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In this article we discuss the weak convergence of stochastic integrals and of solutions of
stochastic differential equations. The differentials are semimartingales, which have been shown by
the Bichteler-Dellacherie theorem to be the most general reasonable stochastic differentials possi-
ble. See Protter [4] for all background on semimartingales, stochastic integration and differential
equations, as well as for an exposition of the Bichteler—Dellacherie theorem. All results in this arti-
cle were obtained jointly with Tom G. Kurtz, and proofs and details can be found in Kurtz—Protter
[2].

Naively, one would like a theorem that if a sequence of semimartingales Y,, converges weakly to
Y, and if predictable processes X,, converge weakly to X, then Y is a semimartingale and f X,.dY,
converges to f XdY. However one immediately runs into the problém of interpreting the weak
convergence of X,, to X, since one cannot use the reasonable path spaces C or D (continuous and
right continuous, left-limited functions, respectively; we call the latter cadlag henceforth, after its
French acronym). One approach to this problem has been taken by Pages [3], but it is not useful
for applicatiéns. Here we follow the approach of Jakubowski, Mémin, and Pages [1] and restrict
our attention to integrands X,, which are adapted, cadlag processes. We then seek hypotheses such
that if (X,,Y,) are defined on a sequence of spaces (Qy,, 7, P,,) with X,, adapted, cadlag, and
Y, semimartingales, and such that if (X,,Y,) = (X, Y), then [ X, (s—)d¥n(s) = [ X(s—)dY (s),

where the notation “=>” denotes weak convergence of the distribution measures on path space.

We begin with a technical definition. Fix an integer m and let Dgm |0, co) denote the space of

cadlag functions mapping [0, 00) to R™. Let z denote a generic element of Dgm[0, 00) and define
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hs : [0, 00) — [0, 00) by hs(r) = (1 — 6/r)*. Define Js5: Dgm[0, 00) — Dgm[0, o) by
Ja(2) () = D_ hs(|5(s) — s(s=)[)(z(s) — 2(s-))
<t
It is easy to check that z — Js(z) and £ — z — Js(z) are continuous in the Skorohod topology,

and further that if (z,,yn) — (z,y) in the Skorohod topology, then so also does
[ ants-adstun)ie) = [ as-)ads(u)e).
o

Let us next recall the classical definition of a semimartingale. Let (%):>0 be an increasing
sequence of o—algebras. A cadlag, { % }-adapted process Y is a semimartingale if it can be decom-
posed as Y = M + A where M is an {%}-local martingale and the sample paths of A have finite
variation on bounded time intervals, that is, there exists a sequence of {# }-stopping times, 7,
such that 7, — oo a.s and for each k, M™ = M(- A 7) is a uniformly integrable martingale, and
for every t > 0, T;(A) = sup |A(ti4+1) — A(t:)| < oo a.s (where the supremum is over partitions
of [0,¢]).

An R™-valued process is an {% }-semimartingale, if each component is a semimartingale. Let
M¥™ denote the real-valued, k x m matrices. Throughout, [ XdY will denote [ X(s—)dY (s).
Every semimartingale Y has associated to it an increasing, right continuous, adapted pro.cess [Y],
known as the quadratic variation process of Y. This process is often easy to calculate, or to

estimate. Indeed one has the following facts concerning [Y] (see [4] for proofs):

(1) let 7, be a refining sequence of partitions of [0, ] with lim mesh (r,,) = 0. Then

nli»nc}o Z (Yt. - }’ti—l)z = [Y]t

ti€Tn

with convergence in probability;
(2) Y2 - Zf(:' Y(s—)dY (s) = [Y];, with the convention Y (0—) = 0;

(38) if Y = M is a local martingale, and if E{[M];} < oo, then M is a martingale and
E{M?} = E{[M]:};

(4) if M is a local martingale, then M? — [M]; is also a local martingale;
(5) if Y is a continuous semimartingale with (unique) decomposition Y = M+ 4, with 49 =0,
then [Y] = [M];
(6) if Z = [ X(s—)dY(s), then [Z] = [ X(s—)3d[Y],;
(7) if Z is the solution of
dZ = f“ £i(Z(s=))dY*(s),

=1
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for semimartingales ¥;, 1 <1 < k, then
2= X [ M sEe-Dar, v,
1,7

where .[Y",Y-'"] = H{[Y* + Y7] - [Y?] - [Y7]}; in particular, if (BY,..., B¥) is an R*-Brownian

motion, and if

k
dZ = Z fi(Z(s-))dB (s),

then [Z]; = EkI f(: fi(Z(s—))?ds, since [B*, BY] = 0 for ¢ # j, and [B*], = ¢.
=1

In view of the preceding discussion, the next theorem is particularly useful for applications,
since its hypotheses are usually easy to verify. (Another version of this theorem, with essentially
equivalent hypotheses which are in a more obtuse form, can be found in [1]). For a finite variation
process A let T(A) = fg |dA,| be the random variable denoting the total variation of the paths of
A on [0,¢].

THEOREM 1. For each n, let (X,,Y,) be an {#"}-adapted process with sample paths in
Dprm X R™[0,00), and let Y, be an {7"}-semimartingale. Fix § > 0 (allowing § = o0), and
define Y;! =Y, — J;5(Y,). (Note that ¥;¥ will also be a semimartingale.) Let Y, = M2 + A% be a

decomposition of Y¥;? into an {#"}-local martingale and a process with finite variation. Suppose

(*) For each & > 0, there exist stopping times {r,} such that P{r¢ < a} <1 and
sup,, E“Mg]t/\‘r,‘: + 1115/\1': (Afz)] < co.

If (X,,Y,) = (X, Y) in the Skorohod topology on Dygkm xgm [0, ), then Y is a semimartingale
with respect to a filtration to which X and Y are adapted, and (X,, Yy, [ X,.dY,.) = (X,Y, [ XdY)
in the Skorohod topology on Dygemygmxgk[0,00). If (Xp,Y,) — (X,Y) in probability, then the
triple converges in probability. '

Remark For ¢ > 0, define 72 = inf{t: |MS(¢)| v |MZ(t—)| > c or T¢(AS) > c}. Suppose the following

conditions hold.
(i) {T:(AZ)} is stochastically bounded for each ¢t > 0.
(ii) For each ¢ > 0, sup, E[MZ(t A 75)% + Tinre (43)] < co.

Since supy<q|M](t)] = sup,<, |V (t) — A% (t)] < sup,<o|Ya(t)] + Tu(AS) is stochastically
bounded in n for each o, there exists cq so that P{rs= < o} < 1. In addition E[[MJ];p,ca] =
E[(ME(t A 12=)?), and (*) is satisfied with r* = rSe.

For § < oo, (ii) above will usually be immediate since the discontinuities of ¥;? are bounded in

magnitude by § (making Y;? a special semimartingale) and there will exist a decomposition with
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the discontinuities of each term bounded by 26.

We next turn our attention to stochastic differential equations. We wish to consider systems

of equations of the form (1 < < k)
] . m t a -
Xi=vi+Y. [ Fixs-)av:
§=170

where U* are cadlag, adapted processes, and F; are coefficients which are functionals, allowing
dependence on the past. Such equations arise in applications such as stochastic control theory.

Natural hypotheses on a sequence F;, of coefficients (and a limiting coefficient F) might be:
(i) For each compact subset X C Dg«[0,00) and t > 0, sup,¢ ysup,<,|Fn(z, s)—F(z,s)| — 0.

(*#) (ii) For {z,.} and z in Dg«[0, ) and each ¢ > 0, sup,<;|zn(s) — z(s)| — O implies

sup,St|F(a:,,, s) — F(z,s)| — 0.

(iii) For each compact subset X C Dg«[0,00) and ¢ > 0, there exists a continuous function
w:[0,00) — [0, 00) with w(0) = 0 such that for all A € Al, sup,cysup,<,|F(zo],s) —
F(z, Ms))| < w(v(A))- ’

The above conditions imply that if (zp, y,) converges to (z, y) in the Skorohod topology, then
80 also (%, Yn, Frn(2zn)) converges to (z,y, F(z)). Nevertheless, for technical reasons, we need a
slight strengthening of (*#), involving properties of F,, and F under transformations of the time
scale. Let T3[0, c0) denote the collection of nondecreasing mappings A of [0, 00) onto [0, 00) (in
particular A(0) = 0) such that A(t + k) — A(t) < h for all £, h > 0. Let ¢ denote the identity map
i(s) = s. We will assume that there exist mappings Gn, G: Dg«[0,00) X T1[0, 00) — Dygem[0, c0)
such that Fy,(z)oA = Gy(zo), A} and F(z)oA = G(zo), A) for (z,A) € Dg«[0, c0) x T1[0,c0). We

further make the following assumptions on G,, and G:

(i) For each compact subset X C Dge [0, 00)xT1[0, 00) and ¢ > 0, sup(, x)e x SUPs<¢|Gn(z, A, 5)
— G(z, A, 8)] = 0. |
* %)
(ii) For {(zn,An)} € Dgx[0,00) x T1[0,00), sup,<;|zn(s) — z(s)] — O and sup,<,|An(s) —
A(s)| — 0 for each ¢ > 0 implies sup,<;|G(zn, An, ) — G(z, A, s)| — 0.

Note that (* * %) implies (#%). Let M*™ denote k X m real valued matrices.

Examples Let g: R* x [0, 00) — M*™ and h: [0, 0c0) — [0, 00) be continuous. The following functions

satisfy (+*) and have a representation in terms of a G satisfying (x * *):
a) F(z,t) = g(=(¢),1)

b) F(z,t) = fg h(t — s)g(z(s), s)ds



Fork=m=1
c) F(z,t) = sup,<.h(t — s)g(z(s), s)
d) F(z,t)= sup,_<_th(t — 8)g(z(s) — z(s-), 3)
Using vector and matrix notation, for n = 1,2,... let F,: Dg«[0,00) — Dpgem [0, 00), let Uy,
and Y, be processes with sample paths in Dg«[0,00) and Dgm|0, c0) respectively, adapted to a
filtration {7*}. Suppose Y, is a semimartingale and that F,, is nonanticipating in the sense that

Fp(z,t) = F,(s%t) for all t > 0 and z € Dg, [0, 00), where z*(-) = z(- At). Let X,, be adapted to
{7"} and satisfy

1) Xo(0) = Un(t) + |  Fa(Xn, s-)dY(s),

and let X satisfy the limiting equation:

() X() =6+ [ " F(X, s-)dY (s).

We say that (X 7) is a local solution of (1t) above if there exists a filtration {%} to which X, U
and Y are adapted, Y is an {#%}-semimartingale, 7 is an {%}-stopping time, and
tAT
X(tAr)=U(tAT) +/(; F(X,s—)dY (s).
We say that local uniqueness holds for (11) if any two local solutions (Xy,71), (X2, 72) satisfy
X1 (t) = X2(t), t < 71 ATa, a.8. See Protter [4], Chapter V, for sufficient conditions for uniqueness.

The next theorem can be found, together with a proof, in Kurtz—Protter [2]. It improves upon

results of Slominski [5].

THEOREM 2. Suppose that (Uy,, Xy, Yy,) satisfies (1), (Un, Ys) = (U,Y) in the Skorohod topol-
ogy and that {Y,,} satisfies (*) for some 0 < § < co. Assume that {F,} and F have representations
in terms of {G,} and G satisfying (*#). For b > 0, define n} = inf{t: |F,(X,, )|V |F (X0, t—)| >
b} and let X2 denote the solution of

t
X2(t) = Un(2) +/ Lio,n3) (s=)Fn (X2, s—)dY,
0

that agrees with X, on [0,78). Then {(U.,X2,Y,)} is relatively compact and any limit point,
(U, X%,Y), gives a local solution (X?,7) of (11) with 7 = n° = inf{t: |F(X% ¢t)| v |F(X?,t-)| >
c} for any ¢ < b. If there exists a global solution X of (t1) and local uniqueness holds, then
(Un, Xn, Ya) = (U, X, Y). ‘

Applications of Theorems 1 and 2 to statistics, filtering theory, economics (finance theory),

and M. Emery’s martingale structure equation are given in Section 3 of Kurtz—Protter [2].
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