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1. Introduction

Let Q(2) = P1(2)/P2(z) be a rational function of degree d > 2, and let Q"(2), n > 0,
be its iterates:
Q°(2) = 2, Q"*(2) = Q(Q"(2))-
The Julia set of J of Q is the set of points z€ C = C U {oo} for which {Q"},>1 is not
a normal family in any neighborhood of z. The Fatou set ¥ is the complement of J, i.e.,
F = C\J. The Julia set J is a nonempty, compact set satisfying J = Q(J) = Q~1(J) (sec.
2).

The purpose of this paper is to investigate certain ergodic properties of the (normal-
ized) equilibrium measure v 611 J for rational mappings @ such that Q(o0) = co and oo € 7.
See [12], sec. 3.4 for the classical definition of v. We shall adopt a “probabilistic” point
of view, regarding v as the distribution of the point of first entry into J by a Brownian
motion started at oo (this may be taken as the definition of v; see [12], sec. 3.4). This will
allow us to completely avoid methods and results of classical potential theory. Previous
studies of the equilibrium measure on J, e.g., [3], [9], have not exploited its probabilistic

interpretation.

It has been known since [3] that the equilibrium measure v plays a distinguished
role in the ergodic theory of polynomial mappings Q. Fix z € C, and consider the set
Q7 "(2) = {& Q"(§) = z}. Observe that Q—"(z) has cardinality d", provided multiple
roots are counted accordingly. Define u7 to be the uniform distribution on Q~"(2), i.e.,

p7, is the probability measure which puts mass d=" at each root of Q"(¢) = 2.
THEOREM (Brolin [3]): If Q is a polynomial of degree d > 2 then J has positive (loga-
rithmic) capacity, so v is defined. For all but at most one z € C,
z D
p: — v as n— oo.

Furthermore, v 1s an invariant measure for Q and the measure-preserving system (J,Q,v)

ts strongly mizing.

NOTE: -2 indicates weak-* convergence (convergence in distribution), i.e., sy 2, u iff

for every continuous function f: C — R, [ fdpn, — [ fdu.
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It is natural to wonder whether Brolin’s theorem is true for an arbitrary rational

mapping Q. This question has only recently been settled.

THEOREM (Ljubich [8]): For all but at most two points z € C, uZ N i, where u ts the
unique mazimum entropy invariant probability measure for Q: J — J. Moreover, (J,Q, )

ts strongly mizing and has entropy logd.
THEOREM (Lopes [9]): If Q(oco) =00 & J and if v = u, then Q is a polynomial.

One might now ask (1) are there any rational mappings other than polynomials for

which J has positive capacity, and (2) if so, what can be said about the dynamical system
(J,Q,v)?

We shall assume henceforth that co is a fized point of Q (i.e., Q(c0) = o0) and that
oo ¢ J. Let Q(2) = P1(2)/Pz(z) where P1(2) = apz® + a1z~ +...+ aq, with ap # 0, and
Py(z) = 2% + byz*~' + ... + ba,, with di < d, and P;(2) and P,(2) have no nontrivial
common factors. If d > d. + 2 say that oo is superattracting; if d = d. + 1 and |ag| > 1
say that oo is attracting; and if d = d, + 1 and |ao| = 1 say that oo is neutral. (The case
d =d.+1 and |ag| < 1 cannot occur, because in this case oo is a repelling fixed point and
therefore co € J — see [1], sec. 5) Observe that if co is attracting or superattracting then
there exists C < oo such that nli'ngo Q™ (2)| = 00 V |2| > C. I Q(2) is a polynomial then

oo is superattracting.

THEOREM 1: If Q(o0) = oo € ¥ then the logarithmic capacity of J is positive, and hence
the normalized equilibrium measure v on J exists. Furthermore, v ts an tnvariant measure
for Q. If oo ts attracting or superatiracting then the nicasure-preserving system (J,Q, V)
is strongly mizing, hence ergodic. If co is neutral then (J,Q,v) is a factor of an irrational
rotation of thve circle, hence is ergodic and has entropy zero. Consequently, v and u are

mutually singular unless Q ts a polynomial.

A measure-preserving system (2,7, o) is said to be a factor of another m.p.s.
(1, T1, 1) if there is a measurable map p: Q1 — 1o onto No\N, with po(N) = 0, such
that po = p1op~! and poTy = Tyop. The entropy of (o, To, ko) is < that of (4, Ty, 1),

and if (4,71, 1) is ergodic then so is (R, To, o). Since irrational rotations of the circle
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are ergodic and have entropy zero, the same is true of their factors.

The fact that v is strongly mixing in the attracting and superattracting cases implies
that v is ergodic. By Ljubich’s theorem, p is ergodic, and by Lopes’ theorem u # v unless
@ is a polynomial. Since ergodic invariant measures are either equal or mutually singular,

it follows that 1 and v are mutually singular unless @ is a polynomial.

Let h(Q) be the entropy of the m.p.s. (J,Q,v). Ljubich’s theorem and Th. 1 imply
that 2(Q) < logd unless Q is a polynomial, in which case k£(Q) = logd.

THEOREM 2: Assume that oo is attracting or superattracting. (a) Then h(Q) > log(d —
d.). (b) If all the branch points of Q= are contained in the connected component of ¥
containing oo, then h(Q) > log(d — d.), provided d. > 1.

Let £ = {1,2,...,d}N be the set of all sequences from the alphabet {1,2,...,d}, and
let o: ¥ — X be the forward shift.

THEOREM 3: Assume that oo ts attracting or superattracting and that all the branch
points of Q! are contained in the connected component of ¥ containing co. Then there is
a homeomorphism n: X — J such that oo = Q o« and such that the induced measure T
on L defined by Von~! = v is a Gibbs state. Consequently, the measure-preserving system

(J,Q,v) is isomorphic to a Bernoulli shift.

REMARKS: (1) The existence of the topological conjugacy 7 under the hypotheses of
Th. 3 is known, at least for polynomial mappings Q. (See [1], sec. 9; however, the proof
for the case degree (Q) > 2 has an error.) The main point (and by far the more difficult)
is that ¥ is a Gibbs state. See [2], Th. 1.2 for the definition of a Gibbs state. See [2],
Th. 1.25 for the implication Gibbs = Bernoulli.

(2) The situation described in the hypothesis of Th. 3 is very common. If Qo(z2) is
any rational mapping for which oo is a superattracting fixed point then Q,(2) 2 Qo(2) +a
satisfies the hypotheses of Th. 3 for all |a| > a. (here a, may depend on Qo). See [1],

sec. 9 for the argument in the polynomial case (the rational case is essentially the same).

(3) That v is a Gibbs state implies considerably more than the Bernoulli property —

see [2], [6], [7]. For example, if f: J — R is a Holder continuous function not of the form
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f = (constant) +g — g o @ then the sequence Sp,f =f+ foQ+ foQ%+...+ fo Q™!
obeys the central limit theorem, law of iterated logarithm, large deviations theorems, etc.,

under v.

(4) That the maximum entropy measure x is a Gibbs state follows from the Gibbs

variational principle ([2], Th. 1.22). No such trivial proof can be given for v.

(5) I conjecture that the main point of Th. 3, that v is a Gibbs state, remains true
when the hypothesis concerning the branch points is weakened to expansivity of Q on J,

but may fail when J contains parabolic fixed points.

Our approach to all of the results concerning v stated above is by way of a probabilistic
characterization of the measure. Let Z; be a standard Brownian motion process on C
started at co (sec. 3 below). Then Z; enters J in finite time with probability zero (if J has
capacity zero) or one (if J has positive capacity), and in the latter case v is the distribution
of the first entrance point ([12], ch. 3, Th. 4.12). More important, Q(Z;) is also (after a
reparametrization of time) a Brownian motion process started at co. Thus Q acts not only
on C, but on the space of Brownian paths in C. This observation is the key to our results.
To further emphasize the usefulness of Brownian paths, we shall give purely probabilistic

proofs of (most of) Brolin’s theorem (sec. 5) and Lopes’ theorem (sec. 7); these are shorter,

simpler, and (we believe) more appealing to the intuition than the originals.

Some familiarity with the basic properties of Brownian motion — path continuity,
the strong Markov property, rotational symmetry — is assumed. See [4]; [5], secs. 1.1-1.7.
The one deep property of Brownian motion that is needed, Lévy’s conformal invariance
theorem, is described in sec. 3. For the convenience of the reader, some basic results of
complex analytic dynamics are given in sec. 2. Th. 1 is proved in secs. 4 and 9, Th. 2 in

sec. 6, and Th. 3 in sec. 8.

ACKNOWLEDGMENTS. Thanks to Allen Weitsman and Burgess Davis for enlightenment
on several points, and to David Drasin for convincing me that there are not inherent

inconsistencies in mathematics.



NOTE: Since writing this paper the author has learned that Theorem 3 has also been
proved by Makarov and Volberg by a similar method, in an as yet unpublished paper “On

the harmonic measure of discontinuous fractals”.

2. Preliminaries: Complex Analytic Dynamics

The most interesting cases of Th. 1 are when oo is an attractive or superattracting
fixed point of Q. We shall assume tn secs. 2-8 that oo is an attracting or superattracting
fized point. The alternative case, in which oo is a non-attractive (neutral) fixed point, will
be considered separately in sec. 9. If oo is attracting or superattracting then there is a

neighborhood N of oo in C such that Q™(z) — oo as n — oo uniformly for z € N.

A normal family in a domain D is a set {f)} of functions meromorphic in D such that
any sequence f, has a subsequence that converges uniformly (with respect to the spherical
metric) on compact subsets of D. By the Arzela-Ascoli theorem this is equivalent to the
statement that {f»} is equicontinuous in D. If a set of analytic functions in D is uniformly
bounded on every compact subset of D) then it must be a normal family, because the
Cauchy integral formula implies that the derivatives are uniformly bounded on compact

subsets, and hence the set of functions is equicontinuous.

A set {f,} of meromorphic functions is said to be normal at a point z € C if it
is normal in some neighborhood of z. The Fatou set ¥ of Q(z) is defined [1] to be the
set of z € C at which {Q™},>0 is normal. The Fatou set is clearly open, and co € 7
because Q™ — oo uniformly in a neighborhood of co. The Julia set J is defined to be the

complement of ¥; it is evidently compact. Clearly, Q(¥) = 7 and Q(J) = J.
PROPOSITION 1: J # Q.

PROOF: If J = O then {Q"},>0 would be a normal family on C. Now Q" — oo
uniformly in a neighborhood of co; consequently, if Q™ converges uniformly on C then
the limit function, being meromorphic, must be identically co. But it is impossible for

Q™ — oo uniformly on C, because each Q": C — C is surjective. O

NOTE: see [1] for an argument that is valid even when oo is not an attracting or super-

attracting fixed point.



Define #, to be the path-connected component of ¥ that contains oo, i.e., the set of

z € ¥ such that there is a continuous path from oo to z that lies entirely in 7.

PROPOSITION 2: If z € # then Q(2) € Fo and lim Q™(z) = co. Furthermore, this

convergence 1s uniform on compact subsets of Foo.

PROOF: Let «4(t), 0 <t < 1, be a continuous path in ¥ such that 7(0) = oo and 4(1) = =.
Then Q(~(t)) is a continuous path in ¥ (because ¥ and J are Q-invariant) such that
QR(7(0)) = oo and Q(v(t)) = Q(2); hence Q(z) € #». Since {Q"}n>1 is normal in 7,
every subsequence of Q™ has a subsequence which converges uniformly in a neighborhood
of ~4([0,1]). But Q"(¢) — oo uniformly for ¢ in a neighborhood of oo, hence for ¢ in
7([0, €]) for some € > 0. Thus any subsequence Q™* which converges uniformly on ([0, 1])

must in fact converge to oo, since the limit function must be meromorphic. It follows that
QR"™(2) — oo.

For each C < oo sufficiently large, if |2| > C then |Q(2)| > C. For each z € 7, there
is an integer n > 1 and a neighborhood U of 2z such that Q™(U) C {¢: |¢| > C}. It follows

that Q™ — oo uniformly on compact subsets of F. O

For each n > 1 the inverse function of Q™ is multivalued, with branch points contained

in Gy, where

So={z€C: (dQ/dz) =0} U {z € C: Q(2) = oo},
n="{J @™ (o).

m=0

U @"(%0)

n=0

Let g+

The branches of the inverse function will be denoted by @; ™, ¢ = 1,2,...,d". Each Q"

is a (single-valued) analytic function in any simply connected domain disjoint from §,.

Consider the set G4 N Foo. If € € Go is such that Q™ (&) € F for some m > 0 then
limp—oo Q™(€) = oo, by Prop. 2; consequently, the only possible accumulation point of
G+ N F is co. It follows that each point of 7o\ G+ has a simply connected neighborhood

disjoint from §G.



PROPOSITION 3: If Q is a polynomial then Q! (%) = Foo.

PROOF: By Prop. 2, Q(F) C 7w, so it suffices to show that Q~1(Fw) C Fo. Let
2z € Fo\{oo}. There is a continuous path 4(t), 0 < t < 1, from co to z such that
Y(t) € Foo\ G+ for every t € (0,1). This is because Foo N §+ has no accumulation points in

Foo except oo.

If deg (Q) = d then oo is a d-fold root of Q(&) = &, and locally Q(&) acts like (const)
x &2, Thus Q~1(4[0,1]) consists of d distinct continuous paths, each beginning at co and
ending at one of the d points in Q71(z). Each of these paths lies entirely in 7, since

7[0,1] C F. By definition each of the endpoints lies in 7. O

PROPOSITION 4: If @ = {Q;"}n,i 15 a collection of certain branches of Q~™ such
that each Q7™ € Q 1is single-valued and meromorphic in a domain U disjoint from a

netghborhood of co then Q s a normal family in U.

PROOF: Since oo is an attracting or superattracting fixed point, there exists C < oo
such that if |z| > C then |Q(z)| > |z|- Since U is disjoint from a neighborhood of oo,
[e¢]

U @~"(U) is disjoint from a neighborhood of co. Hence, Q is uniformly bounded on ¥.0J

n=0

Recall that if 2 € #,\ §+ then z has a simply connected neighborhood containing no
branch points of any Q~". Therefore, by Prop. 4, the collection {Q;",1 <7< d", n > 1}

of all branches is a normal family at z.

PROPOSITION 5: Let Q‘T’:"", k > 1, be a sequence of branches of Q— ", where ny — oo,
each of which is single-valued and meromorphic tn U, a connected open subset of Fo. If
Qi_k'”‘ converges untformly on compact subsets of U then the limit is a constant function,

and the constant s an element of the Julia set J.

PROOF: Let f = limQ;’: "k: then f is a meromorphic function in Y. Suppose that
¢ = f(z) € 7 for some z € U, z # oo. By definition of ¥, {Q"} would then be a normal
family at ¢, and consequently would be equicontinuous in a neighborhood of ¢. Since
Q;.**(2) — € as k — oo, equicontinuity would imply that Q" (£) — z as k — co. But this

is impossible, because by Prop. 2, @™ — oo uniformly on compact subsets of 7,,. This
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proves that f(U\{oo}) N F =, so f(U\{eo}) C J.

Next, suppose that f is not constant on U. Then f(U\{oco}) is an open set, by the
open mapping theorem for analytic functions. We will show that this is impossible by

showing that every point of J is a boundary point of 7.

Let ¢ € J; then for any open neighborhood N of ¢, {Q"}.>0 is not normal in N,
by definition of J. Thus {Q@"}.>0 is not uniformly bounded in N. Since F contains a
neighborhood of oo it follows that Q"(z) € # for some z € N and some n > 0. But
Q~"(F) = ¥, s0 z € ¥. Thus every neighborhood of ¢ intersects 7. O

PROPOSITION 6: Let T be a simple closed curve in C that completely encloses J. If «

1s a continuous path from oo to a point of J then v intersects Q—"(T') for each n > 0.

PROOF: Consider the path Q™ o 4. This is a continuous path that starts at co and
terminates at a point of J. Consequently, it must intersect T, since every continuous path

from oo to J must cross T. It follows that -y intersects Q—"(T). O

PROPOSITION 7: Let T be a simple closed curve in C that completely encloses J. If y(t),
0 <t < i« 15 a continuous path that starts at 4(0) = oo and intersects Q~"(T) for each
n > 0 then ~y(t) € J for some t € [0,1.].

PROOF: Let 2, € @ ™(T')N % for n > 0. Then as n — oo, distance (z,,J) — 0, because
{z € Fw: distance (z,J) > €} is a compact subset of F, on which Q™ — co uniformly, by

Prop. 2.

By hypothesis, 7([0,2.]) N Q~"(T') # @ V n > 0, so we can choose z, € 7([0,t.]) N
Q~™(T'). By the preceding paragraph, distance (z,,J) — 0 as n — oo. Since J is
compact, there is a subsequence z of z, such that zx — z € J. But 4[0,¢.] is closed, so

z € 7([0,t.]). O

If oo is a fixed point of @ = P;/P, then near oo the action of Q is close to that of
a monomial with degree = degree (P;) — degree (P,;). A useful way of formulating this

statement is as follows.

PROPOSITION 8: There is a neighborhood U of oo in C and a conformal bijection
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p: {z:]z| > r} — U for some r > 1 such that p(oo) = oo and

(a) if oo is superattracting then Q(p(2)) = p(az?=%) for every z € U, where a # 0 is a

constant; and

(b) if co is attracting then Q(p(2)) = ap(2) for every z € U, where a is a constant such
that |o] > 1.

See [1], sec. 3, Th. 3.3-3.4.

3. Conformal Invariance of Brownian Motion

Let D be an open subset of C with smooth boundary D and let f be an analytic
function defined in a neighborhood of D. If Z; is a Brownian motion in C started at z € D
and if T = inf{¢t > 0: Z; € 8D} then (f(Z:))o<i<r Is, after a time change, a Brownian
motion started at f(z) and run until it exists f(D). This theorem is due to Lévy; cf. [4] or
[5]. Lévy’s theorem is clearly “local” in nature, and hence may be generalized to Brownian

motion and analytic functions on an arbitrary Riemann surface.

The extended complex plane C = C U {00} may be identified with the unit sphere
in R® by the operation of stereographic projection. Wifh this identification C inherits a
(Riemannian) metric from the Euclidean metric on the unit sphere in R®, and thus also
a Laplace-Beltrami operator Agphere- Brownian motion on the Riemann sphere C is the
diffusion process with generator Agphere; since Agphere is a uniformly elliptic operator, the
existence of this diffusion process follows from the results of [10], secs. 4.1-4.3. Thus we

can talk about “Brownian motion on C started at oo”.

The relationship between planar Brownian motion and spherical Brownian motion is
as follows. There is a C* function p > 0 on C such that Agphere = pA, where A is the usual
Laplacian on R? (this follows from the fact that stereographic projection is a conformal
mapping). Consequently, spherical Brownian motion on C started at any z € C is just a
time changed planar Brownian motion started at z, the instantaneous time dilation factor

being the current value of p.

Now let f be a (possibly multivalued) function that admits an analytic continuation

along every continuous path in E\F, where F is a finite set. If Z; is a (spherical) Brownian
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motion started at z € C\F, then f(Z,(;)) is a (spherical) Brownian motion started at f(2),

where
r(t) = inf{r: /0 16£(20)2ds > £} (3.1)

and |6 f(£)] is the factor by which f: C — C expands (spherical) distances locally at ¢.
This follows from the local form of Lévy’s theorem together with the fact that spherical

Brownian motion is a time-changed planar Brownian motion.

These results carry over to arbitrary Riemann surfaces. Let M and N be compact
Riemann surfaces and let f: M — N be analytic. Brownian motion on M (or N) is the
strong Markov process whose infinitesimal generator is the Laplace-Beltrami operator on
M (or N); its existence follows from [10], sec. 4.1-4.3. If Z; is a Brownian motion on M
started at z then f(Z,(;)) is a Brownian motion on N started at f(z), where 7(t) is given

by (3.1) and |6 f(£)| is the factor by which f expands distances locally at €.

4. Brownian Motion in 7

Let Z;, t > 0, be a Brownian motion process in C started at Zg = z under the
probability measures P?, z € C. Then Z; = Q(Zr(), with 7(t) given by (3.1) with f = Q,

is a Brownian motion started at Q(z). Recall that Q(o0) = 0.

Spherical Brownian motion Z; is recurrent but does not hit individual points. In other
words, (a) for any nonempty, open set U C C, any z € C, and any ¢, < oo, P¥{Z, €U
for some ¢ > t,} = 1; and (b) for any z, 2’ € C, P*{Z; = 2’ for some t > 0} = 0. These

statements follow from the corresponding facts for planar Brownian motion ([5],sec 1.7).

Now consider the time change (3.1) with f = Q. Since @ is a rational function there
are only finitely many z € C where |6Q(2)| = 0. Also, |6Q| is bounded since C is compact.
Since Brownian motion doesn’t hit individual points, it follows that [, |6Q(Z,)|ds is strictly
increasing in r and converges to oo as r — o0, a.s. (P?). Thus, with PZ-probability one,

t — 7(t) is 2 homeomorphism of [0,c0). This proves

PROPOSITION 9: @Q tnduces a measure-preserving transformation on the space of Brow-
nian paths started at oo, given by Zy — Q(Z,(1)).

In other words, if Qo is the set of continuous C-valued paths started at oo, G the
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Borel o-algebra on {1, and P the Wiener measure on (), §), then the induced trans-

formation Q: (o, ) — (N0, §) is measure-preserving.

Define a stopping time T by
T=inf{t >0: Z, € J}.

On {T = oo} the path Z; avoids J forever; on {T' < oo} it enters J in finite time. Since
t — 7(t) is a homeomorphism of [0,00) (with P*-prob. 1) the events {T' < oo} and
{r=Y(T) < oo} coincide (a.s. (P*)), and

T_I(T) = inf{t: Q(Zr(t)) € J}’

because ¥ and J are Q-invariant sets. Therefore, the distributions of Zr and Q(Zr) are
the same under P*° (we have not yet shown that P®°{T < oo} = 1, so these distributions

may be defective). Thus,
COROLLARY 1: If P®{T < oo} =1 then v is a Q-invariant probability measure on J.

PROPOSITION 10: If oo is an attracting or superattracting fized point of Q then P {T <
oo} =1.

The proof will use the existence of a local conjugacy with a monomial (Prop. 8), the

recurrence of spherical Brownian motion, and the following simple first-passage probability.

LEMMA 1: Let Z; be a Brownian motion in R? started at Zo = z under PZ, where
|z2| =r > 0. Let T = inf{t: |Z:| = R}. If Ry <r < Ry then
log(r/R1)
p* = e/
{TR2 < TRI} lOg(Rz/Rl)
See [4], sec. 2 or [5], sec. 1.7 for the proof.

PROOF of Prop. 10: Suppose first that ¥ # ¥, i.e., that ¥ is not connected. Since 7
is open, there exists a nonempty open set U C F\%,. Let 7y = inf{t: Z; € U}. By the
recurrence of spherical Brownian motion, P®°{ryy < co} = 1. The path Z;, 0 <t < 1y is

continuous, starts in 7, and ends in U, so it must pass through 8%, C J. Consequently

T < 1y, and so P®°{T < oo} = 1.
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Nezxt, assume that oo s a superatiracting fized point of Q. By Prop. 8 there is a
neighborhood U of oo in C and a conformal homeomorphism : {|z| > r} — U such that
©(o0) = 0o and

Qp(2)) = plaz"%) V2| >r,

where a is a nonzero constant. Choose By < Ro < R_1 < R_3 < --- satisfying R;_;, =
|| RZ~% for i <1 and R; > r; define '

Ci={z: |z|=Ri}, 1 <1;

T'o = (Co);
In= Q—n(ro) Vnel

Observe that I'_, = p(C_,) Vn >0 and ¢(C1) =T'1 NU, but in general o(C1) #I';. By
Prop. 7, any continuous path v(t), 0 < ¢t < ¢,, which starts at y(0) = co and intersects each
T',, must intersect J. Our objective will be to show that with probability one, a Brownian

path started at oo will hit all of the sets I',, n > 0, in a finite time interval.

Let ~(t), 0 < t < t., be a continuous path with 4(0) € I'n41 and ~(t.) € Tp_i for
some k > 1. We will argue that v must hit T',. If n < 0 this is because Iy, = (Cy,)
V m <0, p is a homeomorphism, and C,, are concentric circles. If » > 0 then Q" (y(¢))
is a continuous path from I'; to T'_g. Since 'y N U = p(C4), the sets I'y and T'_j are
separated by I'o = ¢(Co); hence Q™ (~(t)) must hit T'o, and so «(¢) must hit T',. Thus,
for a Brownian path that reaches I'y,, n > 1, to return to I'_;, it must hit I',,_;, then

I'y_2,..., then I'g, and finally I"_;.

Now let Z; be a Brownian motion started at z € C under the probability measure P=.
Fix z € T'p, n > 0; let £ = Q"(2) and ¢ = p~!(&); then by the conformal invariance of

1

Brownian motion (since Q™ and ¢! are analytic),

P#*{Z; hits T ;1 before I'y_;}
>P?{Z,; hits T'p4+1 before Q7 "(I'_;)}
=P*%{Z, hits T'; before T'_;}

=P5{Zt hits Cl before C_l}

_log(R1/Ro) _ _d—dys > 2/3.
log(R2/Ry) d—d.+1
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(That (d — d.)/(d — d« + 1) > 2/3 follows from the fact that co is superattracting. In the
attracting case, (d — d.)/(d — d« +1) = 1/2 and so the proof breaks down.)

Consider Brownian motion started at co. Since I'g bounds two nonempty open disks
in C, the recurrence of Brownian motion implies that it will reach I'o in finite time. The
same argument shows that it will then return to I'_; in finite time. But there is positive
probability that, after reaching I'g for the first time, the path will visit all of the sets
Ty, n > 1, before returning to I'_;. This is because upon reaching any I',, the path has
chance at least 2/3 of moving up to I',4; before returning to I',_;. (For a formal proof,
let X,,, m > 0, be the indices of successive sets T',, visited by the path after the first visit
to I'o. Then 2=%=, m > 0 is a supermartingale with 2~=%° = 2° = 1, so by the maximal
inequality for positive supermartingales,

P°°{Z; returns to I'_; before visiting all T, n > 0}

=P®{27%m= = 2 for some m > 0}

<1/2))
But if Z; visits all of the sets I',, n > 0, before returning to I'_;, then it must do
so in a finite time interval, because Z; will return to I'_; in finite time. This proves
that P®°{T < oo} > 0. Now for any compact set K C C it is either the case that
P*{rg < 00} =1V z€ Cor P*{rk < oo} = 0V z € C\K ([12], sec. 2.2), where
tx = inf{t: Z; € K}. Therefore,

P*{T < oo} =1.
Finally, assume that oo ts an attracting fized point of @ and ¥ = F». By Prop. 8

there is a neighborhood U of co in C and a conformal homeomorphism ¢: {|z| > R} — U

such that p(0o0) = oo and for some a, |a| > 1,
Qp(2)) = p(az) V|z|>r.
Choose R > r, and define
C_n={2: |z|=|o|" 'R}, n>-1;

To = p(Co);
T,=Q ") Vnel
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As in the superattracting case, I'_, = p(C_,) V n > 0 and ¢(C;) = I'1 N U. Also,
©(C1) # T'1, because z — az is a 1-to-1 mapping of C; onto Cp but z — Q(2) is a d-to-1
mapping of T'; onto I'g, and we have assumed that d > 2. By Prop. 7 applied to Q* for
any k > 1, any continuous path ~4(t), 0 < ¢t < t., which starts at 4(0) = co and intersects

each I'yk, n > 1, must intersect J.

We claim that there is an integer k¥ > 1 and a constant p > 1/2 such that
P#{Z, hits T'ax, before o} > pV z € I'k.

Here is the proof. The function @ maps I'c onto I'_; bijectively, but maps @—1(T'_;) d-to-1
onto I';; hence Q~!(I'_;)\l'o contains a closed curve A. Since Q= 1(T'_;) € Q~*(I'_j) for
all k > 1, A C Q~*(T'_). Since # = Fw, there is a path § in 7 from I'y to A. Since
the sets Iy accumulate at J as k — oo, for all k sufficiently large I';, will not intersect g.
Now from any point z € T'x there is a continuous path from z to 'y that does not intersect
T'2k; consequently, for each z € T'x there is a continuous path from z to A that does not
intersect I'o U T'zx (just follow a path from z almost to T'g, then move to § without hitting

[ or Tk, then follow B to A). It follows by routine arguments that
P#{Z; hits A before ToUT2r} >0 V 2z € Tg;
P?{Z, hits T, before o} >0 V z€ A;
=>P?{Z; hits T3 before T} >0 Vz € A.

The conformal invariance of Brownian motion implies that for any z € Tk, £ = Q%%(2),

¢ = ¢_1(£)’
P*{Z, hits T3, before Q~2¥(Q?*(T,))}

=P*{Z; hits Ty before T'_3;}
=P*{Z; hits Cy before C_zr}
=1/2.

Hence,
1/2 = P*{Z; hits Q~2*(Q2*(T¢)) before I'z;}

> P?#{Z; hits T'o before I'y}
+ P*{Z; hits A before I'yx and I'yx before I'o}
> P?#{Z, hits T before I'z;}.
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Since P#{Z; hits I'¢ before I'sx} is continuous in z (in fact, it is harmonic) and since T is

compact, this proves the claim.
It now follows that for any n > 1, 2 € Tpk, £ = Q(*~1k(2),
P?{Z; hits T'(n11)x before I'(,_1)x}
>P*{Z, hits T's; before T'o} >p > 1/2.

The same argument as was used in the superattracting case now shows that P>*{T <
oo} > 0, and therefore
P*{T < o0} =1.

COROLLARY 1: If oo is an attracting or superatiracting fized point of Q then

P*{T<o}=1 VzeC.

PROOF: If K is any compact subset of C and 7x = inf{t: Z; € K} then either P*{rg <
o} =1Vz€Cor P*{rxk < oo} =0V z ¢ K ([12], Ch. 2, Prop. 2.10). Since Brownian
motion started at co cannot reach J without going through some intermediate points of
¥, and since P®°{T < oo} = 1, it follows that PZ{T < oo} = 1 for some, and therefore
all, z € C. O

PROPOSITION 11: If oo ts superattracting or attracting then the measure-preserving
system (J,Q,v) is strongly mizing.

REMARK: If @ is a polynomial or if J is totally disconnected then (J, @, v) is Bernoulli,

which is considerably stronger than strong mixing. See Th. 3 and sec. 1, remark (4).

PROOF: Let Z; be a Brownian motion started at oo under P*°. Define processes Zt(n) ,
n >0, by
z{" = Q"(Z;, ), t=>0,

where 7,(t) is given by (3.1) with f = Q™. Let
T, = inf{t: z{™ e J}.
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To prove the proposition it suffices to show that for all continuous functions f, g: J — R,
Jlim B©f(25)0(21,) = B 1(27)E®g(21). (41)

We may assume that f, g: C — R are continuous on all of C.

Let T be a simple, closed curve in C that completely encloses J, and define T',, =
Q~™T). If o, = inf{t: Z; € I'yn} then limy, oo 0m = T (see Prop. 6). Consequently,
limy,— 00 9(Zs,,) = g(Zr); since f and g are bounded on C it follows that to prove (4.1) it

suffices to show that for each m > 1,

lim E®f(Z25)9(Zs,.) = E® f(Zr)E®g(Z,.).

n—00
Now T > oy, so by the strong Markov property
E®(f(25,)| 20, = 2) = EX(f(Q"(21))|Zo,, = 2) = E*f(Q" (1))
for all z € T,,. By the conformal invariance of Brownian motion,
E*({(Q™(2r))) = EV" ¥ f(2xr).

But as n — 00, Q™(z) — oo uniformly for z € T'y,. Since E<f (Zr) is a continuous function

of ¢ € C, it follows that
Jim E(£(23)|2,,.) = E*f(Zr).
The functions f and g are bounded, so by the dominated convergence theorem,
lim E°f(2{)g(Z..,)
= lim E®(E®(f(2{))|20,.))9(Zs,)

= E*(E*f(Zr))9(Z.,)
= E*f(Z1)E*¢(Z,,,) -

NOTE: A similar argument shows that the stationary sequence (Zt("))nzo of random

paths is strongly mixing.
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In view of [12], ch. 3, Th. 4.12, Props. 10 and 11 imply all of Th. 1 except for the case

where oo is a neutral fixed point. This case will be taken up in sec. 9.

5. Polynomial Mappings and Brolin’s Theorem

In this section we assume that Q(z) is a polynomial of degree d > 2. Thus, oo is a
superattracting fixed point, so Brownian motion started at oo reaches J in finite time and

the hitting distribution v is an invariant probability distribution (Prop. 8-9).

The property that distinguishes polynomials @ among the rational mappings that fix
oo is that z = co is the only solution of Q(2) = co. Therefore, all d branches Q; 1of Q-1
satisfy Q; 1(00) = co. Define F; = Q,-—1 o @ (for some indexing of the branches Qi—l);
then each F; is single-valued and analytic in a neighborhood of co. (In fact, by Prop. 2
the functions Fy, Fy,...,Fy are analytically conjugate to the d rotations through angles
2nj/d, j = 0,1,...,d, in some neighborhood of co.) Moreover, each F; has an analytic

continuation along every path in %, \{z € C: Q'(2) = 0} (but F; may be multi-valued).

Let (Z;)o<t<T be a Brownian motion started at oo and terminated at J. Define the
trace Z of the Brownian motion (Zt)ogth to be the equivalence class of all continuous
paths that can be obtained from (Z;)o<t<T by a reparametrization of time. Observe that
each of Fy(Z), 1 = 1,2,...,d is a Brownian trace, as is Q(Z), by conformal invariance.
(NOTE: the original parametrization (Zt)osth can be recovered from Z by a standard

formula for the quadratic variation of a Brownian path.)

PROPOSITION 12: Given the trace Q(Z), the conditional distribution of Z ts the uniform
distribution on Fy(Z), F2(Z),...,Fi(Z2).

PROOF: Generate a trace Z by choosing one of F} (2),...,F4(Z) at random. Since each
of F;(Z) is a Brownian trace, so is Z; thus Z has the same distribution as Z. Furthermore,
Q(2) = Q(Z), since F; = Q' o Q. Therefore, the joint distribution of (Z,Q(Z)) is the
same as that of (Z,Q(Z)). But the conditional distribution of Z given Q(Z) is clearly
uniform on Fy(Z),...,Fq(Z), hence uniform on Fl(Z), e ,Fd(Z). O

COROLLARY 3: Given Q(Zr), the conditional distribution of Zr is the uniform distri-
bution on the d preimages of Q(Zr).
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This is an immediate consequence of Prop. 12, since the o-algebra generated by Q(Zr)

is contained in the o-algebra generated by Q(Z).

There is an easy, direct proof that uZ — v for each z € 7,,\{oo} based on Prop. 12.
(Recall that Brolin’s theorem states that 42z — v for all but at most one z € C.) Here is

a sketch.

First, consider z € 7, 2 # 00, such that z is not a branch point of any @~ ", n > 1.
Let T be a simple closed curve in #,, which separates oo from J, such that z € I’ and such
that no point of I' is a branch point of any @~". Such a curve I exists because the branch

points can only accumulate at oo in Fx (sec. 2). Let Q; ", ¢ =1,...,d" be the distinct
dn
branches of @~ " in a neighborhood of I'; then @ ™(T') = |J Q; "(T). Observe that each
1=1
Q;"(T) contains ezactly one point of @~"(2), so
pE(Q7™(T)) =1/a" Vi=12,...,d". (5.1)
The curve I' may be covered by two simply connected neighborhoods contained in %,

neither containing branch points of any Q™. By Prop. 3, the collection of all branches

of all @~", n > 1, is a normal family in each of the two neighborhoods. Consequently, by

Prop. 5,
lim max distance (§,J) =0 and (5.2)
n—oo ¢€Q—n(T)
. . —-n —
nl:rr;o (Jax diameter (Q;"(T)) = 0. (5.3)

Now consider Brownian motion (Z:)o<i<7 started at oo and terminated at J. By
Prop. 7, the path Z; must intersect each @~"(T') before reaching J. Let 0, = inf{t: Z; €
Q@ "(T')} < T; since Z; is continuous, (5.2) implies that 0, — T and Z,, — Zr a.s. as
n — oo. It follows that the distribution of Z, converges weakly to v as n — co. Now

Prop. 12 implies that
pP>{Z,, € Q;"(T)} =1/d" Vi=1,2,...,d", (5.4)

because for each ¢ exactly one of the d" paths mapped into Q™(Z) by Q™ first hits Q—"(T)
in @;"(T). But (5.1) and (5.4) together with (5.3) imply that for large n, uZ and the

distribution of Z,,_ are close in the weak topology. Therefore,

weak lim p2 =v. (5.5)

n—oo
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Next, consider z € F,\{oo} such that z is a branch point of some Q~", n > 1.
Recall (Prop. 3) that if @ is a polynomial then @~ (%x) = Fwo; hence, for each m > 1,
Q@ ™(z) C Fo. For large m > 1 all of the points of Q™ (z) must be near J, by Prop. 2,
so if m is sufficiently large Q™ (z) contains no branch points of any Q~", n > 1, because
the branch points can only accumulate at co in #,,. Consequently, for each { € Q~™(z),
lims—oo 4§ = v by (5.5). But pZ, . is a weighted average of uf, ¢ € Q~™(z). Therefore,

lim, oo #Z2 = v.

With just a litile more work one can show that for any nonexceptional 2;,2; € C (an
exceptional point being a d-fold root of Q(2) = z) the measures x2' and u?? become close
in the weak topology as n — co. Since this argument is carried out in [8], sec. 4, we shall
omit it. As there is at most one exceptional point of Q other than oo, this proves Brolin’s

theorem.

6. Entropy of the Equilibrium Distribution

In this section we assume that Q(z) = P;(z)/P2(z) where P; and P, are polynomials
of degrees d and d., d — d. > 1, and that oo is a superattracting or attracting fixed point.
Brownian motion started at oo reaches J in finite time, and the hitting distribution v (i.e.,

the equilibrium distribution) is an ergodic, invariant measure, by the results of sec. 4.

Since oo is a (d — d.)-fold root of Q(2) = z, there are (d — d.) distinct branches Q;!
of Q! that fix co. Define F; = Q,-_1 0Q,t=1,2,...,(d — d.); each F; is single-valued
and analytic in a neighborhood of oo, and F;(0c0) = co. Also, each F; has an analytic

continuation along each path in F,\{z € C: @Q'(z) =0 or Q(z) = oo}.

Let (Z;)o<t<T be a Brownian motion started at co and terminated at J. Define the
Brownian trace Z as in section 5, and observe that each of F;(Z), ¢ =1,2,...,(d — d.) is

a Brownian trace.

PROPOSITION 13: Given the trace Q(Z), the conditional distribution of Z is the uniform
distribution on Fy(Z), F3(Z),...,Fi_q4,(Z).

PROOF: Same as for prop. 12. O
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Let h(Q) be the entropy of the measure-preserving system (J, @, v).
PROPOSITION 14: h(Q) > log(d — d.).

PROOF: It suffices to prove that for any € > 0 there exists a finite Borel partition P of
J such that £(P,Q) > (1 — €) log(d — d.). We will show that this inequality holds for any
partition P of sufficiently small diameter. (NOTE: The notation for entropy is as in [11],
ch. 5).

Choose € > 0 small. There exists § > 0 so small that if diam (P) < § then
v{z: cardinality (Q7'(2) N G) > 2, some G€ P} <« (6.1)

(multiple roots £ of Q(§) = 2z are counted according to multiplicity). This follows from

the fact that, with probability one, Zr has d distinct preimages under Q1.
According to a standard result ([11], ch. 5, Prop. 2.12), k(P,Q) = H(P| \V @—"(P)).
n=1

o0
Now, conditioning on \/ Q~"(P) is the same as conditioning on the sequence of sets G;
n=1

in P containing Q(Zr), Q%*(Zr),.... Clearly, Q(Zr) determines this sequence, so the o-
algebra § generated by the Brownian trace Q(Z) contains \/ Q@~"(P). It follows ([11],
n=1

ch. 5, Prop. 2.5 (2)) that

oo

h(P,Q)=H(P| \/ Q7"(P)) > H(P|G).

n=1

By the result of the preceding paragraph, the probability that Q(Zr) has more than one
preimage (under @ ~!) in any set of P is < €. Moreover, by Prop. 13, given G the conditional
distribution of Zr is the uniform distribution on d — d, of the d points in Q~1(Q(Zr)).

Therefore,

H(P|G)=E ) _ 1{Zr € G}log P(Zr € G|G)~*
GeP
> (1-¢)log(d — d.). O

A variant of this argument will be used to prove Th. 2 (b) in sec. 8 below.
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7. Rational Mappings and Lopes’ Theorem

Let Q(z) = P1(2)/P2(z) where Py, P> have no nontrivial common factors, and assume
that Q(o0) = oo € J. Lopes’ theorem states that if v = pu, where p is the maximum
entropy invariant measure of @, then @ is a polynomial. In this section we shall present
a proof of Lopes’ theorem under the additional hypothesis that oo is an attracting or
superattracting fixed point of Q. The (less interesting) case in which oo is a neutral fixed
point will be treated separately in sec. 9 (by showing that (J;Q,v) is ergodic and has

entropy zero).

The main step in the proof will be to show that if v = p then |P.| is constant on
J. (Lopes [9] also does this, but his proof involves some laborious calculations.) Our
argument will be based on a simple fact about harmonic measure which may be of some
interest in its own right. Let K be a compact subset of C such that co € K and such that
K has positive capacity, i.e., Brownian motion started at oo will hit K with probability
one. Then Brownian motion started at any point of C will hit K with probability one. Let
7 = inf{t: Z; € K}; for £ € C define v¢(dz) = P¢{Z, € dz} (under P¢, Z; is a Brownian
motion started at £). Define v = vo,. NOTE: ve is the harmonic measure on K as seen

from €.

PROPOSITION 15: Let £1,&2,...,&n € C (the same point may be listed more than once).
A necessary and sufficient condstion for v =n=1! Z v, is that | H (z—&:)| be a.e. constant

i=1 i=1
for z € K, relative to v + ) vg;.

PROOF First we will show that if K C La = {z € C: |R(2)| = a}, where R(2) =
H (22— &) and 0 < a < oo, then v = n~! Z ve;. Let (Zt)o<i<o be Brownian motion

i=1
started at oo and stopped at o = inf{¢: |Zt| = a}, under P®. Define

7,5 = aZZt/|Zt|2, t>0,

i.e., Z; is the reflection of Z; in the circle of radius e centered at 0. Since reflection in a
circle is a conformal map (orientation-reversing), Z, is a time-changed Brownian motion
started at 0. With probability one, neither (Z:)o<:<s nor (—Z_t)o<t5,, hits a branch point
of R—1.
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The polynomial R(2) has an inverse function R~! with n distinct branches R 1.,
R defined in a neighborhood of co. Choose one of the n paths Ry (Zz),...,R; (Z:),
t > 0, at random (according to the uniform distribution on {1,2,...,n}) and call it Yy
if Yy = R7'(Z;), define Y; = R;'(Z;). Then (Yi)o<t<o is a time-changed Brownian
motion started at oo and stopped upon reaching L,. This follows from virtually the
same argument as that used in proving Prop. 12. Similarly, (Vt)ogs:r is a time-changed
Brownian motion started at Y and stopped upon reaching L,, where P°°{—}70 =¢}=n"1
for each + = 1,2,...,n (with mul'f,iple points §; counted accordingly). By construction,

Y, =Y ,; consequently, v = n~! El ve,.
1=

n
Next we will show that if v = n~! Y v, then |R(2)| is constant a.s. on K, w.r.t. v.

Suppose not; then there exists a > 0 su::l=1 1that
K, = Kn{z: |R(2)| > a} and
K_=Kn{z |R(z)| < a}
both have positive v~measure. Let Y;, Y3, 0, P™ be as in the previous paragraph, and

define
a = inf{t:Y; € K},

o =inf{t:Y; € K}.

=1

f— n
Observe that Y, has distribution v and Y has distribution n=! )~ v,,. We will show that

Pe{Y, €Ki} > P°{Yz € K.},

n
contradicting the assumption v = n—1 El ve,;.
1=

Note first that
a<o=>Y,€K,,

a<o=>YzcK_.

Hence
P*{Yo € K.} =P>®{o>aVa}+P°{@a>oc>a}
+ P®{Yo € Ky;o<aAa}
+ P{Yo € Ki;a<o<a},
and

P{Yg€ K;}=P*{Yg€ K+;@>0 > a}
+P®{Yz€ Ky;o0 < aAa}.
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On the event {0 < aAG} neither Y norY hits K before time o. But Y, = Y, so beginning
at time o each of Y, Y is a Brownian motion started at the same point Y, = Y,, and

hence by the strong Markov property
P*{Y,eK,; 0<aAna}=P°{Yz€K,;; 0 <aAd)}.

Consequently,

P>{Y, €K} - P*{Yz€ K;}
=P®{o>aVa}+P*{@a>c>o;Yg ¢ K}
+ P®{Y,€ Ky;@<o<a}.

We will show that the sum of the first two terms is strictly positive.

The region {z: |R(2)| > a} is a connected, open set, so there are continuous paths
from oo to K that do not hit {z: |R(z)| = a}. It follows that P®°{o > o} > 0. Suppose
that P*°{oc > a V@} = 0; then P*°{a@ > 0 > a} > 0. On the event {0 < &} the path
Y: goes from Y, to Y, without hitting K. Conditional on this event, there is positive
probability that Y; will approzimately retrace its path from o < t < 20, avoiding K and
landing, at time 20, at a point near Y o. Since the unconditional probability of {Yg € K -}
is positive, and since hitting probabilities are continuous functions of the initial point, it
follows that

P*(Vz € K_|§,)1{@> o} >0

(here G, is the o-algebra generated by {Z;ns, t > 0}, i.e., the “stopping field”). Thus,
Pe{a>0>a}>0=>P°{(Ygs€K_;a@>0>a}>0;

this proves that P®°{Y, € K;} > P*{Ys € K.}. This completes the proof that if

n
v=n"13)" vg, then |R(2)| is constant a.s. on K, w.r.t. v.
=1

Finally, suppose that |R(2)| = a a.e. (v + Zvg,;). Define K = KN L,. Then the
hitting distribution of K’ is the same as that of K, for each of the processes Y; and Yy,
because (v + Xvg, ) (K\K') = 0. But K’ C L,, so the hitting distribution of K’ is the same
for each of the processes ¥; and Y;. Thus v = n~! zn: ve,. O

=1
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Let R(z2) = [[(2— &) and L, = {z € C: |R(2)| = a}, where 0 < a < oo and
i
£1,€2,...,&, € é Then L, is the union of a finite number of simple closed curves

Lgl), cees L , each of which surrounds a bounded region of C in which |R| < a.

LEMMA 2: Let F be a rational function. If |[F(z)| = ¢ > 0 for infinitely many z € Lg),
then |F(z)| = ¢ for every z € LY.

PROOF: Take 25 € L such that |F(2)| = ¢ for infinitely many z in every neighborhood
of zp in Lt(j). There is a 1-1 conformal map © of the unit disk onto a neighborhood U of
2o such that ©(0) = zp and 1! (L.(,i)) consists of a finite number of line segments through
0, one of which is the real axis. Also, ¢ may be chosen so that |F o ()| = ¢ for infinitely
many ¢ € R. A routine argument now shows that the power series of i(log F o p — log ¢)
must have real coefficients. Consequently, |F(z)| = ¢ for every z in an open arc of LY
containing 2. But the same argument applies at the endpoints of this open arc; therefore,
the arc of L, on which |F| = ¢ may be extended indefinitely until it comes back on
itself. ]

The crucial fact about the maximum entropy measure p for the argument below is

that it is balanced, i.e.,

PROPOSITION 16: Let X be a random variable with distribution u, where p is the
mazimum entropy measure for @ on J. Let Y be a random variable such that, conditional

on X,Y is uniformly distributed on the d points in Q~1(X). ThenY has distribution u.

PROOF: Choose z € C such that uZ — u weakly as n — oo (recall Ljubich’s theorem).
Let Y, have distribution xZ and let X, = Q(Y,). Then X, has distribution pZ_, and,
conditional on Xy, Y, is uniformly distributed on the d points in @ ~1(X,) (this follows
from the definition of uZ and uZ_,). Consequently,\the random vector (X,,Y,) converges
in distribution to (X,Y’). Since Y, has distribution u2 and uZ — pu, it follows that Y has
distribution px. _ O

Assume for the remainder of this section that Q(z) = P1(z)/P2(z) where Py and P,
are relatively prime, with d = degree Py and d. = degree Py satisfyingd > d. +1 > 2,

25



and assume that p = v. We will show that this leads to a contradiction. Take P;(z) =

o

I1(z— &), and let v, v, be as in Prop. 15 for K = J.

1i=1
d‘
CLAIM 1: There ezists a > O such that |P2| = a a.e. (v+ > vg;).
1

PROOF: Let Z; be Brownian motion started at oo (under P*°) and run until the first
time T it hits J. Then Z7 has distribution v = p. Let Q7'(Z:), Q5 (Z:),...,Q7 " (Z:)
be the d paths that map into Z: by Q, listed so that Q;*(Zo) = &; for i = 1,2,...,d. and
Qi_l(Zo) = oo for i > d.. Choose one of the points Q7 (Z7),... Q7" (Zr) at random
and call it Y; then Prop. 16 implies that Y has distribution 4 = v. Choose one of
the points Q;*l_i_l(ZT), QZ,,1+2 (ZT),.--. ,Q;l(ZT) at random and call it W; then Prop. 13
- implies that W has distribution v = . Consequently, if one chooses one of the points

Q1Y (Zr), Q3 (Zr),...,Q7 (Zr) at random and calls it X, then X has distribution v.

If one chooses one of the paths Q7 *(Z:),...,Q7"(Z:) at random, the result is a Brow-
nian motion started at a random point in {£1, €2,..., 4.} and run until it hits J. (This
is because Z;, t > 0, doesn’t hit branch points of Q—1, and each branch of Q~! is confor-

de
mal except at branch points.) Consequently, the distribution of X is (d.)™! }_ v¢,. Thus

1=1
da
v = (d.)"! 3 vg,, so the claim follows from Prop. 15. (The constant a cannot be zero,
because |P2(;)| =0 only at z= £1,82,...,&4.,and & & J.) O

CLAIM 2: |Py(2)| = a for every z€ J.

PROOF: Let z € J and U be a neighborhood of z. There exists n > 1 such that
v(Q™(U)) > 0. (This follows from Montel’s theorem (cf. [1], sec. 5), which implies that
Un21 Q"(U) excludes at most two points of C.) Since v = u, it follows from Prop. 16
that v(U) > d="v(Q"(U)) > 0. Consequently, by Claim 1, there exists { € U such that
|P2(€)| = a. Therefore, since U is arbitrary, |Pz(2)| = a. O

Recall that L, = {2z € C: |Py(2)| = a} consists of a finite number of simple closed

DL,

curves L . L.(,k), each of which surrounds a bounded region of C in which |P,| <

a.

26



m . ‘
CLAIM3: J=|J L,(f) for some m < k, provided L,(,l), cee ,L,(,k) are labelled appropriately.
=1
PROOF: By Claim 2, J C L,; consequently, if |P2(2)| > a then z € 7, (because
{z: |Pz(2)| > a} is connected). Thus, if z € L, and z € J then z € #, and so Q" (z) — oo

as n — o0.

Since Q*(J) = J V n > 1, it follows that |P2 0 Q"*(2)| =a V z € J, n > 1. Hence,
by Lemma 2, if J N LY is infinite for some i then |P2oQ2)| =aVze L, Vn > 1
consequently, L,(:') C J, by the result of the previous paragraph.

To complete the proof it suffices to prove that J has no isolated points. But this

follows from the argument in the proof of Claim 2. O

It is now easy to obtain a contradiction. Consider L{" ¢ J (NOTE: J # O so there
is at least one L,(,i) contained in J, by Claim 3). The curve L,(,l) is a simple closed curve
that surrounds a bounded region R; in which |P;| < a; hence Ry C 7 but By N %, = @.
It follows that Q~1(R;) C ¥ but Q7 1(R1) N Foo = T, because Q(Fo) C Foo. However, if
QY (R1) C F and Q71(R1) N Foo = @ then Q™ }(R;) C L”j R;, where R; is the bounded

=1

region surrounded by LY and m is as in Claim 3. (NOTE: Q~!(R;) cannot intersect

k .
' U+1 R;, because R; C Fo, for i > m + 1, since Lg) ¢ J.)
i=m

Now each R;, ¢ = 1,2,...,m, contains a zero of P2(z), by the argument principle (R;

. is surrounded by L, on which |P2| = a, and |P2| < a in R;). But Q maps the zeroes of

P, to oo; since R; is a connected component of ¥, it follows that Q(R;) C Fo. This is a

contradiction, because Q~(R;) C .[njl R;and RN oo = D. O
=

8. Totally Disconnected Julia Sets

Assume throughout this section that co ts a superattracting fized point of Q and that
the branch points of Q= are contained in F,. Our goal is to show that (i) Q: J — J
is topologically conjugate to the forward shift o: ¥ — ¥ on the sequence space & =
{1,2,...,d}N; (ii) the equilibrium measure v pulls back to a Gibbs state T on ¥; and
(iii) the entropy h(Q) of the system (J, Q,v) satisfies A(Q) > log(d — d.).
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8A. Topological Conjugacy

LEMMA 3: There s a smooth Jordan curve T in C whose tntertor contains J and whose

o0
exterior contains |J Q"(Go)-
n=1

PROOF: By hypothesis, Q(Go) C F, because Q(Jo) consists of the branch points of
Q@~!. It follows from Prop. 2 that Q"(§o) C 7o V » > 1 and that Q"(2) — co V z € Go.
Hence there is a large open disc D in C containing J and at most finitely many points of
G Q"(Go). Label these points &1, &2,...,&,. Since Fo is connected and £4,..., & € Fw,
:lTelre is a closed set P C %, containing £;,..., § such that D\P is simply connected and
contains J. Let ¢: {|z| < 1} — D\P be a conformal homeomorphism of the unit disk
onto D\ P (such a mapping exists, by the Riemann mapping theorem). For r sufficiently
close to 1, p({|z| < r}) D J. Set T = p({|2| =r}). O

Define

D = domain interior to T.

Observe that D is simply connected, so by Lemma 3 all branches Q; " of all Q7", n >
1, are single-valued and analytic in a neighborhood of D. Fix some definite labelling
Ql_l, Q;l, cens Qd—l of the distinct branches of Q! in D. For any finite sequence 7175 ... ¢4

of symbols from {1,2,...,d}, define

J(i19z...0n) = Q' 0 Q71 0... 0 QT (V),
T(i1iz...in) = Q5 0 Q5  0...0 QT(T),
D(iriz...5) = Q7 0 Q; 0. .0 Q; (D).

(There are legitimate definitions, because (i) @ ~!(J) = J C D and (ii) all branches of Q—"
-1

are single-valued and analytic on D, hence each must agree with some Qi_ll 0...0Q; " on

J.) The definitions have some immediate but important consequences:
(a) J(2122 .o zn) C J(ilzz ee in—l);
(b) J(irv2...4n) N J(3145...3},) = D unless i; =47 V1 < j < n;

(c) Q: J(i122...%n) — J(32¢3...%,) is a surjective homeomorphism;
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(d) lim max diameter (J(¢1¢2...%7,)) =0.
n—00 13112...1pn

(property (d) follows from Props. 4-5). Note that (a)-(d) imply that J is totally discon-

nected.

For each infinite sequence #172... € X we may now define
oo
w(iriz...) = [} J(xsz. . . in).
n=1

By (a), (c) this is the intersection of a nested sequence of nonempty, compact sets (see
Prop. 1), and by (d) the intersection consists of a single point. Hence 7: ¥ — J. It follows
from (a), (d) that this map is continuous and from (b) that it is 1-1; it is clearly onto,

because for each n, J = Uy, 4,...q, J(¢1%2 - . . ). Finally, by (c),
Qomr=m7oo.

Thus, we have ezhibited a topological conjugacy between Q: J — J and 0: ¥ — XL.

The curves I'(7173 ... tx) have played no role thus far. However, in studying Brownian
paths started at oo and stopped at J they will be very useful, because each T'(i175...17k)
surrounds the corresponding J(7173...4,). Unfortunately, the sets D(¢172...7,) do not
satisfy the nesting property (a) above. But ' and the region exterior to T' are contained
in Fx, so Q"(2) — oo as n — oo uniformly for z & D, by Prop. 2; consequently, there is

an integer r > 1 large enough that

(e) QT(T) C (D)€ and

() (D) cDVn2r.

Henceforth we shall assume that r > 1 1s an integer large enough that both these statements

hold. We now have

(g) D(i1i2 e i(n+1)r) C D(i1iz oo z.nr);

(B) D(irsz...in) N D(413s...4%) = D unless 4; = 4% V1< j < n;

(i) @: D(3132...%n) — D(i283...4p) is a surjective homeomorphism;
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(J) F(iliz cee in) = 8D (iliz coe in);

(k) J(llzz ln) C D(nizzn)

Finally, observe that ¥ = ¥, so ¥ is connected. Here is the proof. The region (D)°
exterior to T' is contained in %, by construction. For any n > 1, Q=" ((D)°) C F,

by an easy induction argument using (g), (j), (k). But ¥ = Do Q" ((D)°) , because
n=1
J = Ol Q—nr(ﬁ).

8B. Characterization of a Gibbs State

We are to show that the pullback
V=vomw

of the equilibrium measure v is a Gibbs state on X. For this it suffices to show that there
is a H6lder continuous function f: ¥ — R and constants 0 < ¢; < ¢2 < oo such that for

every t172...€ X andn >0
c1 S I/(J(iliz . .in))/exp{Snf(iliz . )} < C2, (8.1)

where

Spf=f+foo+foo®+...+ foo™ L.

(See [2], Th. 1.2. A function f: ¥ — R is Hélder continuous if there exist constants C < oo,
0 < B < 1such that [f(¢192...) — f(i1¢5...)] < CB™ whenever i; = ¢, V1 < 7 < n.)

LEMMA 4: To prove (8.1) it suffices to prove that
I/(J(?:liz ...z'n)) >0 v iliz...in, (82)

and that there exist constants C < 00, 0 < B < 1 such that for any two sequences 1115 ...1,

and i1y ... 4y, satisfying 1; =43 V 1 < j < k it is the case that

nl

I/(J(Z'liz e 2n))/V(J(221,3 cee Zn))
tog {uu(z‘aia ) (I (s 1)) }
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PROOF: For any sequence 2123 ... define
f(E1t2 .. 3n) = log{v(J (3122 ... 4n) /(I (2275 ... 1n))},
f(E122...) = nli'ngo F(E122...9,).
The hypotheses (8.2)—(8.3) imply that f is Hélder continuous on 3, and furthermore that
L .
V(lirig...ig)) | Ol Tt i)}

exp{Snf(i172...)} - exp{Snf(¢172...)}

is bounded above and below. O

To investigate the quantities in (8.2)—(8.3) we bring in once again the Brownian motion
process started at co and run until the time of first entry into J (since oo is attracting or
superattracting, this time is finite with probability one, by Prop. 10). Under the probability
measure P, let Z; and Zt be Brownian motions satisfying 7y = Zo=o00and Z = QZ
(as before, Z and Z denotes the traces of the paths Z; and Z;). Define T = inf{t: Z; € J}
and T = inf{t: Z; € J}. Then

v(J(E1d2 .. 1)) = Po{Zz € J(i1i2...in)},
v(J(¢293...15)) = P®{Zr € J(i2i5...1n)},
S0
v(J(t1t2...15))

Gl ) = P € J6a)|2r € Jlizis...in)}:

This conditional probability may be rewritten in a form that eliminates the process Z:.
Consider the path Z:, 0 <t < T;; it avoids the branch points of Q! (except for Zy = o)
and terminates at Z7 € D. In the domain D the branches Ql_l, cees Q;l are single-valued
and analytic, so Qi_l (Zr) is well-defined for each ¢ = 1,...,d. By the monodromy theorem,
Q7! can be continued along Z; from ¢t =T to ¢t = 0 (t runs backwards), so we can define

Qi_IZt to be this path. Observe that Q; = Q‘I(oo); define the event

F; ={Q;'2y = o}.

LEMMA 5: To prove (8.3) it suffices to show that there exist constants C < 00, 0< f < 1

such that for each i € {1,...,d} and any two finite sequences i11s...1, and $4d}...4",
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satisfying 1; = z; V1< j<k,itisthe case that

< cg*. (8.4)

| {Poo(F‘IZTEJ(zlz22n)) }
P>(Fi|Zr € J(i13% . . . 471))

PROOF: The event {Zz € J(4)} is the same as the event {Q;'Z = Z}. By Prop. 13,
PX(Q;'Z = 212) = 1r,/(d - d.).

Since the events {Zr € J(i1¢2...45)} and {Z7 € J(#}¢%...4!,)} are measurable with

respect to the o-algebra generated by the trace Z, it follows that

P®(Zz € J(5)| 27 € J(i1t2. . . 10))
= (d — d.) "' P°(F;|Z1 € J(i132...%5),
P®(Zz € J(3)|Z: € J(84Y ... i%)))
=(d — d.) 1P (F;|Zp € J(d!35...1%)). O

NOTATIONAL CONVENTIONS: Let (12,8, P) be a probability space, A € B, and § a
o-algebra contained in B. Then P(A|§) is the (essentially) unique §-measurable random
variable such that P(ANG) = E(1gP(A|§)) for all G € §. If § is generated by a random
vector X we will sometimes write P(A|X) instead of P(A|§); since this is a function of X
we may sometimes let P(A|X = z) denote the correspondihg function of z. If A,B € B,
P(A|B) = P(An B)/P(B). Similar conventions apply for conditional expectations.

8C. Application of Harnack’s Inequality

Verification of the inequalities (8.2) and (8.4) will require some auxiliary information
about Brownian motion in 7,,. We begin with a version of Harnack’s inequality. Assume
that under P¢, Z; is a Brownian motion process in C with Pf{Zo =¢} =1. Let K be a
compact subset of C; define Tx = inf{t: Z; € K}. If P¢{Tx < oo} =1, define

vi (dz) = P¢{Zr, € dz}.
LEMMA 6: Let D be a connected component of K¢, and assume that for some ¢ € D,

P{{Tx < oo} = 1. Then P${Tx < oo} = 1 for every ¢ € D, and for any two points
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&, ¢ € D the measures uf{ and v§, are mutually absolutely continuous. For each compact

G C D there ts a constant ¢ = ¢(G) < oo such that for all £, ¢ € G,z € K,

dv
cl<—£(z<e. (8.5)
dvi

PROOF: It follows from [12], Ch. 2, Prop. 2.10 that either P¢{Tx < oo} = 0VEé € D
or P¢{Tx < oo} = 1 V¢ € D. Let A be any measurable subset of K; then vf{ (A) is a
harmonic function of £ € D (by the strong Markov property, it satisfies the mean value
property). Clearly 0 < uf((A) < 1, so by the maximum principle for harmonic functions
([12], Ch. 4, Prop. 1.4) either v5 (A) = 0 for all £ € D or v5(A4) > 0 for all £ € D. Thus

Vf(, Vi, are mutually a.c. By the Harnack inequality ([12], Ch. 4, Th. 3.5), for any compact

G C D there is a constant ¢ = ¢(G) such that
e <vh(A)/Vi(A)<e V¢ ¢€@G, VACK,;
the inequality (8.5) follows from this. O

Let }r be the o-algebra generated by the random variable Z7 (as usual, T = inf{¢: Z;
€ J}.

LEMMA 7: There extsts a constant € > 0 such that

P>®(Fi|}r) > € as Vi=1,2,...,d. (8.6)

PROOF: Let I'. be a smooth Jordan curve enclosing J such that I'. C D. Any continuous
path from co to J must first intersect I' = @D, then I'., before reaching J. Define

T = inf{t: Z; € T},
7. = inf{t: Z; € T.}.

For ¢ € C define measures v¢, vfonJ by
v¥(dz) = P*{Zr € dz2},
vi(dz) = P*{Zr € dz and T < 7}.
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Note that for ¢ & D, v = 0; also, (du /dv¢) < 1. Using Lemma 6 we will show that there

exists a constant € > 0 such that

du*

(z)>s VéEeT,, VzelJ.

For this it suffices to show that for some (possibly different) € > 0,

du*
dvé

() >e VEeT, VzelJ,

because Lemma 6 (with K = J, D = 7, G =T, U {oo}) implies that dv¢/dv is bounded
above and below. Consider a continuous path from T'. to J. It may go directly to J
(without hitting T'); or it may hit T, return to I, then go directly to J; or it may hit T
and return to Iy n times, then go directly to J. Thus, by the strong Markov property,

vé = uf +/ Vidaf(g),

where the measure af satisfies af(T',) < E p" with p = sup.p, P{r < T} < 1, by
Lemma 6 (with K = JUT, D = D\J, and G = I'.). Another application of Lemma 6
(again with K = JUT, D = D\J, G =T,) shows that for some ¢ < oo,

dV*

()<c Véceel,,Vze J,

so the integral representation above shows that duvf/dvé > (1 + ep(1 — p)—1)~1.

Now choose ¢ € T's. For each ¢ = 1,2,...,d there is a smooth path 4;(¢),0 <t <1,
such that ;(0) = oo, 7;(1) = &, 7i(t) € Foo \({c0}UTLUQ(Go)) for 0 < ¢ < 1, and such that
if Q7' is analytically continued backwards along 7; from ¢ = v;(1), then Q;!7;(0) = o
This follows from the fact that @(go) (the set of branch points of Q1) lies outside T,
(Lemma 3), together with the fact that the Riemann surface of Q! is connected ([13],
sec. 3.2, problem 7). Observe that for small § > 0, if y(¢), 0 <t < 1 is a continuous path
such that 4(0) = oo and

distance (y(t),7i(t)) <6 V0<t<1

(here distance means spherical distance) then Q; ! continued analytically backwards along

7 from ~(1) will end at Q;’l'y(O) = oo.
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Consider Brownian motion Z; started at oo and run until the first time 7, that it
reaches I',. Let G; be the event that some reparametrization of the path Z;, 0 <t < 7,
stays within distance 6 of +;. Then

P*®(G;) >0 Vi=12,...,d
(this may be proved by elementary arguments). By the strong Markov property,
P®(F;n{Z7 € dz}) > E®1g,v7™ (dz);
since dvf /dv is bounded below, (8.6) follows. O
PROOF of (8.2): This is by induction on n. For n = 0 the inequality (8.2) is trivial,

because v(J) = 1. Now

y(](iliz ves zn))
v(J (2213, - . . in))

= P®(Zz € J(i1)|2r € J(i2i3. . .14))

= P®(F;|Z1 € J(i203...%n))/(d — d.)

> ¢/(d—d.)

by Lemma 7 (see the proof of Lemma 5). O

PROOF of Th. 2 (b): Let Z, Z, T, T be as in the proof of Lemma 5. Recall that
P®(Zz € J()|Z) = P°(Q;'Z = Z|Z)
- 1n/(d- d.)

d
> 1n -

Consider the partition P = {{Zz € J ( )} }i=1,2,...,d; its entropy h(P, Q) satisfies

and

h(P,Q) > E® Z 1{Zz € J(9)}log P (Zz € J(3)|¥r)™*

_EOOZ{P (Fl)(T g{P (Fl)(T)}—

F l)'{T

= log(d — d.) E“Z{ } log P (F;|}7)

> log(d — d.),
because by Lemma 7, 0 < P®(F;|}r) < 1. O

35



8D. Exponential Estimates
It remains to prove the inequality (8.4). This will require some additional estimates.

Recall that T is the smooth Jordan curve bounding the domain D) (Lemma 3). For
n € Z define
I, =Q ™).

By statements (e)—(f) of sec. 8A, I'_, lies in the exterior of I' = I'g, while for n > r, ',

lies in the interior of I'. Observe that forn > 1

Tn= |J T(dz...in).

1112050

LEMMA 8: If r is suffictently large then there exists constants C < co, 0 < 8 < 1 such
that for alln >1 and all z € Ty,,,

P?*{Z; hits T before J} < CB™. ' (8.7)

PROOF: This is an extension of the argument used in proving Prop. 10. Consider first
the case where oo is superattracting. In the proof of Prop. 10 we exhibited sets f‘n, nel,
with the following properties: (1) I, = Q—"(Io) V n € Z. (2) T is a smooth, Jordan
curve in C containing J in its interior. (3) Any continuous path from Fry1 to Trg,
k > 1, must intersect I'p. (4) Any continuous path ~(t), 0 < t < t,, that intersects each
f‘n, n > 0, must intersect J. (5) For each n > 0 and each z € f‘n, P?{Z, hits f'n+1 before
I'no1}>2/3.

We claim that for all n, kK > 0 and any z € f‘n+k,
P?{Z,; hits T}, before J} <27™.

The proof is as follows. To get from z to I'x before J , the path Z; must cross f‘n+k_1,
f‘n_,_k_z,...,f‘k in that order before crossing all f‘n+k+m, m > 1. Let Xg,X1,... be
X

the indices of the successive sets f‘j hit by Z;. Then under P* the sequence 277 is a

supermartingale with 2~X°¢ = 2"~k (because the chance of moving up one before going
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down one is at least 2/3). Hence, P?{2~%i = 2~ for some j > 0} < 2™, by the maximal

inequality for supermartingales.

Now consider the sets ', constructed in sec. 8A. We may assume that f‘o lies in the
exterior of I' = ', because in the original construction of the sets I',, (proof of Prop. 10)
we could choose the radius Rg of the circle Cp as large as we like, forcing I'g to be close to
co. Choose m > 1 so large that Q™(I') = I'_,, lies in the exterior of f‘o; this is possible
because I' C 7o and Q™ — oo uniformly on compact subsets of 7oo. Then Q"(T') lies in
the exterior of I'g for all n > m, because Q maps exterior (f‘o) into itself. Choose r > m
so large that I', is contained in D (= interior of T') for all n > r; this is possible because

J C D and the sets T, accumulate at J as n — oo.

Let « be a continuous path from Iy, to I', where n > 2. Then Q™" («) is a continuous
path from I to I'_,,,, which must cross f‘o because I and I'_,,, are on opposite sides of To.
Thus -y must intersect Fpp = Q" (f‘o). Let 4* be the segment of 4 that runs from I'y,
to I'. Then Q™~* runs from f‘n,-_m toT_,,. Sincen > 2, nr —m > m, so f‘n,-_m C D;
hence I'py_m and T'_,, lie on opposite sides of I'o. This implies that @Q™~* intersects f‘o,
which in turn implies that 4* intersects T'yn. This proves that any continuous path « from

Fpnrtolyn 2 2, must first hit f‘n,., then f‘m, before reaching I'. Consequently, for n > 2
P#{Z; hits T before J} < 2~™+™ V 2z €T,,.
The inequality (8.7) follows V n > 1 by adjusting C, with 8 = 2~".
The case where co is attracting rather than superattracting is similar, but requires

modifications similar to those in the second half of the proof of Prop. 10. Since these

modifications are routine, we omit them. ]

Henceforth we shall assume that r > 1 has been chosen so large that the conclusion of
Lemma 8 ts valid. (Recall also that r should be large enough that statements (e)—(f) of
sec. 8A hold.)

Let 7 < oo be a stopping time for the process Z;; define o-algebras #., G-, X, by
Fr = o({Ziar}t>0)s
Gr = o({Zs1r}i20),
e =0(2Z;)
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(i.e., #ry Gr, Hr are the smallest o-algebras making these collections of random variables
measurable). Observe that ¥, C G, and ¥, C #; also, 7 is not in general measurable
w.r.t. Gr. One should think of 7, as representing all information about the path Z; up to

time 7, and §, as representing all information about Z; after time 7.
LEMMA 9: For any event F € ¥, P$(F|G,) = P*(F|X,).

PROOF: Let G € G,. By the strong Markov property and elementary properties of

conditional expectation,
E*(1cP*(F|§r))

= Ef1g1p
= E4(1rP*(G| 7))
= E4(1rP4(G|¥y))
= E¢(P*(F|¥;)P*(G|X.))
= E*(1cP*(F|X.));
since this holds V G € Gy, it follows that P¢(F|G,) = P¢(F|¥,) as. O

Define
7o = inf{t: Z; €Ty}, n > 0.

Statement (e), sec. 8A implies that any continuous path from oco to J must intersect each
Ty, n >1,s0 P®{r, < T} = 1. Moreover, statements (f), (j) imply that for any n > r,
Z;, € D. Let F, n > r, be the event that if Qi_l is continued analytically along Zi,
0 <t < 7, backwards from Z,_ then Q;’lZo = 00.

LEMMA 10: There exist constants C < 00, 0 < f < 1 such that for each k > 1 and each
1=1,2,...,d,
[P (F3|¥r) — P (F¥ ir)] < CBF.

PROOF: The events F; and Fi"* differ only in paths Z; which exit D after ¢t = 7%, and
before t = T. (If Z; does not make such an exit then the analytic continuation of Q;*

along Z;, 0 <t < T backwards from Z7 ends at the same value as the analytic continuation
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of @~ ! along Z;, 0 < t < 7%, backwards from Zg,,.) To make such an exit, Z; must hit
I' = @D. Thus it suffices to prove that

P®(Z; €T, some 1%, <t < T|¥7) < cpk.

By the strong Markov property, for any Borel set A C J,

P*{Zr € A and Z; €T for some 7, <t < T}

= E®(P%{Zr € Aand 70 < T})

= E®EZkr (1{ro < T}PZ% {Z € A})

< {E®EZ+1{ry < T}}{cP>®{Z7 € A}}.
The last inequality follows from Lemma 6 (with K = J, D = 7, G = T' U {oo}), since
Zr, € T; the constant ¢ < oo does not depend on A or k. Lemma 8 implies that for some
C<o0,0<8<1,

EZn1{ry < T} < Cp*.

It now follows that P°(Z; € ', some 7x, <t < T|¥) < C'8%. O

Let ¢1¢2...4kr, k > 1, be a finite sequence of symbols from {1,2,...,d}. Any con-
tinuous path from oo to a point of I'(¢173...%%,) must intersect I'(s173...%5,) for each
1 < n <k, by statements (g), (j) of sec. 8A. Therefore, for any ¢ € T'(¢1¢3...1k,) We may
define a probability measure uf . . on I'(f122...%nr), n < k, by

‘l:]_‘iz...‘ln,-
P(Z1(iriy..i,) € Ai7(1182 .. 0kr) < T3 2,0, 5,,) € dE)
: P°°(T(i1i2 .o .ik,-) <T; Z‘r(ﬁiz---ikr) € df)

l‘fl $2niny (4) =
where

T(iliz .o 3m) = inf{t: Zi € I‘(iliz . Zm)}

LEMMA 11: There exist constants C < 00, 0 < 8 < 1 such that for all integers 1 < n <k,

all sequences 1112 ...1ky, and any &, ¢ €T (1132 .. 1k,),

ke
”ll'flig...im — i IS CBE (8.8)

NOTE: ||-|| denotes the total variation norm, which may be characterized as follows. For

any two finite positive measures p1, 2 on a measurable space ({2, ) there exist unique,
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positive measures Ag, A1, A2 with A\; and A2 mutually singular such that u; = Ao + A;

and ps = Ao + A2. The total variation distance between pi, p2 is then ||u1 — po|| =
A1(92) + A2(0).

PROOF of Lemma 11: Since 7(4122...%ny) < 7(4182...t(ny1)r) < ... < 7(d172...7%;) (see
(g), (j), sec. 8A), the strong Markov property implies that

F‘fli,...i,,,(A) = /l‘fliz...i,,,(A)dl‘fliz...i(,,ﬂ),(f')a

#511.2...1.,”.( ) - /ﬂtllz i,,_r (A)dufliz...i(n_i_l)r(gl)’

where the integrals are over all £’ € T(i1¢2...¢(n41)r). Let Ao, A1, A2 be the unique,

mutually singular, positive measures such that

Bigoiguyny, = 20+ A1,
Ilffm ity = Ao + Az;
then
”’511'2...{,.,. =/l‘§:i2...in,d’\0(fl) +/#§:i2...imd}‘1(§,)’
B igin, = /Nf:ig...in,d)\o(f') +/I‘§1’i2...i,.,d)‘2(f')
SO

1 e = Bt = 1 [ 01 01 =22
< [ [ i, = i NN (€D N I

where the double integral ranges over all ¢/, ¢ € I'(4192...9(nt1)r). Note that ||A]| =
[|A2]] = 1 — [|Ao|| because Ag, A1, A2 are mutually singular and Ao + A1, Ao + Ag are

probability measures. Consequently,

||l‘$1i2...i,,, T HBiigin, /||/‘51i2...i(,,+1,, - l‘f'liz...i(n“),”

1 ¢ "
< omax Rl
¢,¢" er(siiz.. S(nt1)r) 2 F1ézeing fiaeing

Therefore, to prove (8.8) it suffices to show that there exists a constant § < 1 such that

for all n > 1, all sequences #1%2...%(n41)r, and all £, ¢ € T(z173.. Unt1)r)s

||M§1i2...inr _ugl‘ig...in,” S Zﬂ- (8'9)
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For any sequence ?173...%y, and any z ¢ J define a subprobability measure A7, .

on I'(f192...tm) by

AZ i (A) = Pz(Zr(igig...im) € A;T(iliz cen im) < T)

Then for ¢ € T(¢192...5(nt1),) and 2z € T(i132...1yn,),
€ ( Z) Afftz tnr (dZ) A‘lzl‘lz t(n+1),.( f)

u. . .
1112...tnr {Alliz 1(n+1)r(d£)/”A1112 Anr

}

” 1112 1.,"-

and

Mooy, () _ / X (dg) Miatns (42).
”A Z'€T(t182.0.8ny) izt ”A

Consequently, to prove (8.9) it suffices to show that there exists € > 0 such that for all

t1i2.. 1nr” 111200y

n > 1, all sequences 1193 ...%(nt1)r, all € € T (2182 ... (ny1),), and all 2, 2’ € T(4172.. . 1nr),

A (4€)
< u'tz A(nt)r <e L, (8.10)
Auzg l(n+1)r(d£)

Because of the symmetry in z and 2/, it is enough to establish only the upper bound.

€

For each z € I'(i142 . . . in,) define another subprobability measure on I' (3172 . . . é(n41)/)
by
Afmz i(nse) (4) = Pz(Zr(ixiz..-i(nH),) € A;7(f192 . i(nt1)r) < T AT(n_1)r)
(recall that 7, = inf{t: Z; € I',}). Observe that the event in this definition only in-
volves that part of the path Z; before its first exit from D(71¢2...7(n_1),) — this is

(=1 is an analytic homeomorphism of

the point of stopping at 7(,_1),. Recall that @
D(i1i2...%(n—1),) onto D (statement (i), sec. 8A) that maps I'(¢172 ... ins) onto I'(¢(n_1)r41
..Tnr) and T(4132 ... 4(nq1)r) Ont0 T'({(n_1)r41-..%(nt1)r). Therefore, by the conformal

invariance of Brownian motion

Az

f1i2.. “(n+1)r(

A) S‘Q(n U1 (z) 1(n+1),(Q(n—1)r(A))'

‘(n—l)r+1
Since there are only finitely many sequences #(n_1)r41.--%¢(nt1)r it now follows from
Lemma 6 that there are constants 0 < ¢; < ¢2 < oo such that for all sequences z715...

int1)rs all £ ET (2102 .. E(nq1)r), and all 2, 2’ € T(4102.. . 2ps),

R 9 .
ity (de)

1920 (nt1)r

c1 = s C2,

¢ < ||A‘1‘2 '(n“)r” = P*{r(i112.. .i(n_H),.) <TA T(n_l),.}.
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Consider a continuous path from I'(7192...%5r) to I'(4192...2(n11),) that does not
intersect J. It may go directly to I'(¢1...%(n41)r) without hitting I'(,_1),; or it may
hit T'(,_1), first, then return to I'(¢143...4y,), then go directly to I'(¢1...%(541),); or, in
general, it may make m > 0 “cycles” between I'(,_1), and I'(¢172...7nr), then go directly
to T'(¢1 ... %(nt1)r) (see (g), (h), (j), sec. 8A). Consequently, by the strong Markov property,

for z € T'(¢122...%ns),

(%

Z =\z. . . . Z ()

Ailiz...i(n.l_l),. - Ailtg...t(n+1)r + Z o ’\1112...1("+1),dam(z )
m=1Y Z’El(t1...10+)

where ||aZ,|| < (1 — ¢1)™, by the last inequality of the preceding paragraph. The upper
bound in (8.10) now follows directly from the second last inequality of the preceding
paragraph, with e~ = ¢2 Y > (1 — ¢1)™. a

PROOF of (8.4): Let 4173...%, and 7125 ...4), be sequences of indices from {1,2,...,d}
satisfying ¢; = z; V 1< j < 2kr. (Note that the factor of 2r is irrelevant in establishing

(8.4).) Let
A = {ZT € J(Z.liz .o .in)},

Ay ={Zr € J(id,...i)},
7 =1(t1%2...%ky),
T =71(l122... 02kr).
On each of A;, A; it is the case that 7, <7 < 7. < T, by (g), (h), (j), (k), sec. 8A. Since
M C GrnT C GraT and F,-k" € Frar, Lemma 9 implies

P°°(17‘,-’"|}(T)1A,-
= E®(P®(FF1{r < T} Grr)|¥1)14,
= E®(P®(FF | Mear)1{r < T}¥r)1la,
= E®(E® (P (F" Year)H{r < T} Gr aT)1{rs < T} 1)1,
= E®(E®(P®(FF [Hear) {7 < TH¥r.aT)1{re < T}H¥r)14,.

On the event {r < T}, P®(FF"|¥,ar) is a function of Z,, which we will denote f;(Z,).
Thus

1828k,

P=(FF PirLa, = B[ £, s, (a, i),
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where the integral is over all z € I'(i142...7k,). Lemmas 10-11 now imply that for any

¢ €Tl (i102...72kr),
[P=(Fipite) — [ fedui, o, Y| S OB, 5= 1,2
for suitable constants C < 00, 0< 8 < 1. But
P®(Fi|A;) = E* (P (Fi|¥r)14,)/ P (4;),

so by Lemma 7 and the preceding inequality

log { P> (F;| A1) }

k
Po(F|4y) J | = €P

for appropriate constants C < 00,0 < f < 1. O

9. The Neutral Case

Assume now that oo ts a neutral fized point of Q and that co € ¥. Then the connected
component Fo, of 7 containing co is a Stegel disk — see [1], sec. 7 (the other four pos-
sibilities of [1], sec. 7 are impossible). This means that there exists a surjective, analytic
homeomorphism p: Dg — Fo (here Dr = {2 € C: |z| < R}) and an irrational § € (0,1)
such that

tp(ez’rwz) = Q(p(2)) VY z€ Dpg.

This implies that ©(0) = oo, that Q: Foo — Foo is 1-to-1 and that oo is the only periodic
orbit in F. Moreover, 7., # ¥, because Q: ¥ — ¥ is d-to-1, and we have assumed that

d > 2. It is not necessarily the case that ¢ extends continuously to Dp.

Let Z;, t > 0 be a Brownian motion started at Zo = oo under P>, and let T =
inf{¢: Z; € J}. Since F # ¥ there is a nonempty, open disk D c 7 \#o. Brownian
motion on C is recurrent, so it must visit each open disk, with probability one, hence
Zi € D for some t < co. But a continuous path from oo to D must intersect J, otherwise
D C #». This proves that

P®{T < 0} =1,

so the logarithmic capacity of J is positive and v is the distribution of Z7 under P°°. The

same arguments as used in the proof of Prop. 9 now show that Zr, Q(Zr), Q%*(Z7),...
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is a stationary process, i.e., that v is an invariant measure. However, the arguments of

Prop. 11 no longer apply.

Next, we must consider the boundary values of . As before, let D be a nonempty,
open disk contained in ¥\7., with center ¢. Let 9 be a linear fractional transformation
such that ¥(¢) = oo. Then ¥ o p: Dg — C is a bounded analytic function, so by a
well known theorem of Fatou, 3 o ¢ has radial limits a.e. Consequently, © has radial
limits a.e. Thus, p extends to a (not necessarily continuous) function ¢: Dg — C such
that lim,1g p(re'®) = p(Re*®) for a.e. a € [0,27) (with respect to Lebesgue measure on
[0, 27)).

Let Zt, t > 0 be a Brownian motion started at Zo = 0 under }’30, and let T, =
inf{t: |Z;] = r}. Then P°{T, < oo} = 1, and under P° the distribution of Zflr is the

uniform distribution (Lebesgue measure) on {z: |2| = r}. The process ¥ o p(Z; Jn>1

R—1/n
is a bounded, discrete time martingale under P°, hence has a limit as t — oo almost surely.

An easy argument using the Poisson integral formula ([5], sec. 5.2) shows that

lim o tp(zf. )=4vo (p(Zf,R) a.s. (}30)

n—o00 R-~1/n
:>nlLIIgo gO(Zi,R_I/n) = (p(Zf.R) a.s. (Po),

i.e., the Brownian limit is the same as the radial limit.

Lévy’s conformal invariance theorem implies that p(Z:), 0 < t < T is a (time-

changed) Brownian motion in 7., started at co. Clearly, lim, ;7 p(Zt) € 0% C J, 50 it

follows that p(Z;_) has the same distribution as Zr under P, namely v. Now

~ ~

Rlp(Z5,)) = lim Qp(Z7, )

o 2mif
= Jm e g, )
= ga(ez’“to.R).
Thus, (J,Q,v) is a factor of (0Dr, M2xig, A) where M, is rotation by « and A is (normal-

ized) Lebesgue measure. (The conjugating map is @ restricted to dDg.)
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