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ABSTRACT

The problem of finding classes of estimators which improve upon the usual (e.g.
ML, LS) estimator of the parameter matrix in the (G)MANOVA model under (matrix)
quadratic loss is considered. Unbiased estimators of risk differences for certain classes of es-
timators are obtained via combining integration-by-parts methods for normal and Wishart
distributiohs, thereby extending results in Gleser [10]. A comparison of two related classes
of estimators is made, and an analytic proof for risk dominance is obtained in a special
case. Also considered is application to use of control variates in simulation studies to

achieve better efficiency.
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1 INTRODUCTION

The general multivariate analysis of variance (GMANQOVA) model was formulated by
Potthoff and Roy [22] as a generalization of multivariate analysis of variance (MANOVA)
that could be applied to compare growth curves across treatment populations. This model
has the form

U=A,04;+E, E~N(0,I, @ ), (1.0)

where U is an n X r matrix of observed data on r = ¢ + p dependent variables, 4, is a
known n x m design matrix of rank m < n and A; is a known p X r matrix of values of
rank p obtained from p covariates (possibly including the covariate of time). The m x p
parameter matrix © contains the unknown slope parameters which are to be estimated.
Following conventions for representation of distributions of random matrices given, for
example, in Muirhead [21], E ~ N(0, I, ® 2) means that the rows of E are i.i.d. r-variate

normal random vectors with common mean vector 0 and covariance matrix (.

There has been considerable research done on the estimation (e.g. maximum like-
lihood) of © and © in this model (Rao [23], Geisser [8], Gleser and Olkin [12]), and
particularly on developing testing procedures for various functions of © Kariya [16]. In
addition, Hooper [15] considers invariant confidence set estimators of ©. Kariya [16] gives
an overview of the GMANOVA problem. In this paper, advantage is taken of the Stein
effect to give classes of estimators improving upon the usual MLE, the maximum likelihood

estimator, under various loss functions.

For any estimator 6 = §(U) of ©, two types of loss function will be considered: a

matrix loss (Bilodeau and Kariya [5]) and a scalar loss. The matrix loss is defined to be
L(56,0) = (5 - ©)Q(5 - ©) (1)
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where @) is a known p-dimensional positive definite matrix. For any known ¢ x m matrix

G of rank t < m, the scalar loss function
L*(6;0,Q) = tr[GL(; 4, £)Q'] = tr[G'G(§ — ©)Q(6 — ©)] (1.2)

is the trace of GL(6;0,Q)G'. As usual, the risk of an estimator § is defined to be the

expectation of the loss over U:
R(6;0,9Q) = E[L(§(U);0,Q)], R*(60,9Q)= E[L*(§U);0,0).
One estimator §; is said to dominate another one 8 in risk under L(§;0, Q) if
R(62;0,9Q) — R(61;0,02) >0 forall © and 9,

Domination in risk under L clearly implies dominance in risk under L*, but not necessarily

conversely.

If © is the MLE of @, it is known that © is minimax under the loss

L*(6;0,0)

L**(5;0,Q) = — .
R*(6;0,9)

It follows immediately that any estimator §(U) which dominates © in risk under the loss
L*(6;0,) is minimax for © under the loss L**(§; 0, Q).
Recall that A, has the factorization

Ay = (T,0)T

where I' is the m x m orthogonal and T = (A245)'/? in nonsingular. It is well known

(Gleser and Olkin [12]) that a sufficient statistics for (0, Q) is
(Y, X) = (43 41) 7 A4 UT,

W =TU' (I, — A1(A} 4;)"A,)UT,

where

(Y,X) ~ N((“70)7 (A{l Al)_l ® Z)a W ~ WP+9(2’n - m)a
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where (Y, X) and W are independent. Here
p=0T, ¥ =rqr,

and W;(¥, v) represents the ¢-dimensional Wishart distribution with degrees of freedom v
and expected value v¥. Also, Y and p are m X p matrices, while X is m x q. Because
(Y, X, W) is sufficient for (©, 2), or equivalently for (i, ), it suffices to consider estimators
of © based only on (Y, X,W). Instead, one can consider estimators §(Y, X, W) of u and
convert these to estimators §(Y, X, W)T ! of ©. For this purpose, the loss function (1.1)

and (1.2) are replaced by
L(6;p, D) = (6 — p)T'QT (6 — ),
L*(8; 1, %) = tr[G(8 — W)T™'QT ~*(6 — p)' GY;

which simply redefines the weight matrix Q.

Consequently, the following canonical estimation problem will be considered. One
observes

(Y’ X) ~ N((ﬂ', 0)7 C ® Z), W~ WP+9(Z, n-— m), (13)
(Y, X) and W statistically independent,

and seeks to estimate y under either the matrix loss function

L(8;1,%) = (6 — 1)Q — ) (14)
or the corresponding scalar loss
L*(6; 4, T) = tr[GL(&; p, Z)G'] (1.5)

where C and @ are known p x p positive definite matrices and G is a known ¢ X m matrix

of rank t < m.

The MANOVA model is the special case of (1.0) with A, = I, (and ¢ = 0). Esti-
mation in MANOVA using the Stein shrinkage estimators has previously been confined
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to improving upon the MLE of © (or of u) under special assumptions either on the co-
variance matrix {2 or on the centering matrix (). Scalar loss functions have previously
been used. Thus, Stein [25], Efron and Morris [6] and Zheng [27] have treated the special
cases Q = Q =1I, (or Q =% =I,) and Q = I, Q = ¢%I,, o* an unknown positive
scalar. Brown and Zidek [7] and Zidek [28] treat the case where  is unknown, but @ is
chosen to be 27! (a rather special situation where the problem is invariant under affine
transformation). Recently, Bilodeau and Kariya [5] have obtained improvements on the
MLE under a matrix loss, but with @ = 271, The above results can ( and in some cases
have) be extended to GMANOVA contexts, but their applicability is limited by the strong

assumptions made.

The case where 2 is unknown and @ is known has been treated primarily in the
special case m = 1 (estimation of a normal mean vector). Berger, Bock, Brown, Casella
- and Gleser [3], Berger and Haff [4] and Gleser [9, 10, 11] have succeeded in developing ever
wider classes of minimax estimators dominating the MLE (in scalar loss). Their results
(particularly those of Gleser [10] and [11]) have recently been generalized to the MANOVA
model, under both matrix and scalar loss, by Honda [14]. Some limited extensions to
GMANOVA under scalar loss have also been obtained by Kubokawa and Saleh [17]. It
is the purpose of the present paper to give quite general classes of dominating minimax

estimators, under both scalar and matrix loss, for the GMANOVA model.

In section 2, the MANOVA model in canonical form is considered. It is shown in
Section 3 that results for the GMANQOVA problem can be reduced to corresponding re-
sults for the MANOVA problem by a conditioning argument (which also permits improved
estimators of certain functions of the covariance matrix 2 to be obtained). Analytic com-
parisons among the risks of the resulting estimators are also given. In section 4, it is shown
that the improved estimators developed for (the canonical form of) GMANOVA can be
used to increase the efficiency of Monte Carlo simulations in multipopulation multivariate

simulation experiments when control variates are used.



2. The MANOVA problem.

2.1 The problem and further canonical reduction

For the MANOVA model, Ay = I, and ¢ = 0. Consequently, the canonical model
(1.3) becomes
Y~Np,CRL), W~W,(2,n—m), (2.1)

where Y and W are independent and ¥ is unknown. The matrix parameter u is to be

estimated under either the matrix loss

L(&;p, ) = (6 — p)Q(8 — ) (2:2)

or the scalar loss

L*(6;p,Z) = tr[G(6 — p)Q(8 — ) G (2.3)

Without loss of generality this problem can be further reduced to the case where C = I,,,,

@ = I, and G is a diagonal matrix. To see this, note that the (observable) transformations
Y = F'C-12y Q2. W = Q1w Q2

can be made, where C1/2 and Q!/2 are the unique positive definite square root of C and

@ respectively, and F is an orthogonal matrix such that
F'CY2G'GCY2F = Dy, = Diag(M(G'GC),- -+, An(G'GC)),
where as usual \;(A) denotes the i** characteristic root of the matrix A. Then
Y~ N(i, In ®F), W ~Wy(E,n—m),

where

ﬁ' — Flc—l/Z“Ql/Z, 2 — Q1/2EQ1/2.
If 6(Y,W) is any estimator of i, then a corresponding estimator of p is

§(Y, W) = Cl/ng(F'C_1/2YQ1/2, Q1/2WQ1/2)Q—1/2
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and

R(8 4, %) = C12FE (5 — i) — i |F'C?
= C'?FR(6; i, £)F'C'/?,
R*(6;p,%) = Etr[GCEF(§ — )8 — ) F'C'/2@']
_ Btri (5 1, 5)

It is thus clear that é; dominates &, under the matrix risk R(6; i1, %) if and only if the corre-
sponding 6; dominates the corresponding 8, in risk under R(6; u1, X). Further, R*(6;,%)
has the form of R*(6; u, %) with G = D;éz replacing G and @ replaced by I,.

Consequently, in the remainder of this section it is assumed that C' = I,,, Q = I,

G= Diag(_gh""gm),

Y~Np,In®E), W~Wy(E,n—m), Y and W independent (2.4)
L(67 K, 2) = (6 - ”)(6 - “)I, (25)
L*(8; u, 23) = tr[GL(&; u, )G']. (2.6)

Note that (2.4) implies that the rows Y} of Y are independent, Y; ~ N(y,X), where y; is

the it* row of p.

2.2 Unbiased estimator of the difference in risks.

Suppose that § is an arbitrary estimator of u (such an estimator can be written as

S(Y,W) =Y —t(Y,W)). Let
A = A(p,X) = R(8; ¢, Z) — R(bo; 1, X),
where R(6; 4, X) = E(6 — p)(6 — p)',and 8 =Y.
The estimators that we will consider are of the form
2
6(Y, W) .— Y — h(Y, W)— n—*_—p'_—l’r’(Y, W),

where n* = n — m. Using the technique in Gleser [10], an unbiased estimator of A can be

obtained for estimators é§ having the form Y — ¢(Y, W), where

Y, W) = h(Y, W)+ ——gr (¥, W), (27)
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Y, W) = (hi(Y,W),...,hn(Y,W))' is a given matrix-valued function of Y and W, and
r(Y,W) is defined through A(Y, W) by
(Y, W) i (Y, W)
r(Y,W) = , iy, W)= : (2.8)
(Y, W) ™ (v, W)

and

OWh(Y,W))i 1 ) OWh;i(Y,W))e

O] —
T Y, W) = B 5

, (29)
O£ Owig

Here for any vector u (column or row), (u); always denotes the ith element of u. Also

define as usual the matrix

o= () = S

where u, v are k-dimensional vectors and « is a function of u, y(u) = (v1(u),...,vx(w)).

And define the matrices

J = JY, W) = (Jij) = (Jn; cv,m) (i),

Wil -+ Winm
WoJ=(WJ,-,-)=( : : )
WJml WJmm

and for any matrix N = (Nij)mpxmp Where N;; are submatrices, ¢,j =1,...,m, let
TrN = (t’r'N,'j)me.

Then the following result generalizes Theorem 1 in Gleser [10]

Theorem 2.2.1. Let h;(Y,W) (i =1,...,m) satisfy the regularity conditions of Lemma
A.2 (See Appendix) and let ¢(Y, W) be defined by (2.7)-(2.9). Define the estimator

5(Y, W)=Y — (Y, W).
Then if §(Y, W) has finite risk (each element of the risk matrix is finite),

A = R(6,p,%) — R(80, 4, Z) = EM(Y, W),
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where 1
M(Y, W) = t(Y, W)t'(Y, W) - mTR(W o) J(Y, W))

_ %TR(W o J(Y, W)

n* —

PROOF: First note that E tr ¢(Y, W)t(Y,W)' < co implies EL(6(Y,W); 4, T) < co. Now
A= E B, WY, W) - B (Y - (¥, W) - E[(Y, W)Y — )] (2.10)

The (7, ) element of E [(Y — p)t'(Y,W)] is

B (¥ = i) 5 W] = B [ = ) (8 W]+ o BI(Y: — i) (7, W),

By Haff’s identity (Appendix, Lemma A.2)

E [(Yi — pi)'hj] = E [trW = (Y; — u:)(Wh;(Y, W))']

_1 - 2

n* —
where T;(Y;, W) = (Y; — ui)(Wh;(Y, W)Y, the derivative
D1y T(Yi, W) = D(1y2)(Yi — pa)(Whi (Y, W)’
=ri(Y, W)Y — p:)
= (Yi — w)'ri (Y, W),
and the ** element of r; is defined as

OWhi(Y, W))i | 1 ¥ OWh;(Y,W))e
2 &

() -
ry (1, W) Ow;; Owiyg

) A,

N =

=1
Here, §;; is the Kronecker delta (6;; = 1 if 7 = j; 0, otherwise). Denote ¢ = 2/(n* —p — 1)
throughout this section,

B (¥ = ) 0 W)] = g B {Z (0, W] = ¢ B [(% = )7V, W)
+CE [(% — pi)'r; (¥, W)]
1 -1



Integration by parts (see Appendix, Lemma A.1) gives

E (¥ = i) 50, W) = e B tr[E T, W)
= o B T (G ) (W W)
1
= n*_—;—_lE tT[WJhJ- (K)]

Consequently,

E (Y = (Y, W)] = ————F [TaW o J(Y, W)

Combining this result with (2.10) yields the needed result.

2.3 Classes of improved estimators

2.5.1 Modified estimators using information between coordinates and repetitions.

The first class of estimators considered are based on a matrix-valued version of a

function considered in Gleser [10] for the case m = 1. That is,

5W)D. _
h(Y, = —t—YW! .
(¥, W) trYW-1Y! w (2.11)
where D, = Diag(c1,¢2,,¢m), ¢i > 0, for ¢ = 1,---,m and (W) is a positive scalar

function of W which is continuously differentiable as a function of the p(p + 1)/2 free

elements of W. Then resulting class of improved estimators of u is

_ Y(W)D. 1 :
6V, W) =Y = 2 (MY W™ 4 YT (W),
where M = I+ cYW™Y' /trY WY’ U(W) is defined as
_ 14 5,']' 0
UW) = ( 5 dus; log b(W)) . (2.12)
To see this, note for this choice of (Y, W),
ckb(W)

(Whi(Y,W)); = Yy Wiy ki

where (y;;) =Y. Also note that

0
Ow;;

YWYy = —(2 = 6i5) (Yo W H)(YaWw ™),



and

IWhi(Y,W));  cxdb(W) 1 _
Ow;; T Owyj YW1y %

(2 = 6ij)exb(W) = 1=\ (v T =1y
T arwiy)e ;(Y"W AL

Thus

(i) _ab(W) 1 6logb(W)
T (Y7 W) trYW- ]_Y[ 52 'J) w; i Ykj

14 6;5)(2 — 6;; m B '_
T 52 : trYJV)[/g—IY' 2 Z(YéW l)i(Yo,zW l)j'ykj}
J=1 a=1

k(W) — _
“W[ZU”“’ YW= IY,Z(Y’ YWY

?

and
(YU m
_ ceb(W) . 1 -1 1yr—1
rk(Y’W)_—_trYW‘IY’ : +WZW Y. Y WY},
YDYe
"
_ _ b(W)D, , YW-lY'Yyw—!
W= = aywy TV N =gy
rm

It follows that

2
t(Y, W) = h(Y, W) + TI,*_—;)—_].T(Y, W)
b(W)D, L2 YW-ly' 2

T YWw-ly! [ n*—p—1trYW-1Y"’ )YW_I + n* — 1YU’(W)]
= ———t:;(,vv[;)f;,(MYW-l +cYU'(W)),
Finally,
§=Y-y,W)=Y - tf}(,vvvv—)f;,,(MYW-l +cYU' (W), (2.13)

where U(W) is defined by (2.12).

Theorem 2.3.1. Suppose that h(Y, W) satisfies the regularity conditions for establishing
the Wishart identity (Appendix, Lemma A.2). Also, assume that U'(W)U(W) < W2,

10



where U(W) is defined by (2.12) and that

2(p—2a) n*—p-1 Nain (W),

< < in
0= b(W) - Cmazx (n* —-p+ 3)2 "

(2.14)

where p > 2a and a = (¢maz/Cmin)} 12 Cmez = max (¢i) 5 Emin = 1I<nln (ci) and Amin(W)

1<i<m

is the smallest eigenvalue of W. Then the estimator defined by (2.10) dominates §o(Y, W) =

Y in risk under the matrix loss (2.5).

NOTE: (i) The following common choices of b(W) satisfy the condition U'U < W2

BW)=ctrW™)"' and BW) = cAmin(W),

where ¢ is a constant (Gleser [10]).

(ii) If we take D, = I, then (2.14) becomes the more familiar condition

0 < H(W) < 2(p— 2)%%“14/).

PROOF: By Theorem 2.1.1, the unbiased estimator of the difference in risks is
MY, W) = (Y, W)t'(Y, W) — %TR(W o J(Y,W)) — g[TR(W o J(Y, W)

Then for any m-dimensional vector a # 0, by Lemma A.3,

B(W)
(trY W-1Y")
+¢\/a' D YU'UY'D.a)?.

dt(Y, W (Y, W)a <

~(v/a'D-MYW=2Y'MD,a

(2.15)

(2.16)

Denote Ag = YWY’ then M = I+cAo/trAp. Note that both Ay and M are symmetric
matrices. Then M2 = MM' = I + 2cAp/trAp + c2AgAo/(trAo)?. Also note the following

easy proven facts:
(i) For any p.s.d. matrix S,
S <(trS)I and (I+c )S(I+c )<(1+c)2
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(i) W2 < AZL (W)W

Therefore
MYW™2Y'M < )1 (W)MYW”IY'M

mn

Ao
tTAo)

A
-1 0
= A (W) [T+ e

min

)Ao(I +c
0

S (1 + 6)2/\_1 (W)A()

mn
and

(a'D-MYW™2Y'MD.a) < (14 ¢)?A72 (W)d'D.YW™'Y'D.a.

mn

Combining this with (2.6) and the assumption that UU’' < W2 yields

v} (W)
< 2y-—1 ! —1y-?
ad't(Y,W)t'(Y,W)a Y W-irT): I4+c+e) A ;,(W)d DYW™Y'D,a
b2(W) 2) Yw-ly!
= ——(1+4+2 'D————
ryw-iyr (L 20 A (W)a' Depmms
Therefore,
b2(W) Yw-1y'
! < 2 —_—
(Y, W)t (Y,W) < _—_trYW‘lY’(l +2¢)* 1L (W)D, YW1y D,
»*(W) 2y—1 2
< W14 2oz, ow)D2 (217)
On the other hand, the (¢,j) element of TRW o J(Y, W) is
tT‘[WJhJ- (Y',)] = tr[J(WhJ)(K)]
Because
__dW) o
Wh; = trYW‘lY’Y}
[ s — W) s it =
tT[JWhj (Vi) = b(W) , 1 e (2.18)
2WT’)2Y W~ Y}C] if 2 # Js

1t follows that

T(W 0 J(Y,W)) = — V) __ ( L — zY—W—l—Y'—) D,

trYw-1y? trYW-1Y?
_ W) Ay
T trYW-1Yy? (pLm — 2trA0 )De.
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By Lemma A.4 (see Appendix),

Ay Ay
—D.,+D,——<
trAy ¢ + ter 2Dca

and combining this with (2.17) and (2.18) yields

(W) 2y 2 1 4o
M, W) € o (14 200 AZL(W)HW)DE = ———(pl 220D,
1 Ao
T po 1P = 20
_ W) 2y 2 2
- trYW—-IYI ((1 + 26) mln(W)b(W)D n—p-— lpDC
2 Ao Ao
+n—p—1(trA De + D trdo )
1
ch(W)DZ [(n*—p+ 3)2 D}
S e HW)AZL (WD, — 2(p — 2a)I | DE.  (2.19)
<0.
Q.ED.
Observe that
Yw-1y! = Y!W-ly;
2 _ i !
tr |G Delpl - 23 5=y ] ;c' (p trYW—lY’)
= YWY,
> g2 . —_ Tt
- cmmgmzn ; (p 2trYW_1YI)
= Cming?m‘n(Pm - 2).
where gmin = 1Ln.i<n (gi), hence, from the first inequality of (2.16),
yW) (n*—p+ 3)2
2 < 2 2
tr[GCM(Y,W)] < " —p— DY WIT [trD%G a— bWHAZL (W)
- 2cmingr2nin(pm —2)]
<0
provided that
2emingin(pm—2) [ n*—p—1 ]
(W min Amin(W).
W= @+t ) [ —prap] )
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It follows that the condition on &(W) in Theorem 2.3.1 can be weakened in order to obtain

risk dominance under the scalar loss function L*. We have

Corollary 2.3.1. Let pm > 3, and let the conditions on (W) in Theorem 2.3.1 be
retained. Then § =Y — ¢(Y, W) defined by (2.13) dominates 6 = Y in risk with respect
to L*(6; p, X) provided

2¢ming2,;n(pm — 2) [ n*—p—1 ]
W) < min Amin(W).
( )“(C§gf+“-+63ng?n) (n* —p+3)? )

Another class of improved estimates can be obtained by considering a matrix version

of a function A(Y, W) proposed by Gleser [11] (see also Berger and Haff [4]). Let
MY, W) = coa(W)s(tr[Y WYY W1, (2.20)

where ¢g > 0, the scalar function s(-) maps [0,00) into (0,00) and is continuous and
differentiable, and the scalar function (W) is nonnegative, continuous, and differentiable

(with respect to the elements of W).

Then, using (2.8), (2.9), the usual calculus gives

r(Y, W)= ca(W)[s(v)YUW) - s'(0)Y WY'YW™1,

where
v =tr[YW™Y'],
dlog a(W i=1
Wi =J
UW) = (Ui;(W)), Us;(W) = { 10loga(W) . -
2 oW;; t # J-
Also,

Tr[W o J(Y,W)] = (¢r[W Jn,; (Y3)])
= ca(W)(ps(v)Im + 25' (V)Y W'Y,

In consequence,
2
HY, W) =h(Y,W)+ mT(Y, w)
= coa(W)s(v)[MgYW_l + n—*%YU(W)] (2.21)
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where

l
My=1I--~ 2__S0)ypay
—p—15(v)
Ao
- I + @ tT‘Ao
with
2 d),
AT T T —1s(v)

The new class of improved estimators is given by
Y, W)=Y — (Y, W) (2.22)

where t(Y, W) is defined in (2.21).

Theorem 2.3.2. Suppose that §(Y,W) =Y — t(Y, W) has finite risk, and that s(v) is
nonincreasing, U(W)U'(W) < W2, and

mm(W)

a(W) < ST

Define g(v) = cv [(n —p+1)s(v) — 25'(v)v)? — 2(ps(v) + 2vs'(v)] /(n —p—1). Then if

g(v) < 0for all v > 0, (Y, W) defined by (2.22) dominates Y in risk under the matrix loss
L.

PROOF: Using the same idea used in proving Theorem 2.3.1, and noticing that now

Ao 2 s'(v) . '
= = — v > <
M=M= I+c1tA , c —p—ls(v) 0 (since s'(v) < 0),
then
t(Y,W)t'(Y, W) < coaz(W)vsz(v)(l +c + )2 mln(W)I

Since a(W) < Amin(W)/(n — p — 1), it follows that ‘

cos(v)v

HY, W) (Y, W) < coa(W)s(v) ( (4o + —213-3)2>
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Then
MY, W)=Y, W)t'"(Y,W) — mE[(TR(W o J(Y,W)) + Tr(W o J(Y,W))']

___coa(W)S(’U) [es(v)v(1 + ¢y + ﬁ—?) —2(p+2v l: ))]

e )
- ncoa(W)1 [(n* — - —1)2 ((n* — p+1)s(v) — 25'(v)v)? — 2(ps(v) + 205" (v))]
= W) o)

<o.

Q.E.D.

Furthermore, the proof of Corollary 1 in Gleser [11] yields

Corollary 2.3.2. Under the assumptions of Theorem 2.3.1 suppose that s(v) satisfies
“condition h” of Berger and Haff [4]: that is, s(v) is continuous and piecewise differentiable.

Also suppose that for all v > 0,
0<ws(v) <1, s(v)+vs'(v)>0, s'(v)<0.

Then 6(Y, W) dominates Y in risk under the matrix loss L if §(Y, W) has finite risk and

cp satisfies
2(p—2)(n* —p—1)
(n* —p+3)°

Remark: If the scalar loss is considered, similar result to Corollary 2.3.1 is immediate

0<c <

with ¢; = 1.

2.8.2 Stein estimators applied row-wise

The estimators in Theorems 2.3.1 and 2.3.2 can be regarded as treating Y as if it were
a pm-dimensional vector. Except for the use of different constants c¢; to weight each row
of Y in Theorem 2.3.1, each element of Y is adjusted by the same function of Y and W to

produce a better estimator of 4. Instead, since the rows Y of Y are independent, Gleser’s

[10, 11] approach can be applied row-wise to Y. That is,

h(Ya W) = (hl(Y’ W)’ M) hm(Yv W))’a
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where

Y = h Y TN ———— k = 1 oo . . .
If
n*—p-—1
b < - . aNy min , = ,...’ ’
0 < b(W)er <2(p-—2) [(n*—p+3)2]/\ w), k=1 m
and

U'(Wu(w) < w2,

where U(W) is defined by (2.12), then the estimator of y obtained row-wise dominates
Y in risk under the usual square error loss. It is then easy to see that such an estimator
dominates Y in risk under the scalar loss L*(§;u,%). Although row-wise domination
is obviously necessary for domination under the matrix loss L(8; 1, %), it is not clearly
sufficient for such domination. Consequently the following theorem is of some interest.

Before stating this theorem, note that the estimator obtained from (2.23) is
Y, W)=Y —t(Y, W)=Y — (t1(Y1, W), -+, 1 (Y, W))', (2.24)

where
Ck b( W)

w6 W) = yrigy-iy;

[(1+ C)W—IYk + cU(W)Y4]

and ¢ =2/(n* —p—1).

Theorem 2.3.3 If h;(Y;, W) satisfies the regularity conditions for establishing the Wishart
identity (Appendix, Lemma A.2), and if U'(W)U(W) < W2, where U(W) is defined by

(2.12) and also

2p—2) n*—p-1
MCmaz (n* —p+ 3)?
Then the estimator defined by (2.24) dominates §o(Y, W) = Y in risk under the matrix

loss L(6; 1, ).

0<HW) <

Amin(W), (2.25)

PROOF: Using the the same argument in proving Theorem 2.3.2, by Lemma A.3 and

the assumption that UU' < W2, we have
d Y, W)t'(Y,W)a < B*(W)1 +c+¢)*a'D.D;'YW™2Y'D;' D.a
<BW)1 +2¢):2L (W)d' D.D;*YW™'Y'D;' D,a,

min
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where

Dy = Diag(vy,--+,vm), v = YiWy.

Staightforward matrix algebra however gives

tr [D;1/2YW‘1Y'D;1/2] =m

Thus A~V 2YW-Y'A~Y/2 < m],,, and

n—p+3

Y, W' (Y, W) < mb* (W) ( —

) Azl (W)D.D;D, (2.26)
On the other hand, the (z,j ) element of Tr[W o J(Y,W)] is

tr[W Th; (V2] = trlJowny) (Y]
Calculus then gives

t _[o-2ywety ifi=j;
rJown;)(¥i) = WY (2.27)
0 if 1 # 7.
Thus
Tr[W o J(Y,W)] = 4(W)(p — 2)D.D;"*

So by (2.26) and (2.27)

b(W)D D =1 (n — p+3)2
n* — i
<o.

MY, W) < B(W)AZL (W)D, — 2(p — 2)Imm| (2.28)

min

Q.E.D.

Remark 1. The common choices of (W) still work, e.g., 5(WW) can be taken as one of

the choices

W) =(n*—p—1)"pin(W), W)= (n*—p—1)"trWw 1]

Remark 2. Although we have obtained improved estimators, the analytic evaluation of
the potential gain (or savings) seems untractable, and numerical calculation or simulation

of risks becomes a necessary resort for this purpose.
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3 GMANOVA

3.1 Improved Classes of Estimates.

3.1.1 Distributional results and a heuristic estimator.

We now turn to the GMANOVA problem defined in (1.3)—(1.5). Using Theorem 3.2.10
in Muirhead [21] (and adopting the notations used there as well), it is easy to see that the
following holds.

Lemma 3.1.1. If (Y, X) ~ N((,0),%),
_(Wu Wi x
W= (W21 sz) ~ Weta(n”, 2),

and (Y, X) is independent of W, then
YI X ~Np+XB,In®Z112), X ~N(O,IL,® ),
Wire ~ Wy(k,Z112), k=n*—gq, B' =Wy,'Wa|Wa ~ NS, W5 ®Z112),
where
B = 122, Ziu2=21— 21225 %01, Witz = Wi — Wi W, Wy,

and Wiy.2 is independent of (Y, X), Wi, W, and, consequently, B.

As is well known Z =Y — X B’ is the ML and unbiased estimator of y. From this

Lemma, it is easy to see that
Z=Y-XB'=X-Xp'-X(B-25),
and Y — X' and X(B — )’ are independent. Using Lemma 3.1.1,
Cov (Z) = (Im + XW5' X") ® T11.2,

we then have

ZlX, W22 ~ N([.t, (Im -+ XW;ZIXI) ® 2)
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Let A=In,+XWi'X', Z* = A71/2Z, u* = A~1/2y, then

Z*| X, Wae2 ~ N(p*,Im, @ T). (3.2)
However, from Lemma 3.1.1

Y -XpB ~ Ny, In ® T11.2).

If 8 is known, then a direct application of Theorem 2.2.1 gives a class of improved estima-
tors. Since f is typically unknown, we substitute its unbiased estimator B for # in those

improved estimators and hence obtain our first class of estimators of u:
(Z,W)Y=2Z —-t(Z,W), (3.3)

where W = Was.1 (also £ = X22.1) by suppressing the subscript for notational brevity, and

__ W) -1 2
H(Z, W)= W17 (MZW™" + F—p 1ZU(W)) (3.4)
with £ = n* — q and
VV_I !
M=I+ 2 z Z

k—p—1 trZW-1Z'"

A natural question is if these estimators continue to dominate §; = Z in risk. In other
words since the distribution of Z is after all elliptical, i.e., of the form f((Z — )27 (Z -
©)'), and the problem is whether the estimator improving on the normal mean still better
than the MLE for this kind of distributional departure from normality. The answer is

positive at least under the total squared error loss and in fact we have

Theorem 3.1.1. Suppose the regularity conditions in Theorem 2.3.1 hold, and if pm > 2,
D > 2gmaz/gmin and

20min(Pm—2) n*—p—gq-1 :
< v min ’ t > 0. .
(V) < ]G] " —p—q 137 Amin(V), for any matrix V >0 (3.6)

Then the estimators defined by (3.3)-(3.5) dominate Z in risk (under L*, the total squared

error loss.)

20



NOTE. If G = I is taken, the condition is then simply pm > 2 and p > 2 and (3.6) becomes

(V) <

2(pm - 2) n —p—q-— 1 Amin(V)7 for any matrix V > 0.
m

(n* —p—q+3)

PROOF: By following the argument in Theorem 2.1.1., we can find an unbiased estimator

of the difference in risks. Let

__ W) -1 _ 2
hZ,W) = trZW—1Z'ZW , HZ,W)=h(Z,W)+ P— 1r(Z, W),
then
Ay = R(81; 1, %) — R(Z; 1, %) (3.5)

= B2, W)(Z,W) — (Z - )t (2, W) - H(Z,W)(Z — ).

The (3,5) element of E[(Z — u)t'(Z,W)] is

2

El(Zi — pi)'hj(Z,W)] = E_l— E tr[S7T5(Z:, W)] - p—— E tr[DyT(Zi, W),

p—1

where Tj(Z;, W) = (Z; — p:)(Wh;(Z,W))'. So if we let r be defined as in (2.4) and (2.5)
, then

BI(Z: — i) (2, W)] = -—— E r{S™T(2Z:, W)

k—p

- 5T EG- s WhE W) G)

Finally integration by parts (see Appendix A.5 for details and verifications) gives

1
BI(Z ~ W)(2,W)) = T—— BlA(pln — 2) (5.9
where H = ZW~1Z' [trZW~1Z'. Let the difference in risks Ay = EM;(Z, W), where the

unbiased estimator of A; is

1 bW
Mi(Z,W) =42, W (2 W) - =15 ng_)l =

1 (W)
k—p—1trZW-127'

A(pl, —2H)

(I — 2H)A. (3.9)
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Note that trST > 0 for any p.s.d. matrices S and T and trH = 1. Let T = XW,,' X'
Then A =1+ T. Using Lemma A.4 and taking trace of the second term in (3.9) yields

tr[G* A(pI — 2H)] = trG*(pI,, — 2H) + tr[G*T(pI,, — 2H)]
= tr(G*(pIm — 2H)] + ptr[G*T] — tr[T(G*H + HG?)]

min

> glin(pm —2) + (p — 2?’"" )ir[G*T]
Z (pm - 2)gf2m'n’
Then

(W)

tr[G* My(2,W)] < tr[H(Z, W) (2,W)] - —s

-2(pm — 2)g2;-

By the same argument in proving Theorem 2.3.2,

W)k —p—1)"" [(k—p+3)

tr[G2My (Y, W)] < WAL (W)tr[G?] — 2(pm — 2)

trZW-12! k—p—1 min
<0
Q.E.D.
3.1.2 Estimators by applying MANOVA results conditionally
Now we know that
Z*l.X, W22 ~ N(/.t*,Im ® 2) (310)

An application of Theorem 2.2.1 to this model (3.10) conditionally gives the improved
estimator 65(Z*, W) of u*, consequently, the estimator of u is given by

62(2,W) = A283(2* \ W), (3.11)
where
85(Z* W)= Z* —t*(Z*,W),
*( ry¥ _ b(W) * r7kyr7—1 2 *
t*(Z2*,W) = oI (M*Z*W~ + k'—p—lZ U(Ww)), (3.12)
and

2 ATV2zwlzia-ll

* _ —1/2Z MY*=1
Z7"=4 ’ + k—p—1 trA-1ZW-1Z!

(3.13)
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Formally we have

Theorem 3.1.2. Suppose the regularity conditions of and condition (3.4) hold, then
62(Z,W) = Z — t3(Z,W) dominates Z in risk under matrix loss where

(W)
trZwW-1Z'

and M* is defined by (3.13), U(W) is defined by (2.6).

2
— 7 ZUW)).

t2(Z, W) = (M*ZW~! +

n* —

PROOF: Easy, since
R(é2; 1, Z) — R(o; 4, T)
= BN EANT (6, — )8 — ) ~ (Z - 1)(Z — 1))
= EX W AR [BE X Wor (8] — 1) (85 ~ ) = (2" = w*)(Z7 - ) ))A%.
Q.E.D.

Similarly if the scalar quadratic loss L* is adopted, we have

Corollary 3.1.2. If pm > 3 and

2, n*—p—-q-1
W) S2(1%;)(”*—~10—q+3)2

Amin (W)7

then é2(Z, W) dominates Z in risk.

However, from Lemma 3.1.1, conditional on X and Wa,:

()~ (57 ). (0 wiz) )

Thus the problem is reduced to one of MANOVA. Let

(1) e (I X\ _(+XB\ _ 4
o=(5) =5 1) = (") =xe

Then classes of improved estimators (say, 67) for n can be easily obtained. Since, as
is pointed in section 2.1, for any matrix ¥, Ué; is an improved estimator of ¥zn. Let

V= Y, and ¥ = (I -X), then the iniproved estimator for ¥n(= p) is 6y, where
B
§1(V,W) = CY2§c(C2V, W) (3.14)
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with C = X* in the ¢ = 6 defined by (2.13). We therefore obtained a different class
of improved estimators for y. Moreover, by choosing different X* matrix we can obtain
improved estimators for the slope 3, in fact if let X* = (0, I) then (3.14) gives the improved

estimators for 3. Finally, other classes of improved estimators obtained in section 2 can

also be applied to the GMANQOVA model by this argument.

3.2 Comparisons of the Classes of Estimators.

Optimality is certainly what is always desired. However, when ¥ is unknown, none
of the improved estimators is possibly optimal (for example, admissible, even when m =
1, the usual normal mean estimation problem). It is hence of general interest to make
comparisons among those classes of improved estimators. For example, intuitively we
can expect 62(Z, W) to do better than §;(Z, W), since §2(Z, W) is in fact based on the
conditional sufficient statistics (Z, Wi1.2,B,X,Wa2) . Let the unbiased estimator of the
difference in risks of 6;(Z, W) over Z be M;(Z,W),i = 1,2. Then (3.8) gives M1(Z, W),
and Theorem 2.1.1 applied to (3.10) gives

My(Z,W) = A2 M*(Z2*,W)AY?,

where

2 b(W) 0 Z¥wW-1z*

M(Z" W) =25 W (25 W) — e w1z P ~ B gewige)

and t*(Z*,W) is defined by (3.12).

So
R(‘SZ; p#y L) ~ R(61; H, 2) = E(M2(Za W) - Ml(Za W)).

It then suffices to show My — M; < 0. But we are only able to show this for the case when
m =1, thatis, Z' = zisapx1vectorand z = y— Bz, A = I, + XW3,' X' = 1+2'W,'z,

then
2(p—2) bW)
k—p—12W-1z

Ml(;, W) = t'(z, W)t(z, W) — A

2(p—2) W)

My(z,W) = A%(¢' (2, W)t(z, W) — F—p—1 z'W—lz)’
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where
(W) 1
p—12W-1z

t(z, W) = : (k—p+ 1)W1z 4 2U(W)2).
Therefore

2(p—2) W)
k—p—12W-1z

My(2, W) = My(2, W) = (A2 — 1)t (2, W)t(z, W) — (A% — A)

By Lemma A.3,
: »(W) P L 012
t'(z, Wt(z, W) < o= p 12 W1z )z W2{(k—p+1)+2}
(W) (k—p+ 3)2
(k p— 1)Z’W IZ k— p— b(W))‘mln(W)
So
(W) A-1 (k —p+ 3)?
My = My < gt e 4+ ) S T ww w) - 20 - 2
<0
provided
6W) < o 2B ) in (). (3.15)

A+1(k—p+3)
But notice that A/(A +1) is clearly an increasing function of A(= 1 + z'W,'z > 1),

therefore we always have

A
A+1

Hence (W) < (p—2)(k — p— 1)/(k — p + 3)* Amin implies that (3.15) is true. So

IV
N =

My(z2,W) — My(2,W) <0, for all 2, W, and A,

which establishes

Theorem 3.2.1. Suppose the conditions in Theorem 2.2.1 hold, m = 1 and if

(p—2)(k—p—1) _
W) < Lt (W), k=n—g-1,

then 62(z, W) dominates é;(z, W) in risk.
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Remark. When ¥ is unknown, further comparisons (or admissibility) among (or of) Stein-
type shrinkage estimators seem to be extremely difficult to do. However selecting among
the class of improved estimators an optimal one seems to hinge upon employing prior
information about the unknown parameter, which makes a Bayesian approach necessary
in this regard. See Berger [1] and Berger and Haff [4] for possible Bayesian approach and

some other comments.

4 APPLICATION IN SIMULATION STUDY

Control variates method has been widely used in simulation studies as a means for
improving efficiency in the estimation of parameters. (See, e.g. , Wilson [26]). This tech-
nique collects sample data not only on the response(s) (say y) and also on some ancillary
phenomenon whose true means are known, then attempts to use this extra sample informa-
tion to construct an unbiased estimator of the response mean which has smaller variance
than the estimator y with the same amount of simulation. For example, consider one r.v.
y (a response variable for one population) with unknown mean p which is the quantity to
be estimated. Let z = (z1,...,,)" be a r.v. with known mean g, = (p1,...,u,) and be

correlated with y.

Since on each independent run of the simulation y and z result from a common
probabilistic structure (e.g., a multiserver queue) and sufficient large sample is in general
available, (y,2')" can often be assumed to have joint normal distribution (Lavenberg and

Welch [18]) with mean (uy, ) )" and variance matrix

o o
=%y Oy
( Ozy Yoz
Then n repetitions of a simulation experiment yield statistical independent observations

1 .
(Yi, T1i, %245+, 2pi), 1=1,2,...,n.

The usual regression (with random regressors) theory gives the LS (ML also) estimator of

7
ﬂ(b) =y— I/Vyacwva:_zl(E - .UZ)
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which is unbiased and has variance

Var ((b)) < Var (§) ifn>p+2 andpl,> ;lpi—2,
where
v ()| -9 ; AT
o L =)@ —7) X (2 —7)(zi 7Y
and py.; = (0y 252 oyl ayy)l/z, the multiple correlation coefficient of determination.

In addition to this usual variance reduction, the combination with the shrinkage
methodology offers an increased efficiency in terms of reducing the risks of the estimators
for the response mean under various loss functions. Moreover, the Monte Carlo experi-
ment in practice often involves more than one population and the responses are all vectors.
(The simulation literature has largely dealt with one population case, however the mul-

tipopulation case is mentioned in Rubinstein and Marcus [24].) Suppose the populations

(responses) are Y/, i =1,...,m and Y; is a p X 1 random vector, the control variates used
respectively for the responses are X3, ..., X,,, which are ¢ X 1 random vectors with known
mean vectors (say) 0,...,0. Further assume the joint distribution is

(YvX) ~ N((H,O),I‘X’ 2),

where

Y=(Y!,...,Y), X=(X....,X"),

b= (et 0=(0,...,0).

Suppose we have (say) n independent runs of the simulation experiment, namely,
Y@, x@  i=1,...,m, j=1,...,n
and (Y, X) with

Y=, T, V==Y v,

—_— f— _— 1 ]
X=0X,..,X.), Xi= ;ZX-(’),



and

n [ 2@ -TyrP -7y SEP-7THx? -X)
i=1

Wi = v
=\ X x99 -XHYY -7y ) xP -X)XP Xy
= =

Wyy Wy
W:cy Wiz
then
1
Wi ~ Wotg(2E, m(n— 1),

— Eyy ny
2‘(&y2”)’

The usual control variates technique leads to the use of Z; = Y - —fBi and B, =

where

Wy W, in order to attain maximum variance reduction if the correlation between Y and
X are reasonably high. This can be achieved in practice by choosing appropriate control

variates. Note that

Cov (Z|X, W) = (I + XWX ® T

and

EZ = p, a constant matrix.

Then
Cov (Z) = EXWez B Cov (Z| X, Wis)

=EXWee ([ + XWX ®Zyye

q
= E(I; + ——__1Iq) ® Lyy-z

d—gq

d—1
= (d—q——qu) ® Zyy.z,

since E oW lz; = q/(d —q—1) for any ¢ = 1,2,...,m, where d = m(n — 1), the degree
of freedom of W. Straight algebra then gives that

Cov (Z) £ Cov (Y),

provided

-1/2 -1 -1/2 q
S5y P ST Ty Sy * 2 7T
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In other words we need the canonical correlations to be all at least as large as p(n —
1)~1I. Moreover, a direct application of the results in section 3 would further improve the

estimator Z,, since

(7, %) ~ N((1,0), =2,

and

1
Wi ~ Wysg(m(n = 1), ~5).

And then the resulting improved estimators can be easily obtained through (3.11)—(3.13),
which in fact is given by

81(Z,Wh) = Zy — t(Z1,Wh)

where

_ (W) -1 2
t(Z17W1) - tTZ1W_1Z{ (ZlWI Ml + d_q —p— 1Z1U1(W1))’
_ 2 VAVAL o
My =1+ d—gq—p—1trZyW-12}’
and

146;; 0O
U(w,) = ( +2 J 5 ]ogb(Wl)) .
ij

APPENDIX

A.1. The first lemma concerns a well-known integration by parts identity due to Stein

[25].

Lemma A.1 (Integration by Parts). Let z ~ N,(0,%), v = (71(2),...,7p(z))’, and v(x)
satisfy the regularity conditions for integration by parts. (See pp. 362 in Berger [2]). Then

we have

E(z — 0)'v(z) = EtrEJ,(z)(),

where J,(;)(z) = (5‘%‘-7_,-(:1:)), provided the integral at the right side exists.

A.2. Lemma A.2 (Wishart Identity). Let W ~ W, (2,n) and T(W) = (¢;;(W)) satisfy
the conditions on T(W) specified in Haff [13]. Then we have

Etr[WIT(W)) = n_lﬁ(Etr[E_lT(W)] — 2Btr[ Dy oy T(W)])
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provided the expectations exist, where

1 0 1 ¢=3
D(1/2)=(2—6,-j6w,-,->’ 6ij={0 t# 7,

and consequently, tr[D /5 T(W)] = E aw ti+ 3 E aw ;
t#J '

PROOF: Equation (2.1) in Haff [13] with A(-) = 1.

A.3. Lemma A.3. For any two p x 1 vectors z, y(z # 0) and any two scalars c;, ca,

|yl \2 [lyll
||| Izl

where || - || is the usual Euclidean norm in RP.

) < lewr + eayl® < ||z)2(ler] + |ealrimi)?,

llzll*(lex] = lealy

Proof. See for example Gleser [10].

A.4. Lemma A.4. Let H,F be m x m symmetric matrices. If 0 < H < I and
F > 0, then HF + FH < 2aF, in the sense of semi-definiteness of matrices, where
a= (/\m(w(F)/)\m,-n(F))l/2 is the condition number of F'.

PROOF: Since F' > 0, there exists G > 0 such that F' = G?. It then suffices to prove that
G™'HG + GHG™" < al. For any matrix A, let A\(A) denote any one of its eigenvalues.
Since M((al —G'HG + GHG™1)/2) =a— MN(G~1HG + GHG™)/2), it suffices to show
that A(GT'HG + GHG™1)/2) < a. By the Singular-Value Decomposition, there exists
orthogonal matrices U and V such that G"'HG = UDV where

D = Diag( M2 (HFHF™),... A2 (HFHF™),

and \;(A) denotes the i** eigenvalue of the matrix A. Let Q = UV and P = V'DV, we
then have G"! HG = QP, where the matrix Q is orthdgonal and P is positive semi-definite.
(This is known as the polar-decomposition of a matrix, see for example Marshall and Olkin

[20], pp 498-501). Then for any vector a such that (a'a)!/2 = 1, we have

-1 -1
a'(G HG‘;GHG )a _ a'QPa < (a’QQ'a)I/Z(a'P’Pa)l/Z = (alplpa)l/z.
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Consequently, the classic Courant and Fischer representation of eigenvalues gives

G'HG +GHG™!
2

( ) < A2(P'P)=\/*HFHF™)
However (see for example Marshall and Olkin [20], pp. 246 - 248),
N(HFHF™) < Amas(FH2F)Amag(F~ H2F™Y).
But 0 < H < I implies H? < I and F > 0 implies \'/?(F?) = A(F), then
MNHFHF™) < Amaa(F)AZL (F).

min

Therefore
A

G-'HG + GH™! (Am>1/2
5 ) < = a.

)\min

Q.E.D.

A.5. (PROOF of Equation (3.8) in section 3.1.1.) Since A >0, 4 =5'S = S? where
S is symmetric and S > 0. Then from (3.7) we have

B(Z — w2, W) = ——— B (2 — u)(h(Z, W)W

k—p

-1 SsE@ - sz, WywsY,
k—p—1
where
. W _ (W) o/
Whi(SE5W) = pszmw1ges 02 )i

Noting that ZF ~ N(p*,X) and applying Lemma A.1 to the (7,j) element of the integral
yields that

E (Z{ — p}) S 'Whi(SZ*,W) = E [tr[Jws, (sz+,w)(Z])]]

_ ™9 WW) .\ 9Z
=5 lt" (; aZx (trZW‘lZ'Z]) az;)

Straightforward calculus gives that

a W) orilp W2, 7;

ZtrZW—12'"7 " trZW-1z'  (trZw-12')2’
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where 6j; is the Kronecker delta. Also note that Z = SZ* and Z; = Z * Ser and taking

derivative directly yields
0Z;

0z}
Then the (z,7) element of Tr[W o J(Z,W)] is

= S,'kIp.

_bhw) - (SZW—1Z");)
trlJown)(Zil = op=igi (P — 2 =i -
Then

_ (W) Zw-1z'
E (Z* — p*)(h(SZ* 2 =S e———(pl, - ———).
( p)R(SZ*, W)W ) StrZW_IZ’(pI trZW_IZ’)

o 1 yW) Zw—z'
E(Z - p)t(2,W) = k—p-—1 B trZW‘lZ'A(pIm 2trZW‘1Z’)'

Q.E.D.
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