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ABSTRACT

For the usual 2-factor additive model, there has been comparatively little work in
the ranking and selection literature for the case of unequal sample sizes (unequal
variances). The existing papers (e.g., Huang and Panchapakesan (1976), Gupta and
Hsu (1980)) do not give explicit procedures unless assuming an equal number of
observations and equal variances. However the case of unequal sample sizes may
arise in many natural settings, say in the problem of designing an experiment for
comparing treatments in the presence of blocks of different fixed sizes, where one
may assign an equal number of experimental units to each treatment within the
same block. A Bayesian approach to the problem is taken, leading to computation
of the posterior probabilities that each treatment mean is the largest. In addition,
a Bayesian version of ANOVA (including estimation and hypothesis testing) will be
considered. Calculation of the quantities of interest involves, at worst, 5-dimensional
numerical integration, for which an efficient Monte Carlo method of evaluation is
given. An example is presented to illustrate the methodology.

KEY WORDS: Unbalanced designs; Hierarchical Bayes; Exchangeability; Monte

Carlo Integration; Ranking Probabilities.



1 INTRODUCTION

Consider an experiment in which there are two factors A and B, with A having I

levels and B having J levels. Suppose the observations can be modelled as
Yiik =p+a,~+ﬂj+e.-_,-,,, k = 1,...,KJ'; 1= 1,...,I; j= 1,...,.]; (11)

here y;;i is the kth observation on the combination of the ith level of A with the jth
level of B, p is to be thought of as an overall mean, a; and B; respectively describe
the two main effects, and ¢;;; are independent and normally distributed with mean
zero and variance o2, which can be known or unknown. The K; may differ, allowing
for analysis of unbalanced designs. We do not require 3°1_; ; = E}-’ﬂ B; =0, but will
instead consider o; and B; random as in a random effects model. The motivation here
is to allow the modelling of exchangeability among the «; and/or the §;. As has been
evidenced in the extensive empirical Bayesian and random effects literatures, there
are many practical contexts in which such an assumption is warranted and desirable.

If one is interested in selecting the largest main effects from a Bayesian perspective,
quantities of interest include (posterior) estimates of the a; and B;, together with their

standard errors, and posterior probabilities such as

pi» = Pr(q; is largest|data, Hj is false), 1 =1,...,1, (1.2)



p.j = Pr(B; is largest|data, Hy is false), j = 1,...,J; (1.3)

here H} and H? are the ANOVA type null hypotheses
Hy:ey=--=a;, H:8 =---=8,.

The inclusion of these hypotheses is allowed, but not required, and they can be
tested individually or simultaneously. A very attractive feature of the unbalanced
mc.)del considered here is that all the above quantities can be calculated with at most
five dimensional numerical integration, no matter how large I and J are.

There have been many Bayesian papers in the literature dealing with ANOVA or
selection and ranking problems. Among them are Hill (1965), Box and Tiao (1968),
Lindley and Smith (1972), Smith (1973), Lindley (1974), Goel and Rubin (1977),
Dawid (1977), Ghosh and Meeden (1984), Gupta and Yang (1985) and Berger and
Deely (1988). Most related to this paper is Berger and Deely (1988) in which a
hierarchical Bayesian approach to ranking and selection in one-way classification was
proposed. In that paper, the important point was made that, when the variances
are unequal, “order reversal” can occur, i.e., the order of the sample means need
not coincide with the order of the ranking probabilities. We will consider a related
hierarchical Bayesian solution to the two-way classification problem. Advantages that
can accrue from the Bayesian approach, besides the simple fact that answers can be
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obtained in difficult unbalanced problems, include:

1. A probability vector is obtained which gives the chance of each parameter being
the largest. This provides a fairly complete and easily interpretable answer to

the basic selection problem.

2. If hypothesis testing is desired, Bayesian measures of evidence concerning the
usual null hypothesis Hy: no treatment difference, are easier to interpret than
the corresponding P-values (cf. Berger and Sellke (1987)). Also, estimation,

testing, and ranking can all be done simultaneously.

3. Relationships among the parameters, such as an a priori belief in exchangeability

can be incorporated into the analysis.

4. The method can be readily extended to apply to three-way and higher classifi-

cation problems.

Section 2 gives the classes of prior distributions that will be considered. Section 3
presents the main results. Section 4 discusses the method of computation. Section 5

considers an example.



2 THE PRIOR DISTRIBUTION

The most convenient way to model exchangeability among the factors is through a
hierarchical Bayesian approach. We will use a three stage model. The first stage

priors are
p~N(w,02), a;~N(0,03), B;~N(0, 03), all independently; (2.1)

where w and aﬁ are known. For all three priors a “noninformative” prior option

will be allowed, namely a constant prior density can be selected. (The same effect is

achieved by sending the first stage variances, az, o2, or a?,, to infinity.) The second

stage is given by

m(os) = (1-e)lo(02) + emi(od),

m(03) = (1—e)lo(od) + e2m3(03), all independently; (2.2)
here Iy is the degenerate distribution which gives unit mass to the point zero, and 7}
and 73 are arbitrary (but must be proper if hypothesis testing is desired). The third
stage is given by

Pr(e; =0) =mn; =1- Pr(e =1),

Pr(eg=0) =72, =1-Pr(e; =1), all independently; (2.3)



here 7; and =, are specified prior probabilities of Hf and HZ, respectively. The third
stage probabilities could have been incorporated into the second stage; having the
third stage, however, makes it easier to keep track of the calculation of posterior
probabilities of the n.ull hypotheses and simplifies notation. (Note that there is a
1-1 correspondence between {e, = 0} and {Hj is true}. If we use Hj to denote the
alternative hypothesis, then {e, = 1} is equivalent to {H} is true}.)

A traditional noninformative choice for m; (I equals 1 or 2) would be , and will
be used in all examples. The following noninformative and informative choices for
the ny, | = 1,2, will be considered.

If I and J are both greater than 3, a reasonable noninformative choice for 7} (o?)
is 7}(02) = 1, where 7 can be a or 3. However if I < 3,J < 3 or both are less
than or equal to 3, then this choice may result in improper posteriors. Following
Berger and Deely (1988) the noninformative priors given below (having a form typical
of noninformative priors for variance components) will be used to insure that the

posterior density is proper:

1
*(o?) = 2.4
Ty (aa) 0,2/ E;:l KJ + 0'3 ’ ( )
J
73(02) = [[(c*/IK; + 02) 7. (2.5)
=1

Two different classes of subjective proper priors will be considered, so as to allow
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investigation of robustness with respect to the prior.

(I) The first class of priors to be considered is

(m-1)c

xi(07) = ¥ oot

(2.6)

where m > 1 and ¢ > 0 (cf. Berger and Deely (1988)). If one were to subjectively
elicit the median and third quartile of this prior, to be denoted, respectively, by p s

and p.7s, then ¢ and m would be

-2 log 2
c= P.7s Ps5 m=1+ og

(ps)? ~ " log(lpas — psl/ps)

(It is assumed that the elicited quartiles satisfy ps < p75/2; if not, a different func-
tional form should be used.) It is interesting to note that, if ¢ = 3-’=1 K;/o? and
T = a, the noninformative prior in (2.4) is the renormalized limit of these proper
priors as m — 1.
(IT) The second class of proper priors that will be considered (cf. Deely and Zimmer
(1987)) is

7(02) = Slrcao) + ()" lipsa(e?) (2.7
where I{3(-) is the usual indicator function; thus we assume that 2 has a constant

density between 0 and d, the region having probability r, with the density tailing

off at a polynomial rate. If the mean of the prior exists, then d is g'"r—'ll times the
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mean. Sometimes it is easy to specify r; then by varying d to reflect the uncertainty
in eliciting the prior mean, one may investigate the influence of the prior on the final
answers.

Finally, if 02 is unknown and an accurate estimate of it is not available, then it will

be given a noninformative prior; both 7*(0?) = 1 and #*(0?) = o2 are reasonable.

3 THE MAIN RESULTS

3.1 Known ¢

3.1.1 The Posterior Distribution of 62,03

We start with the calculation of 7(02, o3|y, e), where e= (e, €3), y= (1115 - - » Y15k, )7
We shall consider the cases (1) e = (1, 1), (2) e = (1, 0), and (3) e = (0, 1). To

simplify the notation, m);(03,03|y), m10(02]y) and g (o3|y) will be used to denote

the densities in these three cases.
Theorem 3.1

J
m(02,05ly) = Ki'ou(o®/Nx +al) D[] (6 K; + 1of) 7"

i=1

-1 S
X[+ (02 + I2) /o] /* exp{ {7

0%[/Nk + o2



Wi—9.)  IG.—w)? o\ 2 v g
HE B A e s, 6

=1
E! Ek’j
R . = vuk ~ Yijk
where y ;. = 1%, E 1 T T 7 +}K,a ’

2 _ (v Ki  \-1 = vJ
0'5-(2;‘:1 m) ) NK_Zj=1KjI

J K;
_ _ _ = =1 ¥ij _ i=1 = §
1= S (@i — 5.0, §i, = ZimZamtit g = T 2’,,3,“2" HETT

and K, s the appropriate normalizing constant.

Proof. Given in the appendix. O
Since e = (1, 0) and e = (0, 1) implies 0} = 0 and 2 = 0 with probability 1,

respectively, the following corollary is immediate.
Corollary 3.2

mo(0aly) = Kigou(0®/Nk +05) "L + Nk(ol + Io}) /072

- S1 I(3.. — w)’ 2
xexp{ 2 [Uz/NK'i"ag +02/NK+0'3+IU?‘]}7‘-1(00),

(3.2)

J ,
Ke'oul[1(6*/K; + 1ap)I 721 + (To}) /o) /2

j=1

xexp{—[J}; oy AR S L D)

7fm(”§|)')

where Ko and Ko, are the appropriate normalizing constants.

It is interesting to note that if we send o2 to infinity, representing vague prior
information about p, the density in (3.1) is just the product of the densities in (3.2)

8



and (3.3) (as 03 — oo). This observation is important in later consideration of
“collapsibility”. We shall formally state this as a lemma for the usual noninformative

prior on u.

Lemma 3.3 If n(p) =1, then
m11(03, o5ly) = m10(a2ly) w01 (a3ly) (34)

where

”IO(UZIY) x (02/NK + o,g)—-(l—l)ﬁ exp{ ( 2/NS + o2 )}71'1(0'0)

wo(o3ly) o {107/ K; + o) e 5 3= ST i),

j=1

Also, w19 is the posterior density of o2 if the noninformative prior n(8;) = 1 is used

while 7o, is the posterior density of o5 when w(a;) =1 is used.

Proof. Given in the appendix. O

3.1.2 Hypothesis Testing

Consider testing the null hypotheses H} : @y = --- = ay and H02 2By = = B
Define
(0 /Ni) 5 expls o) 35)
20’2/NK ’



L = (K e (S L s i)y, (35)

j=1 i=1

L3 = [1 + INKUﬁ/g’]—l/z exp{z(az/(lyvx—-;- 13:2)}. (3.7)

Let

Ko = LiLyLs, Ky = K1oLs, Koy = KoLy, Kqy = K.

Then, if 7y and 7, are the prior probabilities of H} and HZ, respectively, and H},l =
1,2, are the alternative hypotheses (complements of the null H}), it is straightforward

to show, for i = 1,2, that

Pyime-i = Pr(Hj is truely, Ho. is true)

€3~i

= 1+ (I—;—QK 1)1, (3.8)

ej1e2

Pygi = Pr (H; is truely)

(1-m) (Ke ieiM3-i T+ Kyn(l- 7"3—-))] 1 (3.9)
; (mes_, + Ke,el(l T3_)) .

= 1+

where e, =0 or 1; e =1ifl =4, ¢, =¢ if | #4; and € = 1 if [ = 1, and 0 otherwise.
The joint posterior probabilities of the null hypotheses and their alternatives are,

in tabular form,

Hy H}

Hs | Py Prg (1 — Pryrg) Prg

H} | Puypz(1 — Pyz) | (1 = Pz )(1 — Pyz)
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e.g. Pr(H; and H both truely) = Py iz Prz, etc.

3.1.3 Ranking and Selection

Deﬁne

Piuim 1z, = Pr(c; is largest|y, H, H?, are true)
and
Pujimy 12 = Pr(B; is largest|y, H,,, H} are true).
Lemma 3.4
Pogupy = E™Wn(o2)), (3.10)
PijHl,H? = E”“‘”"""?’"’[n.-(ai)], (3.11)
P = E™CA(0,03), (312)
Py = EMCB[y(02, 03), (3.13)

where n;(03) = E? 1, ®(Z + 'IZK,U/_;:&Z?.' );

¥i(05,08) = [2o L2 ATLz; ®(E77%) Y% 1 (45)73,(B)dg;dB;
Uy = Y.5. — ;T_I";:(Tg(y.c. - ,B), Ve = 0—2.;%(%%;
711(5) is @ N(u;, V;) density;
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731(B) is a N(u*,V*) density, where
u*=§.. —[1+ (03 + Io2)o7?|7}(§.. — w) and
V* = [I((oF + Io0)" + o3

Z is a standard normal random variable and

® is the standard normal c.d.f.
Proof. Given in the appendix. O
Theorem 3.5

pie = Pr(q; is largest|ly, H] is true)

= pin oz Przimy + Pim 12 (1 — Prziat),

p.j = Pr(B; is largestly, H? is true)

= Pz, a2 Pz + Pujiy 12(1 — Prpyz),
wherei=1,...,] andj=1,...,J.

Proof. Follows directly from Bayes’ theorem. O

(3.14)

(3.15)

To compute p;, and p,;, 3- and 4-dimensional numerical integration, respectively,

is needed. However, if u is given a vague prior, then one level of integration can be

eliminated.
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Corollary 3.6 If n(p) =1, then

pin = E™E@EIM[n(52)), (3.16)

P = E™CB(a), (3:17)

where 1;(03) is given by the expression for ;(0%,03) in Lemma 3.4 with the changes

»n

u* = §.. and V* = o}/I. The quantities will now involve 2- and 3-dimensional

integration, respectively, and both are independent of m and ;. FEquations (3.16)
and (8.17) also hold if the noninformative priors n(8;) = 1 and 7(c;) = 1 are used,

respectively.

Proof. It follows from Lemma, 3'.3, Lemma 3.4 and Theorem 3.5. O

3.1.4 Estimation

We begin by establishing the following lemma.

Lemma 3.7

2 (= ~ 2~
2 o%(§i.—§.) , oij.—w)
E(ailyy O’Z,O'ﬁ) = GZ/NK n ag 0'3 n ag n Iaz, (318)
old? | I-1 o2(o} + Io?)
var(aily,02,03) = o NKU?.( )+ To? +a§+;03); (3.19)
2.2 2 2 I 2
cov(a_,-,a,ly, a'g,a;‘;) = TaT + Ua(ab + a“) . (3'20)

I(0? 4+ Nko?) * I(o} + 02 + Io?%)’
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Io3{y;. — ..+ [1 + (62 + I62) /o] (i... — w))

E(,H_,-'y,az,a'f,) = 02/Kj + IO’% ) (321)
252 IK?g} (62 + Io?)
. 2 52} = i i°8 o B .
ol owd) = TG T T K L @2t L)l )

IK;K,o% (03 +1a3)
' 2 2 - jhs0g o Jod
cov(B;, BslY, 04 95) (0% + IK,'Q?;)(UZ +IK,03)[1 + (o2 + 1‘7;‘1)/"’62],

(3.23)

where j # s.

Proof. Given in the appendix. O
Using Lemma 3.7, one may obtain estimates and variances of a; and §;. All

contrasts ¢; — a, and fB; — 3, can then be analyzed.

Theorem 3.8 Letting 7; denote either ; or B;, and recalling that ey and ez are either
0 or 1 (with e, = 0 and e; = 0 corresponding to H} and H? being true, respectively,

and ¢; = 1 corresponding to the relevant hypothesis being false),

E(rily, HL, H2, true)= E™12a%W) B(r.ly e,0?, e,0%), (3.24)

ep?

var(rly, H.. , HZ true)= ET1(5a3 ) {yar(rily, e102, €205)

ey!?
+[E(Ti|y, 6102, 620%) - E(Tily, H; ’ H822 tme)]2}’ (325)

cov(mi, 7|y, Hy, Hfz true) = E’“l‘?("g"’%h’){cov(r;, 1|y, €102, €20%)

+[E(7ily, 6102, 620[2;) - E(7ily, H:l , sz true)]

X[E(T,Iy, ela:n 820%) - E(T,ly, Hcll ’ HZ; tme)]}; (326)

14



here E(7i|y,e102,€303), var(rily,e102,€203), and cov(;, 7.y, €102, e30%) represent

the mean and the variance of 7; and the covariance of (7;,7.) conditional on (y, o2, ag) ,
calculated using Lemma 3.7. (Note that, when e; = 0, one simply replaces the corre-
sponding o2 or o} by zero in (3.18) through (3.23).) Also,
E(nly, H} is true) = Pug-'m;E("dY’ H:ll ; Hf? true)
+(1 - PHg"'IH{ )E(T,‘ly, Hll, le true), (327)
var(rly, H} is true) = Py var(‘r,-ly,H:‘l,HZ? true)
+(1 - PH3"|H{ yvar(nly, Hy, H} true)
+PH3-'|H{(1 - Pyg-‘m;)[E(Tily, Helll’ Hz,z true)
—B(nly, H}, H? true)l, (3.28)
cov(ti, T ly, H is true) =PH3“|H{ cov(Ti, T ly, H::,HZ? true)
+(1 - PHg-:lH{)cov(T,-,T,ly, H,H} true)
+PH3—'|H{(1 - PHg—llHi)[E(Tily’ H:; y Hezlz true)
—E(rly, H}, H} true)|[E(r,]y, Hel,l , Hez‘z true)

_E(Trlyy Hll')Hf true)], (329)
where e =1 if | = m, and 0 otherwise, and [ =1, 2.

Proof. Follows from Bayes’ Theorem. O
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In the case of a vague prior on u, we have the following corollary.

Corollary 3.9 Ifx(u) =1, then

E("il)'a Hll true)

var(a;ly, H true)

cov(a;, a.ly, Hy true)

E(B;ly, Hy true)

var(B;ly, H? true)

cov(ﬂja ﬂsIY1 H12 tme)

2.
Ngo,

10(0dly)f__YK%% ' - -
E™ [ T Nyol (#.. — 9..)], (3.30)
E"lo(tr?,ly){l"'gxa2 + Nxog [ Nko} (G — 7.)
. 1(0.2 +NKUZ) 0,2 + NKUZ, $..
—E(aily, Hy true)]’}, (3.31)
Emo(eily) { Nkoy

I(0? + Nko2)
Nkol(gi.—73..)

—_ . 1
+[ % + Ngo? E(aily, Hy true)]
NKUZ(gr.. - ?7) 1
x| 0? + Ngo? — E(e,ly, Hy true)]}, (3.32)
IK ;o3
ro;(agly) g =
S =y (TR (3.33)
E™ (o3 |Y){ 0205 IKJ?UE";
0'2+IKJ'0% (0‘2+IKJ-0'[2,)2
IK;03(y;. —4..) ) )
+[ 0-2 + IKJ'O'% - E(IBJ|Y7 Hl tme)] }, (334)

E™ (0§|¥){ IK;K, 0‘3 dé
(0% + IK 0%)(0? 4 IK,0})
+[IKjUfa(y.j. -4.)
o? + IKJ-a'f,
IKaa;zi(y.s. - g)
o+ IK,0}

— E(B;ly, H} true)]

x| ~ E(Bly, H? tru))}.  (3.35)

These quantities do not depend on m nor . The above expressions also give the

posterior estimates of a; and fB; if the priors n(8;) = 1 and n(e;) = 1 are used,
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respectively.

Proof. Apply Lemma 3.3, Lemma 3.7 and Theorem 3.8. O
Note that Theorem 3.8 and Corollary 3.9 allow estimation and construction of .
variances for contrasts a; — a, and f; — f,, even in conjunction with hypothesis

testing.

3.1.5 Collapsibility

It is clear from Lemma 3.3, Corollaries 3.6 and 3.9 that, when m(x) = 1, the ranking
probabilities, posterior means and variances can be calculated by integrating over
either 02 or o} alone. These results are shown here to be the same as those obtained
from the one-way models constructed by collapsing the 2-way model over rows or
columns. The same is true if either () = 1 or 7(B;) = 1. Furthermore it is
interesting to note that, contrary to the result in Corollary 3.9 for 7(x) = 1, numerical
integration is not needed to obtain estimates and variances of a; —a, (given 7(a;) = 1)
and B; — B, (given 7(B;) = 1). This result does not apply for estimation of individual

a; and B;.

Theorem 3.10 If n(p) = 1, n(o;) = 1, or =(B;) = 1, the ranking probabilities,

posterior means and variances assoctated with an additive model can be found from the
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reduced one;way models obtained by collapsing over rows or columns, respectively. In
particular, given y, the posterior distributions of a; — a, (with x(e;) = 1) and ;- B,
(with 7(B;) = 1) are N(¥.. — §r.,20*/Nk) and N(y;. — y.,(0*/K; + 0*/K,)/1),
respectively. Furthermore, c@(a; — ar,a; = oq) = 0[Nk, cov(B; — B,,8; — Bi) =

0’2/(IKJ') and cov(o; — a;, o — o) = cov(B; — B, Br — Bi) =0.

Proof. Given in the appendix. O

3.2 Unknown o2

Conditional on Hj and H} being true, the posterior distribution of 02,0% and o? is

given by
Theorem 3.11

Wll(az,aé,a'zl}’) — lllau —INK+I+J—1(O.2/N + 02 ) (1-1)/2

<[1(6*/K; + T30 + (02 + L) [

Jj=1
—1.:5 _S____ (yJ Y. )2
xexp{ [a' +02/N + o2 2 2/K +Iaﬂ
I(g.. — w)? )
+0‘g +O.Z +Ia,2]}7rl (Ua)ﬂz(dﬂ)ﬂ' ( ), (336)

where S3 =Y, T, T, Wwise — vi5.)° + (i — 9i. — v5. + 7..)7,

Yij. = Zf__{l Yije/ K; and K,y is the appropriate normalizing constant.
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Proof. This is essentially identical to the proof of Theorem 3.1. O

From the theorem, one may also obtain the posterior densities m10(02,0?%|y) and
7a1(03,0%|y) by substituting zero for ¢} and o} in (3.36), respectively. The cor-
responding normalizing constants, K;o; and Kop1, can be found from the resulting

densities. For hypothesis testing, results shown above in the known o2 case will still

hold if the following substitutions are made:
K;I = K, Kio = Ko, K(’n = Ko, K(')0 = Koo,

where Koo is the normalizing constant for the expression in (3.36) when o2 = 0 and
05 =0.

If a noninformative prior option has not been exercised for any of the parameters
i, a; and Bj, then the previous results on ranking and selection and on estimation
will remain true with the obvious modification that the expectations are now taken
with respect to the new densities (hence an additional integration over o2 is needed).

When #(p) = 1, it is no longer true that my; equals myo7o;; thus the collapsibility
result no longer appears to hold and corollaries 3.6 and 3.9 are no longer valid.
However, the assumption does lead to some simplifications in the computation of

the required quantities of interest. From Theorem 3.11, the following corollary is

immediate.
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Corollary 3.12 Ifr(p) =1, then
- - ~S3, .
711(03,03,0%1y) o fi(02, 01 faloh,0P)o M I exp(Z2)e(0%),  (3.37)

where

_Sl ®r 2
2(0’2/N +0,2)}7r1(aa)’

(ot o%) =l [T(0*/K; + Tob)| ™ exp{ 2 ¥ L)

Jj=1

fil0d,0%) = (6*/ Nk + 03) "= exp{

If the primary interest is to make inference about f; and the noninformative prior (2.4)
for 02 is used, it is possible to integrate out o2 analytically from the above density
(after changing variables to o2 and 7 = 0%/02 in f,), thus eliminating one level of
integration in subsequent calculations. This reduction of dimension of integration is

also possible if the noninformative prior 7(¢;) =1 is used.

4 METHOD OF COMPUTATION

The method we recommend to evaluate the required integrals in the text is Monte
Carlo simulation with importance sampling, based on the hierarchical representation
for the posterior distribution. As observed earlier, calculation of the ranking proba-
bilities usually involves three- or four-dimensional integration (for the known o? case;
add one dimension if o2 is unknown), which is a large enough dimension to make the
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Monte Carlo approach appealing. Also, of course, the Monte Carlo approach leads
immediately to estimates of the accuracy of the evaluation. The reason for generating
random deviates in accord with the hierarchical representation is that it simplifies the
task of choosing a good importance function. At each stage, only a one-dimensional
importance function need be found.

The suggested hierarchical Monte Carlo approach is to first generate o2; then,
conditional on o2, generate o2 and ¢3; and conditional on them, depending on whether
we are finding p;. or p.;, generate Z or f followed by ¢; (cf. Lemma 3.4). Note that
the conditional distributions for Z, f and ¢; are all normal, and so these random
variables can be generated directly. If #(x) = 1, it may be possible to integrate out
o? analytically, as discussed at the end of Section 3. In any case, both o2 and o}
can be efficiently generated using two-point mixtures of an inverse gamma and an
exponential distribution, each mixture chosen so that the ratio of the height at 0 to
that at a non-zero point (the mode if it exists) will agree with the corresponding ratio
for the posterior distribution (719 or 7o), and so that the right tail of the importance
function is similar to and no sharper than that of the posterior. Finally, an inverse
gamma distribution (ZG((INx — I — J — 1)/2,2/S3), cf. Theorem 3.11) is used to
generate o? provided that #*(o?) is relatively flat (like the noninformative priors 1
and o7%).
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5 AN ILLUSTRATIVE EXAMPLE

Let us consider a randomized complete block design for comparing several treat-
ments. Suppose the treatments take differing amounts of time to implement, and
that time-consuming treatments are done less often, yielding an unbalanced design.
In particular, suppose there are four treatments and three blocks with the data given
in Table 1. (This data was chosen artificially, so as to provide a clear illustration
of the possible “order reversal” effect.) It is desired, based on the given data, to
choose the treatment with the largest treatment effect. If we use a;, i = 1,2,3,
and B;, j = 1,2,3,4, to represent the block and the treatment effects, respectively,
then the problem is to select the largest 8;. The subsequent analysis is performed
conditional on Hj : @; = a3 = a3 and H? : B = B, = B3 = B4 being false.

We assume that the exchangeable priors discussed in the paper are deemed to
be appropriate, and use the noninformative priors (2.4) and (2.5) for 62 and o3,
respectively, and the constant irﬁproper prior 1 for both g and o%. The posterior
probabilities of each f; being the largest, as well as estimates of B; and their corre-
sponding standard errors (the square roots of the posterior variances of the f3;) are
given in Table 2. Note that treatment A has the highest probability of being the

best, in spite of the fact that treatment D has the largest sample mean. This is the
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“order reversal” effect that can arise when variances are unequal. Contrasts with A,
the largest estimated treatment, are presented in Table 3.

For comparison, use of a noninformative prior, #{a;) = 1, for the block effects was
also considered. The results were very similar to the results from the tv.vo-way analysis
given above (and hence are omitted), indicating that the assumption of e;(changea.bil-
ity of the o; has little effect here (in contrast to the assumption of exchangeability of

the B;, which resulted in an order reversal).

Table 1. Observations on 4 Treatments in 3 Blocks

Treatment
Block

A B C D

1 550 500 550 450 [ 550 500 | 450 400 | 400

2 400 450 500 450|300 400|350 450 | 500

3 600 500 650 550|350 350 (550 450 | 650

Average 512.50 408.33 441.67 | 516.67

Finally, if it is desired to test the various hypotheses about the block and the
treatment effects, proper priors must be used for both o2 and o}. As an example,
assume that priors of the form (2.7) are chosen. Suppose a user has a prior belief
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Table 2. Ranking Probability, Mean and Standard Error for the Treatment Effect

A B C D
j (i=1) (i=2) (i=3) (i=4)
Ranking Probability | .551+.007 | .010£.001 | .035+.003 4114.012
Mean of ; 34.29i0.2b -42.3240.38 | -19.18+£0.17 |  27.21+ 0.35
Standard Error | 50.10+2.01 | 52.59+1.93 | 51.13+1.99 |  54.36+1.91

Table 3. Mean and Standard Error for the Treatment Contrast §; — f3;

=2 j=3 j=4
Mean 76.61+0.55 53.471+0.35 7.0840.16
Standard Error 40.0940.27 36.4740.27 40.4040.41
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that, with probability 0.8, o2 is less than 10.0 and, independently, with probability
0.8, o3 is less than 20.0; the user would then use values of r and d in (2.7) for
7}(02) and 73(03) of (0.8, 10.0) and (0.8, 20.0), respectively. Also, suppose the user
chooses #; = m3 = 1/2 and the constant improper prior 1 for both g and o? as
a noninformative choice. The posterior probabilities of the various combinations of
hypotheses being true are given in Table 4. Note that the joint probability of both
effects being present is highest. If one considers the marginal probabilities (simply
sum the rows or columns), these is also moderately strong evidence that each effect

exists individually.

Table 4. Joint Probabilities for Various Hypotheses in the Additive Model

H} H!
H? 0.12 0.18
H? 0.24 0.46

To perform the integrations in this example, 3000 random vectors of deviates were
generated to calculate the probabilities, means and standard errors. This yielded suf-
ficient accuracy for all practical purposes (numbers after the plus-minus sign represent

the simulation errors). The program was run on an IBM 3090-400 machine using 3.4
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seconds of total processor time for the evaluation of Tables 2 and 3. To compute
Table 4, we found that it is convenient to use existing programs in IMSL (the nu-
merical integration subroutines like DMLIN, DBLIN and DCADRE) to evaluate the
normalizing constants, Kjq;, K 1(;1,K011 and Kop. The total time required was 0.7
seconds.
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Appendix
Proof of Theorem 3.1

Let y;;, = Yrl, iju/ Kj and @ = S, ei/I. Since

> (wisn - p—ai—F) = Y (yi—p—a-G)l+> F.—§.—o+a)

ik .4k ik
+ 3 Wi = T —vi + 5.7+ D (i — vis)%,
1.3,k i3,k

it is convenient to work with the following sets of quantities to obtain likelihood

functions based on y:
{v:}, {5i.—-9.}, -0 —vi+9.} {vi —vi}
Observing that
yi=pta+Bite; Gi-y.=o—at+E —E;
Yij = Yi. — Yt Y. =€ —&. — €5+ €5 Yijk— Yij. = €ijk — €ij.,

K; _ K; ' -
where €; = Yol 6n/Kj, €5 = Yha e/, & = Tl Yl 6x/Nk, and €. =
Y I, €. /1, it is easy to check that, conditional on 02 and 03, the four sets of variables

are independent of one another and
I
> (@i = 5.)" ~ (0° [Nk + a2)xi 1,
=1
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E(?lu ¥i.—y; t .’7)2 ~ UZX?I-I)(J—I)’

..k

Y Wik — ¥ii)? ~ *XiNg-10-
ik

Thus, to obtain the likelihood function l(62, o3|y), it suffices to consider the likelihood
functions corresponding to y; = (y.1.,...,y.2.)T and S; = Y0, (%:.. — 7..)? alone, and

multiply them together.

From Berger (1985, section 4.6), one has
J
(02, 08lys) o o, [[1(0*/K; + Iog)I ™ /*[1 + (o5 + Io}) /03]
i=1

-4 (yJ ,‘17)2 (?7 - w)2
xexp{ [Zaz/K_,+Ia[2,+ b+a'2+Ia"’]}

j=1
Since

-5

=(i-1)
I(UZISl) x (UZ/NK + 0'2) exP{2(0'2/NK + 0,2)}7

the result follows immediately. (The first multiplicative factor, o, is an irrelevant
constant included here for consistency with the expression obtained in the case of

vague knowledge about p.)

Proof of Lemma 3.3
In the Proof of Theorem 3.1, sending az to infinity (which can be shown to be

equivalent to choosing 7(u) = 1), the likelihood {(¢2|S,) remains unchanged but

(R 3lye) o ol [T/ Hs + 1 el S =By ()

i=1 i=1
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Using the decomposition result for the likelihood function in the Proof of Theorem
3.1, the first part of the lemma follows.

Treating 02 as known and letting 02 — oo results, after renormalization, in
l(o3]y2) being given by (*). Hence mg; is the required posterior density when the
option 7(e;) =1 is used. Similarly, as 0 — o0, it can be shown that the likelihood
function I(o2|y) is proportional to I(¢2|S;). Thus o is the posterior density of o2.
Proof of Lemma 3.4

Let yt = (#1.y...,91.)F — .11, @ = (aq,...,an)T, B = (B1,..-,B:)T and 1, be
a vector of n ones. From the Proof of Theorem 3.1, we have the following results:
~ Result 1. Conditional on (i, a”, ﬂT), y; and y; are sufficient for a* = @ — @l and
B+ (p + @)1, respectively.

Result 2. Conditional on (g, aT,a;‘;), g... is sufficient for y + a.

Proof. This follows from the decomposition result in the Proof of Theorem 3.1, the

fact that

XJ: (i—p—af N (95—9.) | 2’: (3. — p—&?°

Soh+?/(UK;)  Hoh+o* UK;)  Hof+o*/UK;)

=
and an application of the factorization theorem.
Result 3. Conditional on (y,o2,0%), & is independent of a; — & for all 4.

Proof. From the Proof of Theorem 3.1 it is clear that, conditional on (a, af,), y; and
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§... are independent and they are sufficient for a@* and &, respectively. Also, given o2,

@ is independent of a; — & for all :. The result follows immediately.
From Berger and Deely (1988) and Result 1 above we have
Pr(a; largestly,03,03) = Pr(oa; — & largestly, o2,03)
= Pr(o; — a largestly},o?)

ni(o3)

and
Pr(B; largestly,02,03) = Pr(p+ @&+ B; largestly,o2,03)
= Pr(p+ a+ p; largestlys, a;, 03)
= (02, 9%)-
The required result follows easily.

Proof of Lemma 3.7
Since y;|p, @, 8 ~ N(B+(p+a)ly, X), where ¥ is a diagonal matrix with diagonal

elements o2 /(IK;), it follows from Berger (1985) that

B+ (p+a)ylyzp+a, 0;23 ~ N(y: —EWy(y2 — (p + a)1;), £ — ZW,X),

(62 + IoZ)/1 )

~ 2 2 _— 2 2/ 210
I‘+a|}'2,‘7aaaﬁ N(j.. [1+(‘7a+1‘7p)/ab] (7. w)’1+(a§+Iaﬁ)/ob
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where W, = (E+a§IJx 7)1t and I;,; is the J x J identity matrix. Hence, conditional

on (y2,03,03), the mean vector and the covariance matrix of B are respectively given

by

E(ﬂl)’z,az,”g) = (IJXJ - EWZ)(Y? - [~ 1+ (a,gg + Iag)/azl J)a

(o2 + Iaﬁ)/]

2 2 _

‘where 1;, is the matrix of all ones.

2

From the densities of y] given a* and a* given o7, one has

* 2
ayl U (o4

02[/Nk + 02’ 02 + Ngo

a’ly, o5 ~ N( [Im (1/1)1.17)).

Using Result 2 in the Proof of Lemma 3.4, the posterior density of & can be obtained:

o3 —w) ox(a} +10})
t+ 024102 I(o} + 0% + Io2)

)-

&lf.., 06,95 ~ N(=
Thus the posterior density of a follows from Result 3 in the Proof of Lemma 3.4.
The lemma follows from Result 1 in the Proof of Lemma 3.4.

Proof of Theorem 3.10
The first part of the theorem follows from corollaries 3.6 and 3.9. To prove the

second part, we consider the following two cases:
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(i) () =1
It follows from the Proof of Lemma 3.4 that, conditional on y, a* has the same

distribution as
a*ly; ~ N(yi, et — (1/1)1117)0*/Ni).
Using the fact that a; — o, = (@; — &) — (a, — &) yields the required result.

(i) =(8;) =1
From the Proof of Theorem 3.1 it can be shown that, conditional on (87,02), y,

is sufficient for B. Since
Y2|ﬂa a?x ~ N(ﬂ + le’ L+ (O'z + 02/1)1.115),

it follows that

Bly,02 ~ N(yz — wly, T+ (0 + o2/ I)1,17).

Note that the derived distribution

:Bj - ,Baly ~ N(y.j. = Y. (02/KJ' + Uz/Ka)/I)

2
ey

does not depend on o
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