Z(8 - I)E I N, + I{a:r} - N.«sr) I}
=2

< A1 - e"‘){zu:(r —2)(r - 1)E(N,)

r=3

+2(1- %)”_362"/(""1) 3 (r - DE(N,)

r=2
v,3 r 1., 8 V.1 8
Hence we conclude, after a straightforward calculation, that

d(ﬂ(W)’PA)
ko — e v—17  8vk/(k—1)? 4 Sv v
< F0-eMEPA-3) G+t ot 2+ ).

This completes the proof. O
Finally we consider the asymptotic distribution of [(v —~ N;)/2] as v/k — 0.
Here [z] denotes the greatest integer less than or equal to z.

2

Lemma 3 With the N,’s and N( )1g defined on the common probability
space described at the beginning of this sectzon we have

EI[ ZrN]—[ ZTN(”]I

r—3 r—3

< /N )"_5( 2@ +—+ +m)

PROOF. We observe that

El[ Z’N]—[ E N |

r—3 r=3
= E{| [ ZrNr] -3 Zer] I Z(rN - rN#) |2 1}
r—3 r_3 r=3
xP{| Zr(Nr -NO) 1z 13
r—3

IA

{E{ 5 Z( N‘”)IIIZ - NP |21} + }

r—3 r=3
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<P{| 3 r(Ny — N®) |2 1}

r=3
v
< EY r|N,-N®|.
r=3

The last inequality uses Markov’s inequality. By a calculation similar to
that of Lemma 2, we arrive at

EI[ ZrN]—[ ZfN(2)1|

r—8 r—3

2w/(k-1)7q _ Lyw—5/Vr2 3v 36
< e (1 k) (k) 3+ A +

% T 2R
This completes the proof. O
Theorem 3 Let V = [(v — N1)/2] and A = E(N3). Then

d(ﬂ(V) Px)

< (1/\ ,\1/2)(1 ) 1/2(1__)(u—4)/2 vf(k—1)

3/2
11y 71/ 4 36v
2V/(k—1)1__ —A 1__11—_2 - i ).
+ D 1= e P g L )
This implies that d(L(V'), P) tends to O whenever v*/k® — 0.
PROOF. We observe that V = Ny + [3>°/_3 rN,/2]. It follows from Proposi-
tion 2 that for each A C Z7, there exists an f such that

E{I4(V) - PAIA}

= E{Qf(V+1)- ZI{X 2}f(V)—[ ZrN]f(V)}

= BO((V+1)- f(V|X1—2))—[ ZfN]f(V)}

Now it follows from Proposition 2 that
| E{La(V) — Pala} |
< (=B Ny +1- N |+ [ > rN - 5 Ly eN@ )

r—3 r-—S

+= ZrE(N)(1A1 4r13,
r—3



Using Lemma 3, we conclude after some computation that

d(ﬂ(V) Pr)
1/2 1/2 (v—4)/2v/(k-1)_Y__
< (1A= A )(1 - ) (1- ) 2k3/2

2w/(k=1) (1 _ A _lu—sz 1y 72 4 36w "_
+e (1 e )(1 k) k(2+ 2k+2k2+k+ +

This clearly implies that if v*/k® — 0, then d(£(V), P,) tends to 0. O

3 Lower Bounds

In this section we shall adopt the ingenious adaptation of the Chen-Stein
method of Barbour and Hall (1984) to arrive at the lower bounds on the
rates of Poisson convergence of the distributions of

1. Ny, r>0,as v/k — oo,

2. (No—k+v)and N,,r>2,asv/k— 0.

Lemma 4 Let f(m) = (m — X)e~(m=2/(A) ym € Z+, where A, 0 are
positive constants. Then

E{f(N, +1) - f(N{)}
> E{N,+1- NI — {(N,+1-2)%— (N - 2)%},/(6\)}.

PROOF. For simplicity of notation, let A = N, + 1 — ,gr). From the
observation that

0 < 1— (d/dw)(we™*/ (V) < 3w?/(92),

we get for A > 0,

Ne+1-2
(') A

N
< /N o " (3u/(03))dw
= {(,+1-2° - (N9 - 2%}/(63),

A= 4D+ 1) = [0 - @/ dw)(we ) dw
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and for A < 0, we have

S+ = f) = [0 dw) e

A.

r

v

This implies that
F(N,+1) = F(ND) 2 A= {(Ne + 1= X)° = (NI = 2)%},/(620),
and this completes the proof. a

Proposition 3 Let f(m) = (m — A)e=(m=N/(0A) m e Z+, where A, § are
positive constants. Then

d(L(N,), Pa) 2 (1A (26732 + 871 ) ) B{f (N, + 1) - F(N{))}/2.
PROOF. As in Barbour and Hall (1984), we observe that

2d(L(Ny), P») sup [ AfG+1)-3f() |
> E{Mf(N,+1) - N, f(N,)}

(3) AEB{f (N +1) - f(N)}.
Since
A1V (26732 4 8e71)) > sup [ Af(F + 1) — 3£ (5) |,
j
the proposition follows from (3). i

Theorem 4 Let A = E(N,) where r is a fized integer greater than or equal
to 2. Suppose that v, k tend to infinity in such a manner that v/k — O,
then

d(L(N,), Pa) > 2(277“:79)7!(

6
2L - ST+ 1))+ o0(1)),
where § = 6(2A~1 + 1) + {12(2A~1 + 1)(6A~1 + 3 + e~ /2)}1/2,

PROOF. We observe that

E(N, +1- N")

v! 1.,., (v — ) 1 s
[ e S i v T oy Al Sy
= o o).
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Next, for N, +1 — N,S') > 0, we observe that

{(N:+1-2)°— (N - 2)°}4
3(Ne +1—N2(N, +1— N 4 3A(N, + 1 - N2

IA

r XI
3N, +1- AP+ 20 + [x,-)

<
i=1 j=1
r X
+AQC Y+ 320 ¢ 1x,2)%
=1 =1

Here the final inequality uses the notation of Lemma 1 and the proof of (2).
Thus we conclude that

E{(N,+1-X)%— (N} - 2%},

r X
< SB{(Ne+1- MY+ 20 + [ix,2ny)

i=1 j=1
L), S )
QYN+ 27 + Ix,-n))-
=1 i=1

By expanding and taking expectations, we get

r X
BN, A1 -0 Y0+ 3520+ Iy} = T 4 N1+ o(0),
i=1 i=1 )

d
an r ) Xy " . 2y .
i=1 i=1 )
Now it follows from Lemma 4 and Proposition 3 that
2d(L(Ny), P»)
(1A (2¢73/% + e )")E{N, + 1 - NI")
—{(Ny+ 1= X)* = (V) = )} /(O0)}

> (1A (2732 4 06—1)—1)-';(%)'_1{1 - 2(2,\‘1 +1)}(1 + o(1)).

v

To ensure that the right hand side of the last inequality is strictly positive,
it is necessary to restrict the possible values of # to be greater or equal to
6. Then

(LA (2632 + 8e71) 1) = e(2¢7 /2 + 0) 2.
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Thus we conclude that

d(ﬂ(Nf): P}\)
er2

@ 2 P A+ D)),

where the value of § which maximizes the right hand side of (4) is given by
0 =6(2271 + 1) + {12(2A "1 + 1) (621 + 3+ ¢~ Y/Z)}1/2,
This completes the proof of the theorem. O

Theorem 5 Let A = E(N,) where r is a fized integer greater than or equal
to 0. Suppose that v, k tend to infinity in such a way that v/k — oo and
v/k* > 0. Then

d(L(Ny), Pr)
> e - DL - 5@+ D} +o(1)),
where § = 6(2A~1 4+ 1) + {12(2A71 + 1)(6A~1 + 3 + e~ 1/Z)}1/2,
PROOF. We observe that
B(N, +1- N{) = (2 +1(1 - )" (1 +o(1)).
AAs in the proof of Theorem 4, we have

E{(N,+1-2)° - (M) = )%},

r X] .
SE{(N, +1- 22 Y + 3 21+ Ixyery)

<
=1 i=1
r Xr
QY +32 20 + Ix=n),
t=1 i=1

and

r XI
B{(N,+1- 22 YD+ 3 20 4 15, )}

=1 j=1

1 v r+1 1 v
= (™A= E+ N1 +o(1),
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and
. (r) e (r) 2 1 v r+1 1 v
AEQ Y+ 377 + Iy ) < S(Z)A - DA+ o(1)).
i=1 j=1 :

Now the rest of the proof is almost identical to that of Theorem 4 and hence
will be omitted. O
We shall now construct a lower bound on the rate of Poisson convergence of
the distribution of No — k+ v as v/k — 0.

Theorem 6 Let W = No — k+ v and A = E(W). Suppose that v, k tend
to infinity in such @ way that v/k — 0, then

2e
L) P 2 s r gy

v 9, .1, 9
20— x4 Dya+ o),
where § = 9(4A~1 4+ 3) + 3{(4A71 + 3)(36A~1 + 8] 4 2¢-1/2)}1/2,

PROOF. Let f be defined as in Lemma 4. Then as in the proofs of Lemma
4 and Proposition 3, we have

2X(1V (26732 4 e~ 1))d(L(W), P))

BOSO +1) = 3 )N E(fW) | X; = )}

2
r=2
> (- DE(N)EW +1— W)
r=2
®) {7 +1-2° = W) - 2%/},

where W (") has the condtional distribution of W given that X; = r. Also,

we observe that

rv—-2) rp-1)
k-1 2k(k—1)

EW+1-w®) > (1- ﬁ)-f{z —rst

_vp-1) vw-1) vi(r-1)? }
k(k—1) 2(k-1)% 4k2(k-1)3"

and hence

(6) fj(r —~1)E(N)EW +1-w) > 2—’;(1 + o(1)).

r=2
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Next, let N,, N,(r), 8=0,...,v, be defined on the common probability space
described at the beginning of Section 2. Also let I, Y,-(l), t=1,...,r,be as
in Lemma 1 and define on that probability space

1 if the sth ball from urn I falls into either one of
the originally Ny empty urns or the urn
where the second of r balls is taken from,

0 otherwise.

70 =

Then we have for r > 2,

X
(No+1-N), < ZZ.'(O) + (I{x,=0y — Y +1-v

=1

= B, say.
Hence writing E(Np) = Ao, we have
B{W +1-2)° - (W0 - 2%,
E{(No+1~0)° — (N5 — 20)°}+

5
) < E{%(No +1-20)"B+2B%.
Furthermore, by a straightforward but tedious computation, we observe that
9 . 8lv  2Tv®
z - < (—= 4 2
2E(N0+1 B)’B < ( ok + yTe )1+ o(1)),
and 5 15
3 v
- < — 1)).
2EB < 2r (14 o(1))

Thus it follows from (7) that for r > 2,

B{W +1-20° - W0 - %, < (22 1 011 o),

and we conclude from (5) and (6) that
d(L(W), Pr)
(8) > 2—';(1 A (26732 + 0e-1)-1){§ -~ %(48/\“1 + 2—27)}(1 + o(1)).

To ensure that the right hand side of (8) is strictly positive it is necessary
that 8 > 81/8. Thus

1A (26737 4 get) L = ¢(2e1/2 + )L,
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Hence

2v e
S —

d(L(W), Pr) > 3k(m){

1- (07 + D)1+ (1)),

and the value of § that maximizes the right hand side is given by

6 =9(4x"+ g) +3{(4ax"1+ g)(%)\'l + % 1 267 1/%)}1/2,

This completes the proof. O
REMARK. Due to its more complicated functional form, we have not been
able to construct a lower bound on the rate of Poisson convergence of [(v —
N1)/2] as v/k — O which is comparable to the upper bound of Theorem 3.
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