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1. Introduction

The purpose of this communication is to outline the heuristics of a Bayesian approach
to building statistical models for the analysis of the kinetics of cloning and subcloning
experiments in microbiology. As a preface to this, in section 2, we will discuss the mi-
crostructure, i.e. detailed structure such as IDT and family tree, of cloning experiments,
briefly discuss the models they have generated and point out some limitations of such
studies. In section 3 we discuss the macrostructure of cloning experiments, i.e. ignoring
the fine structure of colony formation and instead looking at the large structure of cloning
experiments such as colony size distribution. We then discuss subcloning experiments and
their uses and point out the need for statistical models to analyze the kinetics of cloning
and subcloning experiments. In section 4, we outline the heuristics of a Bayesian approach

to modeling the kinetics of cloning and subcloning experiments.

2. Microstructure of Cloning Experiments

In many experiments whose point is to study cell kinetics of colony formation, here-
to-fore referred to as cloning experiments, a sample from a population of cells is plated
out in media and the formation of colonies is observed through a fixed period of time.
In one class of experiments of this sort, the objective is to study the microstructure of
colony formation, i.e. to record complete information on interdivision times and pedigrees.
These provide data on the kinetics of individual cells in pedigree. Experiments of this type
include those of Kelly and Rahn (1932), Powell (1955, 1958) Powell and Errington (1958),
Kubitschek (1962) and Schaecter et al (1962).
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The data on interdivisional times of cells from these experiments motivated a number
of efforts to model the kinetics of individual cells. In particular, there were a number of
efforts to find a theoretical form for the generation time distribution, denoted f(7), which
would be consistent with the data. A variety of models were proposed based upon various
hypothetical mechanisms, and usually fell into one of three classes: compartment type
models, size-dependent models or multitype branching processes. (This is not to say other
models don’t exist which are suggested by other forms of experimentation. The reader
should keep this in mind). The models of Rahn (1932) and Kendall (1948, 1952) were
compartment type kinetic models, while the later models of Koch and Schaecter (1962)
and Clifford and Sudbury (1973) was based upon a size control mechanism. The latter two
models also attempted to explain the observed positive correlation in life lengths generally
observed in the data. This was also the motivation in the queueing model of Kuczek
(1983) which was based upon the work of Cooper and Helmstetter (1968). Finally, very
general branching process models were developed, such as the Crump-Mode-Jagers (or
CMJ) model, but which were somewhat divorced from the biology. (For more details and

references, see Kuczek (1984)).

While the study of the microstructure of colony formation generated much data and
many models, their contribution to the understanding of cell kinetics was limited for several

reasons including:

1) The number of cells one could observe in an experiment were relatively small owing to
the difficulty in making observations. Also, difficulty of observation caused censoring.

This raises a question of how representative the observed cells were of the population -



of cells in culture.

2) Identifiability. A variety of models for some characteristic, such as f(7), fit equally well
to the data. If the data couldn’t differentiate between models, it couldn’t differentiate

between mechanisms.

3) There is typically a significant component of clonal heterogeneity and interexperiment
variability in interdivisional time data which cause difficulty in building and interpret-
ing models (see Kuczek and Axelrod (1986), Axelrod and Kuczek (1989) and Powell

(1958)).

3. Macrostructure of Cloning Experiments

In cloning experiments whose point was to study the microstructure of colony for-
mation, a subset of colonies were chosen for detailed study. The macrostructure of the
experiment consists of the entire population of colonies formed. In particular, the entire
distribution of colony sizes in the experiment is of interest (or some function thereof). Such
experiments often take on a comparative form. For example, in the human tumor cloning
assay (HTCA), biopsy tissue is plated out on either soft agar or agar plus chemothera-
peutic agent. The drug is assumed effective if the number of colonies of more than fifty
cells for the treated group is less than some percent of control. In this case only part of
the cumulative frequency distribution is of interest. i.e. only a part of the macrostruc-
ture. Another type of comparative study is to compare cloning of two cell lines whose
only difference is the presence or absence of a particular gene. For example, in Kuczek
and Axelrod (1987), one finds cumulative frequency histograms of cells/colony for NTH3T3
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mousefibroblast cells with and without the H-ras oncogene.

While the focus of microstructure studies was kinetics of individual cells in pedigree,
one could envision studies where kinetics of colonies in pedigree were the focus of interest.
This is in fact one purpose of subcloning (or respreading) experiments where colonies
from cloning experiments are subcloned (respread) and colony sizes of the subclones or
daughter colonies are recorded as well as sizes of corresponding mother colonies. Examples
of these go back to Hughes (1955) and are as recent as Kuczek and Axelrod (1987). In
these papers it was observed that a definitive tendency exists for colony size to persist. In
particular, it was noted in Kuczek and Axelrod (1987) that this tendency could be affected
by the presence of an oncogene. To generate a broad colony size distribution, however,
a tendency to diversify must also exist. One can see this intuitively from the data, but
for more detailed analysis of the data, statistical methods must be developed. A Bayesian
aproach to fulfilling this goal will be outlined in the next section as it applies to subcloning

experiments.

4. Bayesian Paradigm for Modeling the Kinetics of the Macrostructure.

For cells in steady state growth, we assume that there exists a distribution of growth
rates which are heritable in the short term. This means that when cells are plated out,
that each colony formed will grow at some rate a, where o has a prior distribution F(.).
One may think of « in the following sense. If we let Z(t) = colony size at time ¢, and if

this colony is growing at rate «, then

Z(t+1)/Z(t) ~ exp(ar).
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This idea of growth rate is consistent with the Malthusian parameter for the Bellman-

Harris process (see Kuczek (1982a)).

It is the case, however, that two different cells, even if they grew at the same rate «,

need not produce colonies of the same size after a fixed interval of time owing to:
1) asynchrony of the founder cells
2) random fluctuation in generation times in the first few generations.

Again there are analogues for the Bellman-Harris process. The analogue to 1) is that
Ar(z) =5 A(z)

where A4(z) is the empiric age distribution for the super critical Bellman-Harris process

where A(z) has a particular form (Kuczek (1982b)). The analogue to 2) is that
Z(t)/ exp(at) 25 W

where W satisfies a certain integral equation (see Athreya and Ney (1972)). We will
therefore assume that

Z(t) = X exp(at)

where X is a random variable which accounts for 1) and 2) above, and « is the (randomly

distributed) growth rate.

With this in mind, one can now approach the problem of modeling the distribution of

colony sizes in the following fashion. Suppose that we are given a sample of colony sizes

Z1(t), Z2(t),...,2Zn(t)
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which were observed at the end of a cloning experiment, and assuming that
Zj(t) = X; - exp(eyt),
then we may transform the data by taking logs. This yields
log(Z;(t)) = log(X;) + a5 - t.
Now making a further assumption that G is the distribution of log (Xj;), F is the distri-

bution of a; -t and that elements of these sequences are independent of each other, then

the sequence log Z;(t) are i.i.d. with distribution function F % G(-), i.e. the convolution of

F(:) and G(:).

Now assuming that the data have this statistical structure, it is necessary to find
actual forms for F(-) and G() in order to describe either the colony size distribution or

the log-colony size distribution. There are two possible approaches.

Approach 1. One approach would be to estimate the generation time distribution from
the data for a particular growth rate o denoted f,(-) from existing data on interdivisional
times (summaries of such data have been previously published in Kuczek and Axelrod
(1986)). This data can also be used to obtain information on the variation of growth
rates a. Then one can use existing branching process theory to derive a form of G(-), i.e.
by deriving the age distribution and approximating distribution of W. The beha.vior of
F(-) could be approximated by estimating the observed variability of interdivisional times

between small families.

Approach 2. This approach is more intuitive and is based upon the observation by
Kubitschek (1962) that generation time rates, i.e: the reciproca.lS of interdivision times,
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when plotted on normal probability paper, produce straight lines for a wide variety of
organisms. He had demonstrated this for several previously published data sets. It is
known that clonal heterogeneity of growth rate exists, so an alternative explanation of
Kubitschek’s results could be suggested, i.e., that a is distributed (approximately) normally
and this gave the observed straight line normality plots. In addition, the subcloning data
presented in Kuczek and Axelrod (1987) show that growth rate differences of subcolonies
compared to mother colonies also exhibit approximate normality. So then one could, as a

starting point, approximate F(-) and G(-) by normal distributions.

Up to now, there has been nothing Bayesian except an attempt to specify a prior
distribution on growth rate, F(-). The application will come in attempting to explain

subcloning experiments in the following fashion.
Step 1.Observe, in cloning experiment, primary colony of size z.

Step 2.Compute posterior distribution of growth rate a for this colony, given that it is

of size z.

In step 2, the colony size distribution is given by F % G(-). Since F and G are normal,
one can use standard calculations to get the posterior distribution of a given £ which may

be found in Press (1982).
Step 3.Predict distribution of subcolony sizes.

In order to carry out step 3, one must specify a transition kernel which will give a
probability distribution of the growth rate of the daughter colonies. That is to say we

must specify a stochastic mechanism for diversification of rate. Let o denote the growth -



rate of the mother colony and o' denote the common growth rate of the daughter colonies,
and P(a,a’) the transition kernel. Then if Post (a|z) denotes the posterior distribution
of growth rate of a mother colony given that it is of size z ne could use this to predict the

distribution of growth rate of subcolony which is given by
/P(a, a') Post(da|z).
If subcolony sizes are distributed as
X exp(a't),
then one can again calculate, at least in principle, the distribution of
log(X)+ o -t

and compare it to the data.

What is of interest in the application is that in choosing F' and G we are guided by
the data, but the choice of P(a, ') is left to the researcher who may wish to test various

potential patterns of diversification over time.

In this way kinetics of colony growth over time could be elucidated. The actual
analysis with existing data will be treated in a later manuscript where we will address the

following questions among others:
1) How heritable is growth rate?

2) How can particular genes affect this heritability?
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