ORDERED GROUP REFERENCE PRIORS
WITH APPLICATIONS TO MULTINOMIAL AND
VARIANCE COMPONENTS PROBLEMS

by
James O. Berger and José M. Bernardo
Department of Statistics Generalidad Valenciana
Purdue University SPAIN

West Lafayette, IN, USA

Technical Report # 89-31C

Department of Statistics
Purdue University

December 1989



Tech. Rep. 01/89, (November 2, 1989). (*)

Departamento de Estadistica, Presidencia de la Generalidad.
Caballeros 2, E-46001 - Valencia, Spain.

Tel. (346) 386 36 65, Fax (346) 386 61 37.

Ordered Group Reference Priors
with Applications to Multinomial and
Variance Components Problems

JAMES O. BERGER and JOSE M. BERNARDO _
Purdue and Duke Universities, USA, and Generalidad Valenciana, Spain

SUMMARY

Noninformative priors are developed, using the reference prior approach, for multiparameter
problems in which there may be parameters of interest and nuisance parameters. For a
given grouping of parameters and ordering of the groups (intuitively, according to inferential
importance), an algorithm for determining the associated reference prior is presented. The
algorithm is illustrated on a multinomial problem and on a variance components problem,
with discussion of the variety and success of various groupings and ordering strategies.
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1. INTRODUCTION

In development of noninformative prior distributions, Bernardo (1979) explicitely recognized
the importance of identifying the parameters of interest and the nuisance parameters, and
tailoring the noninformative prior to this choice; a global noninformative prior distribution
(e.g., that of Jeffreys, 1961) will not always be adequate for inferences about different pa-
rameters within a model. Many of the “counterexamples” to noninformative priors (e.g., those
of Stein, 1959, or Dawid, Stone and Zidek, 1973) provide dramatic illustrations of this fact.

The reference prior approach of Bemardo (1979) addresses this problem by suggest-
ing a two step reference prior. First, find the conditional reference prior for the nuisance
parameters given the parameters of interest; then find the reference prior for the parame-
ters of interest in the marginal model formed by integrating out the nuisance parameters.
This procedure worked well in the examples considered in Bernardo (1979) and in subse-
quent works such as Bayarri (1981, 1985), Bernardo (1980, 1981, 1982, 1985), Bernardo and

(*) This work was supported by the U.S.-Spain. Joint Committee for Scientific and Technological
Cooperation, Grant CC B8409-025, and by the National Science Foundation, Grant DMS 8702620. The
second author is on leave of absence from the Department of Statiscitcs, University of Valencia, Spain.
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Gir6n (1988) Eaves (1983, 1985), Ferrandiz (1982), Lindley (1988), Mendoza (1987, 1988)
or Sendra (1982).

Recently, two limitations of the method have been observed. The first is somewhat
technical, but often crucial. The conditional reference prior found in the first step in often
improper, and yet is subsequently used to form the marginal model for the parameter of
interest. Attempts to rigorously justify this step revealed a rather surprising necesssity: one
must “normalize” even improper conditional reference priors. The normalization, and indeed
the entire calculation, is done by a limiting operation on proper versions of the problem;
Berger and Bernardo (1989a) illustrated this approach in the problem of estimating a product
of normal means.

The second recent observation is that merely grouping the parameters of a model into
“parameters of interest” and “nuisance parameters” may not go far enough. Allowing multipie

groups “orde
determined through a succession of analyses for the implied conditional problems. In fact,

in terms of importance may be needed, with the reference prior being

experience leads us to recommend providing a complete ordering of all parameters of a model,
so that the reference prior is determined through a series of one-dimensional conditional steps.

In Section 2 of this paper, we introduce the general m-group reference prior algorithm.
Sections 3 and 4 provide illustrative applications to, respectively, a multinomial and a variance
components problem. Section S presents conclusions and discussion.

As background for the developments in the paper, it is perhaps helpful to briefy mention
our overall.philosophy concerning noninformative priors. This begins with the observation
that noninformative priors seem to be enormously popular in applied Bayesian works; even
the most avowed subjectivists seem to heavily use noninformative priors —perhaps with pro-
fuse apologies— when actually analyzing data. The second cornerstone of our philosophy is
that no one has succeeded (or is ever likely to succeed) in defining unambiguously “nonin-
formative” priors in an absolute sense. Our goal is the more modest goal of developing an
algorithm for generation of priors that have a minimal impact on the Bayesian. analysis when
compared with the impact provided by the data. The concern is that, in higher dimensions,
noninformative priors (such as Jeffreys’ prior) can have hidden features that have a dramatic
(and unrecognized) effect on the answer.

The reference prior approach, especially the new approach discussed herein of develop-
ment through a series of one-dimensional conditional steps, seems to be remarkably successful
in obtaining noninfluential priors in higher dimensions. We would certainly not claim that this
reference prior approach is guaranteed to produce a prior with no undesirable characteristics,
but its successes (and the lack of practically important counterexamples) are impresive.
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2. NOTATION AND THE ALGORITHM

Section 2.1 presents needed notation. Section 2.2 develops the general m-group reference
prior algorithm. Section 2.3 discusses the motivation for the algorithm.

2.1. Notation

We consider a parametric statistical problem in which the random observation X has density
p(z]0), where § € © C R* is the unknown parameter. We assume that the Fisher information
matrix

H(8) = —Ez [(-3—:%5; logp(xlf?))]

exists and has rank &, so that
S(6) = H™'(9)

also exists. Often, we will just write H and S.
We assume that the 0,: are separated into m groups of sizes n;,ns, ..., n,,, and that these
groups are given by
0(1) = (01, ey 9,,1), 0(2) = (0"1+1, o ,gnl+n2), ‘e
0(,) = (0N.-_1+1, e ,GN'.), . a(m) = (on_l+1, feey 0],),
where N; = Zf:=1 n; for j = 1,...,m. These are the groupings to which the reference prior
algorithm will be applied. (The coordinates of  can, of course, be reordered if necessary

—see Section 2.3— to achieve the desired ordered grouping.) Also we shall define, for

j=1,...,m,
0U] = (0(1), ey 9(j)) and 0[~j] = (0(j+1)1 . 0(,,,)).

Finally, if we write S as

Ay A A
S= 21 .22 : 2
Aml Am2 Amm

so that A;; is (n; x nj), and define

S; = upper left (N; x N;) comer of S, with S,, = S, and
H,=8;!
=9

then, the matrices

h; = lower right (n; x n;) commerof H;, j=1,...,m
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will be of central importance. Expressions for these matrices are given in Appendix 1. In
particular, by = Hy = Al‘l1 and, if S is a block diagonal matrix, (i.e., A;; = 0 for all ¢ # j)

then h; EAj_]-l,j= 1,...,m.

Finally, if ©* C ©, we will define
0" (04D = {0+1) : (01, 9i+1), Bl~ij+10) € ©° forsome Gogray}s  (211)

we will use the common symbols

1 ifyeQ

A| = determinant of A, 1 =
4l a(y) {0 otherwise,

and will throughout the paper adopt the conventions that "i-1(-) = 0 and [TiZ; (") = 1.

2.2. The m-Group Reference Prior

We suppose the 6; have been ordered and divided into the m groups 0(1),...,0m). (The
ordering within the groups does not matter; see section 2.3 for discussion of the grouping and
ordering.)

When the reference priors that are developed turn out to be proper (see, €.g., Section 3),
matters are straighforward. Often, however, they are improper, and care must be taken in their
definition. In the improper case we proceed by specifying (see Section 2.3 for discussion)
a nested sequence ©! C ©2 C ... of compact subsects of © such that UR O = ©. A
reference prior is determined on each compact ©', for which the result is typically a proper
prior, followed by performing a limiting operation. Specifically, one follows the following
algorithm. Note that expressions for the h;(6) are given in Appendix 1.

Start: Define
T (fn(m-1)110(m—11) = Trn (B(m)|ffm—1])
_ 1B (O 10 (ay ) (Bim)) (2.2.1)
/ [ An(8)]2d8 )
O (O[m )
Iteration: For j=m—1,m-2,...,1, define
7 (Opm(i-11105-11)
_ T Britlds) exp {37 [(log | (9))) 911} Lorcoy,_py (Bi) (229)
L. exp {35} [(los (o)) 0] } docy
O (Bf-1))
where
E; [9(6)16y;)] = / 9(8) 7} 41 (8 ) 9i7) A0y - (2.2.3)

{81~ (811,81~ 51.)€0' }



Ordered Group Reference Priors 5

(Note that it is easy to check, by integrating in turn over f(m), O(m—1), - - -, (), that =} defines
a probability distribution.) For j = 1, interpret 6;.q) as § and f[o} as vacuous, and write

1r1(0) = 71'{ (0[~0]|0[0]) . (2.2.4)

Finish: Define the m-group reference prior, assuming it yields a proper posterior, by

7I'I
x(6) = Jim ?f(% (2.2.5)

where §* is some point in 1,

Note: If the integrals and expectation in (2.2.1) and (2.2.2) are finite when the “I” is removed
(i.e., when ©' is replaced by © everywhere), then the reference prior is defined simply by 7
(i.e., (2.2.5) is not needed).

The calculation of the m-group reference prior is greatly simplified under the condition

|h;(8)| depends only onfy;;, for j=1,...,m. (2.2.6)

Lemma 2.2.1. If (2.2.6) holds, then

ﬁ LIGOIE

7! () =
[ @)
O'(oli-ll)

1ot (8). (2.2.7)

Proof. Using (2.2.6) it is clear that

E; tog [h; (9)]|6y;] = log |h;(6)].

The result is immediate from (2.2.2). 4

2.3. Motivation and Explanation

2.3.1. Ordering and Grouping

What ordering should be chosen for the 6;?. In nonhierarchical models (as considered here)
we suggest the ordering be in terms of the inferential importance of the §;. For instance, in the
variance components problem of Section 4, suppose that inference concerning the “between”
variance, 72, is the primary goal, with the population mean, z, and “within” variance o2 being
nuisance parameters. Then the suggested ordering would be 6; = 72,85 = u,03 = o2, or
maybe 6; = 7,0, = ¢2,0; = p. For inference concerning 1, on the oher hand, (g, 72, ) or
(1,02, 7%) would be the suggested orderings. (As argued in Bernardo, 1979, a comerstone of
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the reference prior approach in that the reference prior may change as one focuses on different
parameters, even within the same study.)

On the issue of grouping of coordinates, our advice is: do not group without a very
good reason. Thus the k-group reference prior (each stage having n; = 1) is generally
recommended. At one time (e.g., Berger and Bernardo, 1989a), we advocated creating two
groups, with 6,y being the “parameters of interest” and 67) being the “nuisance parameters.”
Examples of unsuitable performance (to be discussed elsewhere) led us to consider additional
groups, eventually leading to the present recommendation. (An example in which one might
choose to group, is discussed in Section 3.4). Incidentally, within groups the ordering of the
#; is immaterial.

2.3.2. Choice of the ©}

To reiterate, when the reference priors are proper there is no need to consider compact ©'.
And even when improper, the reference prior is often unaffected by the particular sequence
{©'} chosen. (An exception will be seen in Section 4 — see also Berger and Bernardo,
1989a.) ‘

When needed, our typical choice of the {©'} is simply a collection of nested rectangles in
O (or other appropriate shape if © is not an “infinite” rectangle). This is based on the heuristic
idea that the ©' should reflect the type of set on which we would state “noninformativeness”
if we had to choose a compact set (though by choosing a nested infinite sequence we do not
commit ourselves to any particular compact) and it is often the case that parametrizations
are chosen so that one is “noninformative” about natural regions (e.g., rectangles) in that
parametrization. This is admittedly quite vague and, to be honest, we are unhappy when
the choice of {©'} matters. Note that consideration of limits of compacts is also necessary
in certain other approaches to development of noninformative priors; Cifarelli and Regazzini
(1987) and Consonni and Veronese (1988) are two recent such references.

2.3.3. The Motivation for the k-Group Reference Prior Algorithm

In Bernardo (1979) the motivation for the reference prior approach is discussed. The idea is
basically to choose the prior which, in a certain asymptotic sense, maximizes the information
in the posterior that is provided by the data. We will not repeat the discussion here.

In Berger and Bemardo (1989a), a treatment of the case & = 2 is presented. The idea is
to first find the reference prior for §,, at each given value of 6,, calling this the “conditional
reference prior” 7'(6]6,). Assuming asymptotic normality for the model, the argument in
Bernardo (1979) leads (see also Berger and Bernardo, 1989a) to

' (82161) o |ha(81,02)|*1g1(4,)(62). (2.3.1)

Since this would subsequently be combined with a “marginal” reference prior for ¢;, it was
realized that normalization would be important. Hence the ©' were introduced (in case
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|hy(61,02)]*/% was not integrable), and 7'(6]6;) was actually defined as the normalized
version of (2.3.1). This is directly analogous to “start” of the reference prior algorithm in
Section 2.2, which gives 7' (8(m)|0(1), - - -, O(m-1))-

Reverting to the two parameter case for simplicity, the natural next step is to form the
marginal model for 6,, by integrating out 8, with respect to 7/(8,]6;), and then to find
the reference prior for 6; in this marginal model. This approach unfortunately requires the
determination of H(f,) for the convolution of p(z|f;,6,) and 7'(62|6;). Such is frequently
not available in closed form, limiting the usefulness of the approach. Thus, we consider
Z = (Xy,...,Xt), where the X; are iid. p(z|4,,0,), so that

t
p"(2181,82) = [ p(2:161,62),

i=1

and derive the marginal model

p'(z]6) = /p*(z|01,02)7rl(02|91)d02.

The reference prior argument (see Bemnardo, 1979) suggests that the reference prior for
6 should be

7'(8,) x exp {/pl(z|01) log ©'(8, | ) dz} , (2.3.2)
where

, _ _ P(z[61)7'(6)
Tl = ey

is the posterior corresponding to the prior #'(f;). This, of course, only defines 7!(8,) im-

plicitely, but as ¢ — oo (the asymptotic step in the reference prior development) the right hand
side of (2.3.2) will typically converge to

exp{%/7’1(92“91)10%|h1(01’02)|d02}'

Interpreting this as the marginal reference prior for 8;, the natural next step is to multiply this
by #!(62]6,), obtaining the overall reference prior

7' (81,02) o 7'(6:]6;) exp {%/w’(ozwl)log|h1(01,02)|d92} .

But this is just the numerator in (2.2.2) (when m = k = 2 and for j = 1). The denominator
in (2.2.2) is just the appropriate normalizing constant. (Details of this argument can be found
in Berger and Bernardo (1989b). Even there, however, the argument is intended to just be
heuristic, in that no attempt is made to construct conditions under which the limiting arguments
are sure to be valid. The point is that, while we consider this to be the motivation, we actually
define the reference prior via the algorithm in Section 2.2.)
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Further stages (when m > 2) are handled in exactly the same manner yielding (2.2.2) as
the stage-to-stage updating formula. The net result is #'(8), the m-stage reference prior on
the compact ©'.

The final step of the development is to pass to the limit in /. Again as in Bernardo
(1979), the most general way to do this is to define the !-posterior

pley . _PEOT(O)
@) = Tl 0)(0)

and the reference posterior
m(f}z) = lim x'(6|z) (2.3.3)
-— 0

(the limit perhaps being in a distributional sense). If there exists a prior such that

7(8)z) = _p(zlf)x(6)
/ p(2]6)m(8)d6

then () would be called the reference prior.
Under reasonable conditions, however, () can be more simply calculated as

7(6) = lim () (2.3.4)

~c0 T (")
where §* € ©! is any fixed point. (The main condition is that the posterior obtained from
this 7() be proper.) When m(8) can be obtained through (2.3.3), but not through (2.3.4),
the situation is somewhat pathological (see Section 4.2 for an example), and we would not
then have much faith in the entire heuristic argument. Hence we opt for the simple definition
(2.3.4). The above argument is meant to be only heuristic, and does not provide our definition
of a grouped reference prior; the definition is given via the algorithm in Section 2.2. (For
a partial indication of the difficulties of making the heuristic argument precise, see Berger,
Bemardo and Mendoza, 1989).

3. THE MULTINOMIAL DISTRIBUTION

Calculation of m-group reference priors for the multinomial distribution is comparatively
simple because all distributions involved turn out to be proper, and the integrations in (2.2.1)
and (2.2.2) can be done in closed form. In Section 3.1 some preliminary formulas are given;
Section 3.2 develops the m-group reference prior; Section 3.3 investigates properties of the
reference prior; Section 3.4 is discussion.
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3.1. Preliminaries

We write the multinomial density for (k + 1) cells as

k

n! . -

p(re, ..., relr,...,0) = - (HG‘.-) (1-6)""T, 3.1.1)
(T met) (=t \ia

where r; is the observed frequency in cell z, 4; is the probability of cell 7, n is the total number

of observations,
k J

T=E1‘i, and 6J-=Z€,-.

i=1 i=1
(Note that, in our notation, we will suppress the cell count and probability for the (k + 1)st
cell))

We assume that the 6; have been ordered and grouped as discussed in Section 2.3.1 (see
also Sections 3.4 and 5), and freely use the associated Section 2 notation. Calculation yields

H(8:,...,6;) = n diag {67",...,67 '} + n(1—6;) " 1x,

where diag{} stands for the diagonal matrix with given entries, and 7 stands for the (k x k)
matrix of all ones. Further calculation yields

3(01,...,0k) = —1- diag{ﬂl,... ,6,;} - 10‘0
n n
From this, it is clear that

1. 1

n

and, since S; has the same structure as S, it must be the case that
H; = 87" = ndiag {67",...,05} } + n(1 - én,) " .
Furthermore, an easy calculation yields

|h;| = determinant of the lower right (n; x n;) comer of H;

Nj

n; - -1

=am [ T 67 (-6n,n) 1=6n,)7 . (3.1.2)
i=Nj1+1

Thus we have available, in closed form, all the quantities needed to apply the reference prior

algorithm. For use in the following, define the constants

! (@)

e sy A N VEN T ED B

(3.1.3)

for all positive integers I.
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3.2. The Multinomial m-Group Reference Prior and Posterior

All distributions that will be encountered have finite mass, so that there is no need to consider
a compact sequence {©'}. Hence all formulas in Section 2.2 will be applied with the “I”
superscripts removed. Note also that, here, (2.1.1) becomes

f(i+1 : all elements of 6,4,y are positive}

o) = {

their sum is less than (1 — éy;)
The following lemma provides the crucial calculational development for the reference

prior.

Lemma 3.21. Forj=1,...,m,

h: (9)11/2 Nj _ o _
|h; (9)] ot T 072) (1= w02 (1 sy 2.
IhJ(g)II/ng(J) iI=N;1+1

O(815-1))

(3.2.1)

Proof. Apply Lemma A2.2 in Appendix 2, with s; = —% and ¢t = —1, and use equation
(A2.1). 4

Theorem 3.2.2. The m- group reference prior is given by

m k m—1 :
7(0) = (H C,;}) (Ha;*) (H (1—6N,.)-%"-'+‘> (1-6n,)"F . (3.2.2)

i=1 i=l

The m-group reference posterior is

k m-1
w(Olr, .., %) o (Ha{*'%) (H (1—5N‘.)'%"-'+1> (1-6n,)" "% . (323)

i=1 i=1
Proof. Since the |h;(6)| satisfy (2.2.6), Lemma 2.2.1 yields
Tj+1 (0110115 0)1 2 1oy, (Bi))

L im@nag
O(81;-11)

From (2.2.4), (2.2.2), and Lemma 3.2.1 it follows that

i (Bf~(i-111015-11) =

k m
7(6) = ( 0#) IT [Ca} (1=awp) 0772 (1= 6w, 7H].
Jj=1

j= j=1

Telescoping the product yields (3.2.2), and (3.2.3) is immediate from 3.1.1). 4
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Special Cases. Two interesting special cases are the 1-group and the k-group reference priors.

Case 1: The one-Group Reference Prior. If m = 1, (3.2.2) yields

k
=(9) = C;'* (H 0,-'”2) (1-8)Y2, (3.2.4)
i=1

which is, of course, Jeffreys’s noninformative prior.

Case 2. The k-Group Reference Prior. If m = k (i.e., all group sizes are n; = 1), then (3.2.2)
yields

k
w(6) = (v [T [677 (1 - 87277 (3.2.5)

This is actually the reference prior that we will recommend for typical use.

3.3. Properties of the Reference Prior and Posterior

3.3.1. Marginal Distributions

The marginal probability distribution of (ry, . .., ) is also muitinomial, with cell probabilities
61,...,0; and sample size n. (All other observations are lumped together into the new (I+1)st
cell, which is the union of the (I + 1)st through (% + 1)st cells in the original multinomial.)
It is of considerable interest to see whether or not the m-group reference prior “marginalizes”
consistently, in that the reference prior for the “collapsed” (I+ 1)-cell multinomial be the same
as that obtained by finding the marginal distribution of 8, ..., 6; from the original m-group
reference prior. The following lemma provides the answer. For simplicity we assume, with
the exception of (3.3.3), that the marginalization is done over groups.

Lemma 3.3.1. For the prior n(0) in (3.2.2), the marginal reference prior for 61y, ...,0;) is

j Ny j-1 .
7l'm(9(1),...,0(]-)) = (H C;il) (H 0;7) (H(l —6N'.)—5"‘+‘) (1- 6NJ.)_1/2 .
i=1

i=1 i=1
(3.3.1)
The marginal reference prior for 91y is
ny 1
my(0)y) = Gy (H b; ’) (1-6,,)7%, (3.3.2)
i=1
while that for 0, ,...,0;, when |l < ny, is
C Lo
T.(01, ..., 00) = %ﬁ ( e;’) (1= §)ma=t=1)/2 (3.3.3)
" i=1
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Proof. The expression for m;) follows from Lemma A2.2 in Appendix 2, applied iteratively
forl=m,m—1,...,j+ 1 withall s; = —1 and ¢ = —1; note that

t+nz+EN' si=—2+nm—-iny=-1+in,
i=Np_1+1 2 2 2

and
Ny . n
j i —1 = Liy—c .
i=NIxIx+lB(s,+1, t+N1 l+1+2p=i+lsp) EB(Z’ 2) Cru

The expression for =(y; is immediate. The formula for my ; follows from iterative
application of Lemma A2.1 in Appendix 2, for p = n,,...,{+ 1, with 6 = 8,, s = —-1/2,
t=(n1—p—1)/2,and6=6p_1. q

Typically, of course, one will be interested in the marginal posteriors, rather than the
marginal priors. These are immediate from the marginal priors, however; simply multiply by
the likelihood from the corresponding marginal multinomial distribution. For instance, the
marginal posterior for ;) is

ni ri—i _ym ri—%
mBpylrss- s rmn) o (T, 657F) (1= b,y ZR0memt

i1

(This could, of course, also have been obtained by calculating the marginal density of (1)
from (3.2.3).) .

To return to the question posed at the beginni.ng of this Section, we see that (3.3.1) and
(3.3.2) are of exactly the same form as (3.2.2). Hence, if we reduce consideration to the first
J groups of parameters 61, . . ., f;), the answers obtained by marginalizing from the original
m-group reference prior are identical to the answers obtained by treating the j groups as a
“new” multinomial problem. This property may be viewed to be valuable, because of the
following well known example.

Example. Suppose we have the muitinomial model with 6,,...,0,,. Consider the 1-group
reference prior, which is Jeffreys’s prior, here

701, 0n) o ([T 67%) (1= 6,72

t=1
The posterior means of the §; are then

7',‘+%

E[B,-lrl,...,rm] = m .
’ 2

Now suppose one notices that the (n — 5 [}, ;) observations in the (n; + 1)st cell
could have been further subdivided into ny + 1 new categories. (Say one discovers a new
classification scheme into n, categories for elements in this cell.) Then one has the apparent
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option of adding v, 4+1,...,7n,4n, and 0ni4+1,...,0n,4n, to the multinomial model. If one
did so and used Jeffreys’s prior, which would then be

nitnz -
T(01,...,00,4n,) X (H 11 ; 1/2) (1= 6ny4n,) "2,

i=
a calculation shows that the posterior means of the §; would now be
T + %
n+ %(n1+n2+1) ’
The creation of new cells can thus have a pronounced effect on posterior beliefs about existing

E0;|ry,...,rn 4n,) =

cells.

The m-group reference prior is essentially immune to this difficulty, since the marginal
prior (and posterior) for, say, 6,y is the same no matter how many additional groups (or
cells) are added. This needs two qualifications, however. The first is that the marginalization
property does not hold for all groups; it holds only for an initial sequence (6(1),. .. ,0;). Of
course, by construction it is 6,y that is supposed to be of interest, so that this should not be
an objection.

The second limitation of the marginalization property is that it does not hold within, say,
f¢1). This can be seen from (3.3.3), where the marginal reference prior is not of the form
(3.3.2), and is hence different from that which would have been obtained had the problem been
originally confined to (6, ...,8;). We defer further discussion of this issue to Section 3.4.

3.3.2. Moments of the Reference Priors
For comparing and understanding the group reference priors, it is useful to have expressions

for their moments.

Lemma 3.3.2. For N;_; + 1< 1< N; and =(0) defined by (3.2.2),

2 s r . -1
E"[0;]=HH_1+(2TL-]S] :

i=1p=1
Ifalln; =1,

(2s)! 1
E'[0;]= __(g-’s!)y] .

If s = 1 (but n; is arbitrary)
j
E"o] =] +n),

i=1

Finally, the mean for the (k + 1)st cell is

E*[1-6n]= ﬁ(l +n;)7 L

i=1

Proof. This is similar to the proof of Lemma A2.2 in Appendix 2, using Lemma A2.1 itera-
tvely. 4
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34. Discussion

The multinomial scenario dramatically demonstrates how the m-group reference prior can
“decouple” groups of coordinates. Thus the inferences obtained for 6(1y will depend only on
(r1,...,7n,) and n, and not on what happens in other cells (or how many other cells there
are). This is a natural property when, indeed, 6, is of interest and the other parameters are
nuisance parameters. (Note that standard noninformative priors, such as Jeffreys’s prior, do
not have this property.)

The desirability of this property can, however, be questioned. It requires an asymmetric
treatment of the 6;, and in problems where there is a small number of fixed “indistinguishable”
cells, such asymmetry may be unappealing.

To dramatize the difference, consider the two extremes of the 1-group and the k-group
reference priors in (3.2.4) and (3.2.5). From Lemma 3.3.2, one sees, for instance, that the
prior means of the 6; are (1 + k)~! for the 1-group (Jeffreys’s) reference prior, but are 2~*
for the k-group reference prior. Thus the 1-group reference prior treats the 6; equally, while
the k-group reference prior gives exponentially decreasing mass to the 6; as i increases.

This situation clearly demonstrates the impossibility of unambiguously defining “nonin-
formative”. Initially it seems reasonable to insist that a noninformative prior for a multinomial
problem be exchangeable, and to require that it have the marginalization property; but these
requirements are completely incompatible!. Through consideration of a variety of examples
we have convinced ourselves that the marginalization property is typically more important,
and hence that the k-group reference prior in typically more attractive, but some flexibility is
clearly required. In particular, if one has a small number of cells of interest, between which
exchangeability seems very natural, it would clearly be tempting to use a 2-group reference
prior, guaranteeing the marginalization property for the group of parameters of interest, while
preserving exchangeability within the group. Thus, one might well want to be “subjectively
noninformative”™,

If it is only () that is of interest, note that there is no reason to even formally consider
use of an m-group reference prior. The result will simply be that obtained by collapsing the
original multinomial to the (n; + 1)-cell multinomial, with cell probabilities determined by
6(1), and then using Jeffreys’s prior for 8(1)- Thus, in practice, one needs to formally use the
m-group reference prior only if more than the first group is of interest. Of course, this will
typically be the case if the recommended full k-group reference prior in (3.2.5) is utilized
and several of the §; are of interest.

4. VARIANCE COMPONENTS

The determination of m-group reference priors for the balanced variance components problem
is of interest, not only methodologically, but also because it provides an interesting illustration
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of the techniques (and possible difficulties) of the general limiting derivation of #(8) via
(2.2.5). Section 4.1 presents the model and the m-group reference priors. Section 4.2 discusses
some of the interesting technical issues that arose in the development. Section 4.3 briefly
discusses using the reference priors in posterior calculations.

4.1. The Model and Reference Priors

We consider the balanced variance components model
Xij = p+a; + € ) i=1l,...,p and j=1,...,n,

where the o; are iid. N(o;|0,7%) and, independently, the ¢;; are iid. N(e;;(0,02). The
parameters (p,72,0?) are unknown.

Since there are only k = 3 parameters it is easy to list all m-group reference priors. The
possible ordered groupings are given in Table 1, along with the associated reference priors.
Note that Jeffreys’s prior is that associated with the single group {(p,o?,7%)}; the prior
suggested by Box and Tiao (1973, p. 251) is that associated with {4, (62,72)}. Observe that
Cy, is typically very near 1, and that /n — 1 < %(7%/0?) < /n; thus, replacing C,, by 1
and ¥ by a constant is reasonable for all but very small n.

Ordered Grouping Reference Prior
{(n, 0% %)} o=2(nr? + o2)-3/2
{(”762), 7'2} 6_5/2(11,1'2 + 0.2)—1
2
{o?, (1, %)) o~ (nr? 4 o2)~3/2
2
{r, (w,0%)} . lo=2(ns? 4 o2)~ 12y (1'_2_)
o

{n, (‘72’ 72)}' {(‘72’ 1_2), v}
{I‘; 6’2, 1_2} U—Z(nTZ + 0,2)—1

{2, 8,72}, {02, 72, u}

. 2
{8, 72,02}, {#%,p,0%}, {2,062, u} 7~ Cng=2y (;_2)

Cn = {1 = Va=T1(va+va=-1)"%, $(r*/6%) = [(n ~ 1) + (1 + nr?/a?)"}/2,

Grouping of parameters is indicated by parentheses.

Table 1. Reference priors for the variance components problem
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As indicated in Section 2.3.1, we are most favorably disposed towards the last two
reference priors in Table 1, since they correspond to the various 3-group reference priors
(each group having only a single element). Note that, among the 3-group reference priors,
only the order of o2 and 72 affects the answer; thus there are only two 3-group reference
priors instead of the possible six. Thus all that need be specified, in order to determine the
3-group reference prior, is whether o2 or 72 is deemed to be of more importance.

4.2. Determination of the Reference Priors

In Appendix 3, the development of the reference prior for the ordered grouping {p, o? r? }
is presented. This analysis is typical of the analyses for all cases in which C,, does not occur.
The analysis for the C,, cases is considerably more technical; see Berger and Bernardo (1989b)
for details.

To implement the algorithm in Section 2.2, compact sets © must be selected. In deriving
the reference priors in Table 1, nested boxes of the form

O' = (ar, b)) x (c1,di) x (e1, f1),  for (p,02,72), (4.2.1)

were chosen, where a; — —oo,¢; and ¢; — 0, and the upper endpoints — co. This would,
intuitively, correspond to a presumption of prior independence among the parameters. In most
cases, the precise choice of the endpoints in (4.2.1) was immaterial to the result. Disturbing
exceptions were the third and last reference priors in Table 1, where the reference prior actually
depends on

If this limit does not exist, there is no reference prior for these situations. If the limit does
exist, the third and last reference priors are, in general, as given in Table 1 but with C,
replaced by

Ca(m) =1=A(n* = N)(n—- )72, (42.2)

where A = v/n —1/./n. Recalling that (c;, d;) is the range for 0’2, the implication is that we
must specify the relative rate at which we are “noninformative” about log 0’2, as ¢ — 0 and
0% — oo, to determine the reference prior. In Table 1 we made the natural choice n = 1, but
the need to make such an extra choice is clearly unfortunate.

For the third prior in Table 1, it is indeed not even possible to choose a value of 1 such
that 7 < A(vBA+3 — 1)/(3) + 1), for then it can be shown that C,, () > 4/3 and the prior
will have a nonintegrable singularity at 72 = 0, a singularity which persists in the posterior;
these values of 7 thus lead to unusable reference priors. (As mentioned in Section 23.3, we
could have defined 7(6) as a distribution yielding the “reference posterior” defined in (2.3.3).
Here the posterior defined by (2.3.3) would exist, but would be degenerate at 72 = 0. This is
clearly not very attractive.) Note that 7 = 1 does yield a proper posterior.
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Alternatives to ©; in (4.2.1) can also be considered. One reasonable choice is
2 2
@1 = {(/_1,0'2’7'2); unE (a,,b;), o° € (c;,d(), ;2- € (el,fl)} .

The point is that it is sometimes natural to be “noninformative” about the ratio 72/o? rather
than just 72 (cf. Hill, 1965).

If such ©' are used, the reference priors are as in Table 1, except for the second, third,
and last cases, which become o=3(n12 + 02)~1, r-35-2¢(72/0?), and 720" 2y(7%/5?),
respectively. These last two priors have nonintegrable singularities at 72 = 0, which persist
in the posterior, and hence are not usable.

4.3. Posterior Calculations

Note that the likelihood function is proportional to

=2
2 2y _ —(n~1)ps, .2 2\—p/2 _1 np(p —T)
0%, ™) = 0= DP(nr 4 62) exp{ |22t

nre 4 o? o?

$IEE Py | }

Also, all of the reference priors can be written in the form

(n-1) n?=2 /2
i
o8 (nr? 4+ 02)7

W(ﬂa 0‘2’ T2) ==

for certain constants a, 3,7, and p.

Finally, suppose one is interested in evaluating the posterior expectation of a function of
the form

2 .2 rs (T
e(p, 0%, 77 ) =p'o so(d—z),

a form which clearly includes all posterior moments of the parameters. Interestingly, this
calculation requires only one-dimensional numerical integration. To see this, first transform
to the variables (i, 0%, v), where v = 72/0%. It is then straightforward to integrate over u,
and then o2, in closed form. Only the final integral over v requires numerical integration.
See Berger and Bernardo (1989b) for details.

5. CONCLUSIONS

We have considered m-group reference priors as a possible solution to the clearcut need
in multiparameter problems for developing noninformative priors with limited dependencies
between groups of parameters (especially parameters of interest and nuisance parameters).
There are different possible views on the success of the solution.
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The least commital view is that the m-group reference prior method succeeds in gen-
erating a variety of interesting possible noninformative priors. For instance, (3.2.5) is very
interesting for its marginalization property (and is, to our knowledge, new), while several of
the priors in Table 1 have not been seen before. As candidates for in-depth study or for Bayes-
ian sensitivity studies, these can be very useful noninformative priors (especially because of
their ability to “decouple” parameters). In this regard, the 1-group (Jeffreys’s) and k-group
reference priors are likely to exhibit the greatest differences and, if a Bayesian analysis yields
essentially the same answer for either prior there is reason to be confident in the answer.

The more optimistic view about m-group reference priors, in particular about k-reference
priors (each group has only one parameter), is that they provide the best available “automatic”
priors for general use. Our preference for the k-reference prior is, for the most part, empiriéally
based. In all examples we have considered (including many of the *“counterexamples™ to
Jeffreys’s or other noninformative priors), the k-reference priors have yielded very sensible
results.

Our enthusiasm for k-reference priors is slightly tempered by two issues we have touched
on. First, they can be technically difficult or ambiguous to derive, especially when limits over
{©'} are needed. This can obviously reduce their pragmatic appeal, (although derivation of
the k-group reference prior could be considered to be the theoreticians job, in which case the
user is not affected).

The second difficulty with k-group reference priors is that they can depend on the ordering
of the parameters and it can be difficult to decide on a complete ordering, especially for the
nuisance parameters. One possibility is to order the parameters of interest, but group all
nuisance parameters together (or maybe have several groups, when natural). Ordering within
groups does not matter, and grouping nuisance parameters in rarely harmful, so this is often
a sensible resolution of the ordering problem. A second possible solution is to try several
different orderings, and see if it matters. (Note, indeed, that the ordering or groupings of
nuisance parameters frequently is immaterial, as in the multinomial problem.) A third possible
solution is to use the average of all the k-group reference priors from feasible orderings.

Many other issues could be raised. One of the most important is that of inference about
functions ¢(f,,...,0;) of the parameters. Reference prior theory (see, €.g., Bernardo, 1979
or Berger and Bernardo, 1989a) requires a reparameterization, with ¢(4,,...,8;) defined as
the “new” 6,), before the reference prior can be determined. Luckily shortcuts appear to be
available, so that it is not necessary to completely redo the reference prior development for
every function that is of interest. This work will be reported elsewhere.
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APPENDIX 1

Calculation of the h;

With the notation of Section 2.1, define B; = (Aj14j2---Ajj-1), j = 2,...,m, of sizes
(nj x Nj_y). It is straightforward to verify that, for j =1,...,m

h; = (A;; - BjH;_.1B;)™ (41.1)
and
H = H;_y + H;_,B; h; B;H; _, —H;-Bj , (A1.2)
-h;B;H;_, h;

where any entry containing a factor of Hy is to be omitted. Thus one may calculate the
matrices Hy,...,H,,, and hence hy, ..., h,, iteratively.

In the important special case where each n; = 1, no matrix inversions are needed above,
so that calculation of the h; is trivial if § is available. An even greater simplification occurs
if, in addition,

Biy1 = (ciBi, Aiy1i) (A1.3)
for some constant ¢;. Then, (Al.1), (A1.2), and (A1.3) can be used to show that

hy, = [Ai+1 iv1 + A — 2c; Ay i — B (A — Aigs i)2] - . (A1.4)

This is particularly useful when (A1.3) holds for all i, which often occurs in patterned co-
variance matrices, since then (A1.4) can used to iteratively determine all the h;, starting with
h, = A7}, and defining ¢, = 1.

APPENDIX 2

Integrations for the Multinomial Problem
For convenience, define .
Bleg)= [ e -l
and note the easily verified facts that

B(a+1,ﬁ)_ o and B(a,ﬂ+1)_ 8
B(e,f) ~a+B B(a,f) ~ a+p

Using these facts and observing that

B33 =r md B(}1)=2

induction on [ establishes the useful expression (see (3.1.3))

a=[IBG.%). (A2.1)



Ordered Group Reference Priors 21

Lemma A2.1. Ifs > —1and t > —1, then
1-6
/ 0°(1-6—6)'df =(1-68y°"""B(s+1,t+1).
0

Proof. Change variable to y = /(1 —§). 4

Lemma A2.2. Ift > —1 and all s; > —1, then

N; 3 t
(Hi=N,'-1+1 b ) (1= ;) ddg)

O(0g5-11)
N; N;
= (1=bx,_) it [ B (541 t+N—it 1430, 0).
i=Nj_1+1

Proof. Observe that
1- 6N_,' =1- 6N,'_1 - zf;ij_H.leiy

and then apply Lemma A2.1 iteratively for i = N;, N; —1,...,N;_1 + 1. 4

APPENDIX 3

Reference Priors for Variance Components

We apply the algorithm in Section 2.2, with the ©' defined by (4.2.1). Note that the Fisher
information matrix for (, o2, 72) is

n
(n12 +02) 0 0
2 oy p(n—1) p pn
Hp, 0% %) = 0 [ 204 2(n7t2 4 02)2] 2(nr? +02)?
0 pn pn?
2(nt2 + 02)2 2(nt? +02)2
so that
24 52
(nr? + o?) 0 ‘ 0
pn
204 204
S, 0%, = —_— T
ootr) p(n - 1) pn(n = 1)
0 2t 204 2(n7? + 02)?
pa(n—1) |pn2(n—1) pn?

We shall analize the 3-group case {g,¢?,72}. In the notation of Section 2.1, 61y =
01 = u, 0(2) = 02 = 0'2, and 0(3) = 03 = r2, Also, S satisfies (A1.3), with Bg =0,c0 =1,
and A3z = —20*/[pn(n — 1)], so that

_ n
h1=0'111=-—2p—._2
nr<+o



Ordered Group Reference Priors 22

and (A1.4) yields
5 1-1
h, = [Azz + Ay — h1A11]

_pr-1
204
-1
h; = [433 + Asz — 2433 — hy (A2 — Aaz)z]
___m
T 2(nr2 4 02)2
Of course, hs could have been obtained directly from H.

Start: To begin,
1/2
|h3(/"70'2172)| / l(ehfl)(‘rz)
I 1/2
/ |ha(p, 0%, 72)|™* dr?

_ n(nr? + o2) ey 1)(73)
log[(nfi + o2)/(ne1 + 0?)]

m3(r?ln, 0%) =

Iteration for j = 2: Since h, does not depend on 72,
' log i, o%] = [ (tog [l (21, o)

pn—1)

= log |hz| = log 574

Hence
n(n7? +02) ", 1)(%)  [p(r = 1)/(204)] Y 1, 4)(0?)
el A et A T 100 P

(2]

my(0%, 7 |p) =

_ 2+ 0%) M () Lean(o?)
log[(nfi + 0?)/(ne;s +02)]  o2log(di/ci) *

Iteration for j = 1: Since neither M (u, 02, 72) nor 74(c'?, 2|p) depend on p,
E' [log [ (g, o, m)|u] = K(c, di, e, fi)-

Hence ! 2 2 ! 2 2
T (p,0% 1°) = 7 (p, 0%, 7%)

= my(0?, T ) (b — 1) M Lay 5, ().

Finish. Choosing, say, the fixed point (x,02,7%) = (0,1, 1),
7l'12(0'2, Tzl/“)l(al,bx)(ﬂ)

m(p,0%,7%) = Jim

—oo 74(1,1]0)
= Lim (m+1)  log(nfi+1)/(ne + 1)] 1ot (g, 02, 72)
=00 02(n12 + 02) log[(nfi + 02)/(ne; + o?)] oI
(n+1)

= 72 (nr? + o%) (since f; — oo and ¢; — 0).

The proportionality constant (n + 1) is irrelevant, so c~2(n72 4 ¢2)~! s the reference prior.



